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Introduction
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution p,,.,(x) is unknown.
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2. We attempt to approximate this process with a chosen model, py(x), with parameters ¢
such that x ~ py(x).

3. Learning is the process of searching for the parameter ¢ such that p,(x) well approximates
Pyata(X) for any observed x, i.e.

Po (X) ~ Pdata (X)

4. We wish py(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Generative Aversarial networks



Generative Adversarial Networks

1. Generative adversarial networks (GANs) are a new way to implicitly build generative
models p(x) (Goodfellow et al. 2014).

2. Generative adversarial networks
o Generative: Learns a generative model.
o Adversarial: Trained in an adversarial setting
o Networks: Use Deep Neural Networks

3. Which one is computer generated?

original bicubic SRResNet

(21.59dB/0.6423) (23.44dB/0.7777)

4. How do we generate a fake image?

5. Can we generate a fake image from a random number? 4/



GAN results

1. Results obtained from GAN (Radford, Metz, and Chintala 2016).
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GAN results

1. Results obtained from GAN (Radford, Metz, and Chintala 2016).
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GAN Architecture

1. GAN has the following architecture
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2. z (input to generator) is some random noise (Gaussian/Uniform).

3. z can be thought as the latent representation of the image.
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Generator

1. The generator tries to learn p(x | z).
2. Inputs are directly sampled from q(z).
3. Problem: No true data x is provided when training the generator

4. Instead of a traditional loss function, gradient is provided by a discriminator (another
network)
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Discriminator

1. The discriminator attempts to tell the difference between real and fake images.

2. It tries to learn p(y | x), where y is the label (real or generated) and x is the real or
generated data.

3. Trained using standard cross entropy loss to assign the correct label (although this has
changed in recent GANSs).

4. Generator weights are frozen while training discriminator; inputs are generated data and
real data, targets are 0 and 1

5. From generator’s point-of-view, discriminator is a black-box loss function
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GAN Architecture

1. Let p, / Puara De probability of generating a fake / real sample.
2. Let output of discriminator, D(x), be the probability that x is a real sample.

3. For a fake sample G(z), the discriminator is expected to output a probability, D(G(z)),
close to zero by maximizing [, ,)[log(1l — D(G(2)))].

4. For a real data, the sample is expected to output a probability D(x), close to one by
maximizing E,., «)[log D(x)].

5. The generator is trained to increase the chances of D producing a high probability for a
fake example, thus to minimize E,_ , (,)[log(1 — D(G(z)))].

6. When combining both aspects together, D and G are playing a minimax game in which
we should optimize the following loss function:

mci_n max V(D,G) = mGin max Ex p,..x)[108 D(X)] + Ezop () [log(1 — D(G(2)))]

= mGin max Exm ... (x)[l0g8 D(X)] + Ezvp (g)[log(1 — D(x))]

7. Thus, Eyop (x[log D(x)] has no impact on G during gradient descent updates.
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Min-Max Game

1. Loss function is
V(6.D) = [ puss()IoB(D(x))dx + | py(2)log(1 - D(G()))d
— [ (Pans(x)108(D(0) + p(x)log(1 ~ D(x)))

2. The full two-player game can be summarily described by the below.

minmax V (D, G)
G D
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Training GAN

1. It is important to understand that both the generator and discriminator are trying to learn

moving targets. Both networks are trained simultaneously.
2. The discriminator needs to update based on how well the generator is doing.
3. The generator is constantly updating to improve performance on the discriminator.

4. These two need to be balanced correctly to achieve stable learning instead of chaos.
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Training GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of

steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for & steps do

 Sample minibatch of m noise samples {z(1, ..., (™} from noise prior py(2).
Discriminator o Sample minibatch of m examples {z(),... (™} from data generating distribution
updates Paua()-

o Update the discriminator by ascending its stochastic gradient:

Vo, 3" [i0g D () +10¢ (1- D ( ().

i=1

end for _

o Sample minibatch of m noise samples {z*/, ..., 2™/} from noise prior py(2).
Generator e Update the generator by descending its stochastic gradient:

updates 1 ®
Vo 2o (1-0 (6 (=))).
0y Z log(1-D (G |z
i=1
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Training GAN

1. How GAN is trained?

(a) (b) (©) (d)

2. discriminative distribution D(x), real data p,,,,, generative distribution p,.

(a) An adversarial pair near convergence: p, is similar to p,,., and D is a partially
accurate classifier.

(b) In inner loop of algorithm, D is trained to discriminate samples from data, converging
to D*(x).

(c) After an update to G, gradient of D has guided G(z) to flow to regions that are more
likely to be classified as data.

(d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p, = p,,- 14/ 82



GAN Results

1. Visualization of samples from the model.

2. Rightmost column shows the nearest training example of the neighboring sample.
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GAN Results

1. Digits obtained by linearly interpolating between coordinates in z space of the full model.
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Optimality of GAN

Theorem (Optimality of GAN)

For G fixed, the optimal discriminator D is

*(x) = pdata(x)
D)= 500 + P

Proof.

The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V(G, D).

V(6,D) = [ puss(x)log D(x)dx + | p,(2)log(1 - D(G(z)))d

z

— [ Paws()108 D) + py(x) log(1 ~ D(x))

For any (a, b) € R? (0,0), function u+ alog u + blog(1 — u) achieves its maximum in [0, 1]

a
at a4b- O
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Convergence of training algorithm of GAN

Theorem (Convergence of training algorithm of GAN)

If G and D have enough capacity, and at each step of training Algorithm, the discriminator is
allowed to reach its optimum given G, and p, is updated so as to improve the criterion

V(D, G), then, p, converges to Py,

What is the global optimal?

1. When both G and D are at their optimal values, we have p, = p,,,, and D*(x) = % and
the loss function becomes:

V(6, D7) = / Pdata(X) l0g(D"(x)) + pg(x) log(1 — D*(x))dx

X

1 1
zlogf/pdata(X)dxﬂogf/ pg(x)dx
2 Jx 2 Jx

= —2log?2
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What does the loss function represent?

1. KL divergence measures how one probability distribution p diverges from a second
probability distribution g

Dikc(p || ) :/ p(x) log Zg; dx

2. KL divergence is asymmetric.

3. In cases where p(x) is close to zero, but q(x) is significantly non-zero, the q's effect is
disregarded.

4. Jensen—Shannon Divergence is a measure of similarity between two probability
distributions, bounded by [0, 1].

1 p+q 1 p+q
Dus(p || ) = 2DKL(p I 2) +2DKL<q I Ew

5. JS divergence is symmetric and more smooth.

19 / 84



What does the loss function represent?

1. JS divergence between p,,, and p, can be computed as:

1 Pdata T Pg\ 1 Pdata + P
DJS(pdata H pg) :E Dxke <pdata H ata2g) + E Dyt <pg || %

1 Pdt(x) >
—(1o 2+/ LX) log —PdataX)
2( B2 | PamlX) o pe ()

1 Pg(x)
+3 (Iog 2+ /x pg(x) log P+ 09 dx)
:%(Iog4 + V(G,D"))

2. Thus
V(G7 D*) =2 DJS(pdata H pg) - 2|Og2

3. The best G* that replicates the real data distribution leads to the minimum
V(G*,D*) = —2log 2, which is aligned to the optimal solution.
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Generative Aversarial networks

Deep Convolutional GAN



Deep Convolutional Generative Adversarial Networks

1. DCGAN maps from random noise to an image matrix.

2. It uses convolutional Layers in the generator network to produce better results (Radford,
Metz, and Chintala 2016).

3. Combine CNN and GAN for unsupervised learning.
4. Learns a hierarchy of feature representations

5. The Generator uses fractional-strided convolutions followed by batch normalisation and
ReLU activation for all layers except for the last that uses tanh activation.

6. The Discriminator uses strided convolutions followed by batch normalisation and
LeakyRel U activation for all layers except for a single sigmoid output.

Generator
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DCGAN results
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DCGAN results
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DCGAN results
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Problems in GANs

1. No explicit representation of p,(x).

2. Easy to get trapped in local optima that memorize training data.

3. Hard to invert generative model to get back latent z from generated x.
4. Hard to achieve Nash equilibrium (Salimans et al. 2016).

5. Low dimensional supports: When the intrinsic dimension is low, then training GAN will be
unstable (Arjovsky and Leon Bottou 2017).

6. Vanishing gradient: When the discriminator is perfect, loss function is zero and there is
not any training.

7. Mode collapse: During the training, the generator may collapse to a setting where it
always produces same outputs.
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Improved GAN Training

1. Feature Matching: This suggests to optimize the discriminator to inspect whether the
generator's output matches expected statistics of the real samples. New objective function

[Exp, f(x) = Eznp, () f(G(2))II3
where f(x) can be any computation of statistics of features, such as mean or median.

2. Mini-batch Discrimination: Instead of processing each point independently, the
discriminator is able to digest the relationship between training data points in one batch.

3. Historical Averaging: This adds a term penalizes the training speed when parameters are
changing too dramatically in time.

4. One-sided Label Smoothing: When feeding the discriminator, instead of providing 1 and
0 labels, use soften values such as 0.9 and 0.1

5. Virtual Batch Normalization: Each data sample is normalized based on a fixed batch
(reference batch) of data rather than within its minibatch. The reference batch is chosen
once at the beginning and stays the same through the training.

6. Adding Noises:

7. Use Better Metric of Distribution Similarity: The JS divergence fails to provide a

meaningful value when two distributions are disjoint. .



Generative Aversarial networks

Non-saturating GAN



Non-saturating GAN

1. G is poor in early learning and samples are clearly different from the training data.
2. Therefore, D can reject the generated samples with high confidence.

3. In this situation, log(1 — D(G(z))) saturates. This means D(G(z)) is close to zero.
4. As a result, the back-propagated gradient Vy log(1 — D(G(z))) is also small.

5. Fortunately, the following simple mathematical trick solves the problem:

min J(G) = min % Zlog(l — D(G(z)))

i=1

= max % Z log D(G(z))
i=1

= min —% Z log D(G(z))

i=1

6. This trick ensures a higher gradient signal early in the training.
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Non-saturating GAN

1. This new objective function results in the same fixed point of the dynamics of D and G
but provides much larger gradients early in learning.

g log (1~ D(G(2))
i —log D(G(z))
£ o-
:
<
—5

0.0 0.2 0.4 0.6 0.8 1.0

2. The non-saturating game is heuristic, not being motivated by theory.
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Non-saturating GAN

1. The non-saturating game has other problems such as unstable numerical gradient for
training G.

2. With optimal D*, we have

Exp, [~ log D*(x)] + Exp, [log(l — D*(x))] = Exvp, [bgl(c}g_D*D(j)X))}

_ Emg[ Pg(x) ]

pdata(x)
= DKL(pg || pdata)

3. Therefore, we have

Exwp, [~ log D*(x)] = Dk (Pg || Paata) — Ex~p, [log(1 — D*(x))]

4. We also had
Expyy, 108 D* (%)] + Exp, [log(1 — D*(x))] = 2D s (pg || Pyara) — 2l0g2

5. Therefore, we obtain

Eyeop, llog(1 — D*(x))] = 2D.s(pg Il Paata) — 21082 — Exnp,,, [log D*(x)]
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Non-saturating GAN

1. By combining the preceding equations, we obtain

Exwp, [~ l0g D*(x)] = Dki (P || Paata) = 2Dus(Pg || Pdata) + Exp,,, [log D* (X)] + 2log 2

2. This alternative loss is contradictory because of:

o The first term aims to make the divergence between the generated distribution and the real
distribution as small as possible.

o The second term aims to make the divergence between these two distributions as large as
possible due to the negative sign.

3. This will bring unstable numerical gradient for training G.
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Maximum likelihood game

1. There are many methods to approximate the objective function of GANs.

2. Under the assumption that the discriminator is optimal, minimizing

Earp, [~ ep(0 " (Iog D*(G(2))))] = Exey, [‘1DD(G((GE)))}

where o is the logistic sigmoid function.

—— Ovigiral
© Noo-salratng
Maxdrum Ikel hood cost

|
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Generative Aversarial networks

Mode Collapse?

2Some slides are taken from Sargur N. Srihari lectures



Mode Collapse @}

1. Real-life data is multi-modal (e.g.10 in MNIST).

2. Mode collapse occurs when GAN generates only few modes.
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Mode Collapse

1. Mode collapse is a hard problem to solve in GAN.
2. A complete collapse is not common but a partial collapse happens often.

3. The following images with the same underlined color look similar and the mode starts

collapsing.
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Reason for Mode Collapse

1. The goal of generator is to create images to overcome discriminator.

2. The generator use the following gradient to update its parameters.

Vo, > logll - D(G(z1))

3. Consider the case when generator is trained without updates to discriminator.
o Generated images converge to x* that overcome discriminator.
o These images are most realistic from the discriminator perspective.
o In this extreme, x* will be independent of z.

*

x* = arg max, D(x)

o Mode collapses to a single point in which the gradient associated with z approaches zero, i.e.

@amo

0z
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Reason for Mode Collapse

1. When we restart the training in discriminator, the most effective way to detect generated
images is to detect this single mode.

2. Since generator desensitizes the impact of G already, the gradient from discriminator will
likely push the single point around for the next most vulnerable mode.

3. This is not hard to find, because the generator produces such an imbalance of modes in
training that it deteriorates its capability to detect others.

4. Now, both networks are overfitted to exploit the short- term opponent weakness.

5. This turns into to a cat-and-mouse game and the model will not converge.
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Nash Equilibrium

1. GAN is a zero-sum non-cooperative game.
o If one wins the other loses.
o Zero-sum game is also called minimax.
o Our opponent wants to maximize its actions and our actions are to minimize them.

2. In game theory, GAN converges when discriminator and generator reach a Nash

equilibrium.
3. This is the optimal point for the minimax equation.

mGin max V(D,G) = mGjn max Ex~p,,.x[108 D(x)] + Ezvp (g)[log(1 — D(x))]

4. Nash equilibrium is when one player will not change action irrespective of opponent action.
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Nash Equilibrium

1. Consider two player A and B which control the values x and y, respectively. A to

maximize xy while B wants to minimize it.

min max V(D,G)=xy

2. Nash equilibrium is x =y = 0.

3. We update x and y based on gradients of V.

4. These plots show x, y, xy against training iterations.

5. It is apparent that solution does not converge 38
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Variants of GAN

There are many papers related to GANs (Gui et al. 2023a). Some examples are:
1. InfoGAN (Chen et al. 2016)
2. Information Bottleneck GAN (Jeon et al. 2021)
3. Conditional GANs (Mirza and Osindero 2014)
4. BiGAN (Donahue, Krahenbiihl, and Darrell 2017)
5. CycleGAN (Zhu, Park, et al. 2017)
6. f-GAN (Nowozin, Cseke, and Tomioka 2016)

7. Wasserstein GAN (Arjovsky, Chintala, and Léon Bottou 2017).

39/ 84



Variants of GAN

InfoGAN



InfoGAN

1. Rather than utilizing a single unstructured noise vector z, the input noise vector was
decomposed into two parts (Chen et al. 2016):

o z which is called the incompressible noise, and

o c which is called the latent code and will target the significant structured semantic features
of the real data distribution.

2. InfoGAN aims to solve
mGin max Vi(D,G) = V(D,G)— AMI(c, G(z,c))
where
e V(D, G) is the objective function of original GAN,
o G(z,c) is the generated sample,
o Mi(c, G(z,c)) is the mutual information, and

o A is the tunable regularization parameter.

3. Maximizing Ml(c, G(z,c)) means maximizing the mutual information between c
andG(z, c) to make c contain as much important and meaningful features of the real

samples as possible.
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InfoGAN

1. It is very difficult to optimize M/(c, G(z,c)) directly in practice since it requires access to

the posterior p(c | x).

2. We can have a lower bound of M/(c, G(z,c)) by defining an auxiliary distribution q(c | x)
to approximate p(c | x).

3. The new objective function of InfoGAN is

mGin max Vi(D, G) = V(D, G) — AL(c, q)

4. Li(c,q) is the lower bound of Ml(c, G(z,c)) and is

Ml(c, G(z,c)) = H(c) — H(c | G(z,c))
= Ex6(z.0) [ Ecrmp(elo)[log p(c” | X)]] + H(c)

= Exwc(zc) | Dre(p(- | %) || a(. | X)) +Ecn pic o) log ale” | x)] | + H(c)

>0

> Exnt(zc) [ e pieloyllog a(e’ | x)]] + H(c)

5. This technique of lower bounding mutual information is known as Variational Information

Maximization.
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InfoGAN

Lemma

For random variables X, Y and function f(x,y) under suitable regularity conditions, we have

ExwX,yNY[f(Xa Y)] = EXNX,yNY [ x,x"~X| y[f(x/7 y)]

Proof.

EXNXtyNY\x[f(va)] = / p(X)/ p(y | X)f(X,y)dXdy

X

- / /y p(xfy)f(x,y)dxdy

= [ [ Pty [ oec [y)naxay
= [ 000 [ty %) [ plx 1 9)F( )y

= Ex~X,y~Y | x,x" ~X| y[f(xla y)]

]
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InfoGAN

1. By using the above lemma, we can define L;(G, q) of MI(c, G(z,c)) as
L/(G, q) = ]ECN p(c),wa(z,c)[log q(c | X)] + H(C)

= ExuG(z,c) | Ecrm p(c |0 [log alc | X)]] + H(c)
Mi(c, G(z,c))

A

2. Li(G,q) is easy to approximate with Monte Carlo simulation.
3. Li(G, q) can be added to GAN's objectives with no change to GAN's training procedure.

4. InfoGAN is defined as the following minimax game () is a hyperparameter) :

rgin max Vi(D, G,q) = V(D,G)— AL(c,q)
q

VA .
input Generator generated Discriminator real image
P G X D probability
c ———
Classifier %re convolutional layers
q

maximize q(c|x)

predict the input latent
representation ¢
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Variants of GAN

Information Bottleneck Generative Adversarial
Networks



Information Bottleneck Principle

1. Let the input variable X and the target variable Y distributed according to some joint data
distribution p(x,y).

2. The goal of information bottleneck (IB) is to obtain a compressive representation Z from
the input X, while maintaining the predictive information about the target Y as much as
possible (Tishby, Pereira, and Bialek 1999; Tishby and Zaslavsky 2015).

3. The objective for the IB is maxq, ;| {M/(Z,Y) — BMI(Z,X)}.

4. 1B aims at obtaining the optimal representation encoder q,(z | x) that simultaneously
balances the tradeoff between the maximization and minimization of both MI.

5. Accordingly, the learned representation Z can act as a minimal sufficient statistic of X for
predicting Y.

6. The IB principle provides an intuitive meaning for the good representation from the
perspective of information theory.
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Information Bottleneck GAN (IB-GAN)

. InfoGAN’s objective lacks a MI minimization term compare to the IB objective.

. Hence, MI minimization term adopted to InfoGAN's objective to get the IB-GAN
objective (Jeon et al. 2021):

mingmaxpLig—can(D, G) = V(D, G) — [MI*(z, G(z)) — BMIY(z, G(z))]
s.it. MYz, G(2)) < Miy(z, G(z)) < MIY(z, G(z))

where M/t and MIY are the lower and upper bound of generative MI (M, (z, x)),
respectively given by

Po(x | 2) p(Z)}

M z,x) = E |O
¢(2,%) pe<x|z>p<z>[ & b (x) p(2)

. For the optimization, first a tractable lower-bound of the generative Ml is defined as

Mig(z, G(2)) = Ep,(x|2)p(z) ['Og W]

> Mit(z,

z))
q4(z | x)
E by (x| 2)p(z2) {Iog 2 }
po(x]2) p(2) [|qu¢z|x]+H()
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Information Bottleneck GAN (IB-GAN)

1. The same approach was used to derive the upper bound (Jeon et al. 2021).

2. Then, a variational approximation of objective function can be obtained as
ming,%’ew maxDZ,B,GAN(D, G,dy, es) = V(D, G)
= Epo) [Epyixl2)es[log a6(z | ¥)]]
+ B Drke(ey(r [ 2) || m(r))
where m(r) = N(0,1) is a prior and e (r | z) = N(uy(2z), 04 (2)) is a encoder as in VAE.

- MSE(2,2) == - _

| %t
| IS ‘_I.___ — Dw'r- realfke |

KL{ey(r|z)llm(r))
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Information Bottleneck GAN Results

Azimuth

Hair Color

Smile
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Information Bottleneck GAN Results

Background

Skintone

Gender
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Variants of GAN

f-GAN



f-Divergence

1. One way to measure the discrepancy between two probability distributions is through the

DPACRIN)) :/X p(x )Iog(ZEXDdX

2. Other way to measure the discrepancy between two probability distributions is through the

KL divergence.

Jensen-Shannon divergence.

p+q P+q
Dss(p Il a) = 5 0 (11252 + 3 0w (a1 252

3. Both Dki(p || q) and Dys(p || q) are special cases of the more general f-divergence (Ali
and Silvey 2018).

Definition (f-divergence)

Given a convex function f satisfying @ and two densities p and ¢, an f-divergence defined

oetp Il @)= [ Z p(x)f(g’g;)dx

2There are more constraints on function f, such as f must be a convex, lower-semicontinuous function with
f(1) =0.
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f-Divergence

1. Some f-divergences are:

KL-divergence f(t)=tlogt
Hellinger distance f(t) = (\/E - 1)2
Total variation distance f(t) = %\t -1
Pearson x°-divergence, f(t) = (t —1)?

2. Homework
o Show that for any two probability distributions p and q, we have Ds(p || q) > 0.
o Show that for any two probability distributions p and ¢, we have Ds(p || q) is symmetric.
o Show that for any two probability distributions p and g, we have Ds(p || q) is not a metric.

o Show that for any two probability distributions p and g and any convex function f, we have
Dr(p || a) = 0.

3. For more about mathematical background of GAN, please read Wang 2020.
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1. How to minimize Dk (py,e, || Pg)?

g
o

pdata( ) dx

DKL<pdata || pg Pdata X) |Og (X)
g

pdata |Og pdata( )dX - / pdata(x) |Og pg(X)dX

X

Paata(X) log pg(x)dx

X

— B p() (108 Pg(X)]

2. Can we use the same trick to minimize Dys (P, || pg)?

1 p+q p+q
DJS(p||Q)=2DKL( I >+2DKL(q I )

3. We cannot do the same trick, because requires knowledge of mixture, which is unknown!
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. Every convex, lower-semicontinuous function f has a convex conjugate function f*, known

as Fenchel conjugate.

. This function is defined as

*(t)= sup {ut—f(u)}
uedom(f)

. The function * is again convex and lower-semicontinuous and the pair (f, f*) is dual to
another in the sense that f** = f.

. Specifically, we obtain a lower bound to any f-divergence via its Fenchel conjugate:

Dt (Pasts [l Ps) 2 800 (B [T(] = ey, [ (TG)])

. Therefore we can choose any f-divergence that we desire.

. Let parameterize T by ¢ and G by 6 and obtain the following f-GAN objective:

mingmaxyF (0, ¢) = Exp,,, [Ts(X)] = Exp, [f*(Te(x))]

. Intuitively, we can think about this objective as the generator trying to minimize the

divergence estimate, while the discriminator tries to tighten the lower bound.
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1. Similar to a GAN, we use two neural networks:

o G is the generative model and
o T is the variational function.
2. The process is Similar to GAN
o G takes a random vector and outputs a sample and
o T takes a sample and returns a scalar.

3. The objective function is

mingmaX¢F(9, ¢) = Ex~pdm[T¢(X)] - ]EXNpg[f*(Tqb(x))]

4. The expected values are approximated through minibatches.
o The first term is sampled from the training set without replacement.

o The second term is taken from current G(z).
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f-GAN Results

(a) GAN

(c) Squared Hellinger
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Variants of GAN

Wasserstein GAN



Wasserstein GAN (WGAN)

1. Wasserstein Distance is a measure of the distance between two probability distributions.

2. When dealing with the continuous probability domain, the distance becomes

Dw (Paaia I Pg) = inf  Eayysllx =yl
latarMg

where T1(p ..., p,) is the set of all possible joint probability distributions of p,,., and p,.

3. It is intractable to exhaust all the possible joint distributions in M(p,,,, p,) to compute
infs o n(psnp,) Eeey)~ry [l — yll], the following metric is used.

1
Dw (Paata 1| Pg) = KR, Exnopyy [F (X)] = Exeop, [F(X)]
L

where ||f||, < K means that f is K-Lipschitz.
4. Why Wasserstein is better than JS or KL divergence?

Even when two distributions are located in lower dimensional manifolds without overlaps,
Wasserstein distance can still provide a meaningful and smooth representation of the
distance in-between.
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Wasserstein GAN (WGAN)

1. In WGAN, discriminator network instead of producing the probability of generating real
data, the network produces a scaler score (Arjovsky and Leon Bottou 2017).

2. This score can be interpreted as how real the input images are.
3. In reinforcement learning, we call it the value function which measures how good a input is.
4. We rename the discriminator to critic to reflect its new role.

5. The loss function for WGAN is

V(pdatav pg) = DW(pdata || pg)
= max By, [£000] — Eavp,olfu(g0(2))]

f comes from a family of K-Lipschitz continuous functions {f,, } e\ parameterized by w.

6. The discriminator model is used for learning w to find a good f,, and the loss function is
configured as measuring the Wasserstein distance between p,_., and p,...
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Wasserstein GAN (WGAN)

1. WGAN architecture is (Arjovsky, Chintala, and Léon Bottou 2017).
Vo [ i ful@®) = £ T fulge(9))]

Real image @

2z~ N(©,1)
& Generator
2~ U1,1)
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Wasserstein GAN (WGAN)

1. The Wasserstein formulation is empirically shown to avoid mode collapse.

2. The reason is that, in this formulation one can maximize the discriminator to optimality,
before updating the generator.

3. In contrast to the JS formulation, the optimal discriminator does not introduce vanishing
gradients.

4. The following toy example shows this concept.

generated
data

zero gradie
\]
real \ /
.

linear gradient /
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Wasserstein GAN Results

WGAN with DCGAN generator GAN with DCGAN generator

‘Without batch normalization &
constant number of filters at each layer

L _

Using a MLP as the generator

All critics and discriminators follow the same discriminator design in DCGAN
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Wasserstein GAN Results

Training curves and samples at different stages of training.
Left: The generator is an MLP with 4 hidden layers and 512 units at each layer.

Right: The generator is a standard DCGAN
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GAN Inversion




Introduction

1. Recent studies have shown that GANs effectively encode rich semantic information in
intermediate features and latent spaces from the supervision of image generation.

2. These methods can synthesize images with a diverse range of attributes, such as faces
with different ages and expressions, and scenes with different lighting conditions.

3. GAN inversion aims to invert a given image back into the latent space of a pretrained
GAN model.

4. The image can then be faithfully reconstructed from the inverted code by the generator.

Fake Image

Sampling &

Latent space Generation
x =G(z), z~N(0, 1)

) Real Image

(a) invert real image into latent space
z*=arg min (G(z), x)
z

Inversion

(b) manipulate the inverted image in
the latent space

x = G(z*+ny) x = G(z*+ny)

Reconstruction& Manipulation

Decrease age Add smile
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GAN Inversion

Definition (GAN Inversion)

1. The generator of an unconditional GAN learns the mapping G : Z — X.

2. When z;,z, € Z are close in Z space, the corresponding images x;,x, € X" are visually
similar.

3. GAN inversion maps data x back to latent representation z* or, equivalently, finds an
image x* that can be entirely synthesized by the well-trained generator G and remain
close to the real image x.

4. Formally, denoting the signal to be inverted as x € R”, the well-trained generator as
G : R™ — R", and the latent vector as z € R™, we study the following inversion
problem:

z" = argmin, {(G(z),x),

where / is a distance metric in the image or feature space.

The obtained latent code for a given image should have two properties:

@ Reconstructing the input image faithfully and photo-realistically (how to solve the above
optimization problem).

o Facilitating downstream tasks (use of latent space).
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GAN Inversion Methods

1. A learning-based inversion method aims to learn an encoder network to map an image
into the latent space such that the reconstructed image based on the latent code looks as
similar to the original one as possible.

2. An optimization-based inversion approach directly solves the objective function through
back-propagation to find a latent code that minimizes pixel-wise reconstruction loss.

3. A hybrid approach first uses an encoder to generate initial latent code and then refines it
with an optimization algorithm.

 xrec < yreal

coo

xrea XTec o _xreal
. ’ Zn . '
xreal xrec < xreal

Generally,
@ Learning-based GAN inversion methods cannot faithfully reconstruct the image content.

o Optimization-based techniques have achieved superior image reconstruction quality, their
inevitable drawback is the significantly higher computational cost. 64 / 84



Learning-Based GAN Inversion

1. Learning-based GAN inversion typically involves training an encoding neural network
E(x; 0£) to map an image, X, into the latent code z by

O = argmin,,_ ZE(G(E(X; 0g)),x)

2. A good encoder for GAN inversion should have the following properties:

o have accurate reconstruction

lightweight
o data-efficiency

o supporting high-resolution images

generalizability to arbitrary images
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ible cGAN

1. Invertible cGAN enables to re-generate real images with deterministic
modifications (Perarnau et al. 2016).

/

z
T x
= = E Generator |—» ﬂ
-r <7

/

female female
ol [0 | Change vector [1 | plack hair
brown hair =" [0 |brown hair
make-up n n make-up
sunglasses n sunglasses cGAN
IcGAN 2]

2. The encoder E is composed of two sub-encoders:
o E,, which encodes an image to latent representation z,
o E, , which encodes an image to conditional information y.
3. To train E,, a create dataset (x',z) and minimize Le, = B,y y1op [z — E.(G(z,¥))[]?].

ly — E,(x)II7].

4. To train E,, a dataset (x,y) is created and minimize Lg, = Eyyp, |
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Invertible cGAN

1. For encoders, several strategies can be used:
o SNG: One single encoder with shared layers and two outputs.
o IND: Two independent encoders and are trained separately.
o IND-COND: Two encoders, where E, is conditioned on the output of encoder E, .

2. Architecture of the generator and discriminator of the used cGAN model.

GENERATOR " DISCRIMINATOR

Full conv 1

Full conv 2

Full conv 3

. - Conv 4
Full conv 4 Full cony 5 Conv 2 Conv 3
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Invertible cGAN Results

1. Some IcGAN results:

o (a) Comparison of different encoder configurations, where IND yields the most faithful
reconstructions.

o (b) Reconstructed samples from MNIST and CelebA using IND configuration.
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Invertible cGAN Results (MNIST dataset) @&

A real image is encoded into a latent representation z and conditional information y, and then
decoded into a new image. z is fixed for every row and y is modified for each column to obtain
variations.

" " a
AR R AN N
¢’ O L 4

<3
13
23
< 3
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Invertible cGAN Results (CelebA dataset)

A real image is encoded into a latent representation z and conditional information y, and then
decoded into a new image. z is fixed for every row and y is modified for each column to obtain
variations.
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Optimization-Based GAN Inversion

1. Existing optimization-based GAN inversion methods typically reconstruct a target image
by optimizing the latent vector

z" = argmin, {(x, G(z,0))
where x is the target image and G is a GAN generator parameterized by 6.
2. It is critical to
o choose the optimizer since a good optimizer helps alleviate the local minima problem and
o the initialization of latent code, because the objective function is not convex.

3. The optimization-based methods typically require an expensive iterative process in terms of
both memory and runtime, as they have to be applied to each latent code independently.
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Image2StyleGAN

1. These models need to measure the similarity between the input image and the embedded
image during optimization.

2. Image2StyleGAN19 employed a loss function that is a weighted combination of the
VGG-16 perceptual loss (Abdal, Qin, and Wonka 2019).

>\mse
2" = argmin, Cperepe(, G(2,6)) + “2x — G(z,0)
4

A.
Epercept(xv G(L 9)) = Z NJ”FJ(Xl) - Fj(x2)H2
J

j=t

where N is the target image and G is the number of scalers in the image, i.e.
N = n x nx 3 and F; is the feature output of VGG-16 layers.
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Image2StyleGAN Results

1. First column: original image (1024 x 1024).

2. Second column: embedded image with the perceptual loss applied to resized images of
256 x 256 resolution.

3. Third column: embedded image with the perceptual loss applied to the images at the
original 1024 x 1024 resolution.
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Image2StyleGAN Results

1. The results using different initialization of network weights.
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Image2StyleGAN Results
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Hybrid GAN Inversion

1. The hybrid methods exploit the advantages of both approaches discussed above.

2. Zhu et al. proposed a framework that first predicts z of a given real photo x by training a
separate encoder E(x,0g) (Zhu, Krdhenbiihl, et al. 2016).

3. Then they used the obtained x as the initialization for optimization.

4. The learned predictive model serves as a fast bottom-up initialization for the nonconvex
optimization problem.

76 / 84



Hybrid GAN Inversion

1. Zhu et al. used the following framework (Zhu, Krahenbiihl, et al. 2016).
o At first project an original photo onto a low-dimensional latent vector representation.

o Then regenerating it using GAN.

Next, modify the color and shape of the generated image using various brush tools.

Finally, apply the same amount of geometric and color changes to the original photo to
achieve the final result.
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Hybrid GAN Inversion Results
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Hybrid GAN Inversion Results

\/ ]
Original photos ) /t 4
N
. i
Reconstruction Y
via Optimization =
0.165 0.164 0.370 0.279 0.350 0.249 0.437 0.255 0.178 0.227
L) / (
Reconstruction e f E ,
via Network ﬁ —
0.198 0.190 0.382 0.302 0.251 0.339 0.482 0.270 0.248 0.263
> ) 3
Reconstruction j y =3 A ,,r’
via Hybrid Method * 4 =
0.133 0.141 0.298 0.218 0.160 0.204 0.318 0.185 0.183 0.190
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Properties of GAN Inversion Methods

Properties of GAN Inversion methods (Xia et al. 2023).

Method Publication Type S.-A. L-W. S-R Space GAN Model Dataset Keywords

Zhu et al. [20] ECCV'16 H. 64 zZ [38] [39], [40], [41] inversion for GANs
Creswell et al. [42],[43] NeurIPS'16  O. 128 z [38], [44] [39], [45] first using the term inversion
Perarnau et al. [46] NeurIPS'16 L. 64 zZ [38] [45], [47] inversion for conditional GAN
GANPaint [15] TOG'19 H. v v 256 Z [11] [41] learn an image-specific generator
GANSeeing [23] ICCV’19 H. v v 256  Z, W [11],[13], [44] [41] visualization of mode collapse
Image2StyleGAN [21] ICCV'19 O. v 1024 w [13] [13] first inversion for StyleGAN
Image2StyleGAN++[22] CVPR’20 O. v v 1024 Wt [11], [13] [11], [13]

mGANPrior [48] CVPR'20 O. v v 256 Zz [11], [13] [11], [13], [41] multi-code GAN prior
Editing in Style [49] CVPR'20 O. v 1024w [11],113], [14] [13], [41]

YLG [50] CVPR20 O. 128 zZ [51] [52] attention

Hubh et al. [24] ECCV"20 O. v 1024 zZ [12], [14] [13], [41], [52] class-conditional
IDInvert [19] ECCV’20 H. v v 256 Wt [13] [13], [41] in-domain
SG-Distillation [53] ECCV'20 O. v voo1024 wt [14] [13]

MimicGAN [54] jcv20 O. 64 Z [45] [38] for corrupted images
Chai et al. [55] ICLR21 L. v v 1024 z, Wt [11], [14] [11], [13], [41] data augmentation

pSp [28] CVPR’21 L. v v 1024wt [14] [11] map2style module
StyleSpace [56] CVPR’21 O. v v 1024 S [14] [13], [41] S-space

GH-Feat [57] CVPR’21 L. v v 256 S [13] [13], [41], [47] generative hierarchical feature
GANEnsembling [58] CVPR21 H. v v 1024 wt [14] [13], [41]

ede [59] TOG21 L. v v 1024wt [14] [11], [13], [41] encoder for editing

Xu et al. [60] ICCV’21 O. v v 1024 Wt [13] [13], [61] for consecutive images
ReStyle [30] ICCV’21 L. v v 1024 Wt [14] [11], [13], [41], [62] iterative refinement
BDInvert [63] ICCV’21 O. v v 1024 F/wt [11], [14] [11], [13], [41] out-of-range, F /W"-space
Zhu et al. [64] arxiv'21 O. v v 1024 P [13], [14] [13] ‘P and P*space

Wei et al. [29] arxiv’21 L. v v 1024 Wt [14] [11],[13] efficient encoder architecture
PTI [65] arxiv'21 H. v 1024 w [14] [11], [13] tune G around a pivot latent code
HyperStyle [66] CVPR’22 H. v 1024 w [14] [11], [13], [67] learn to optimize the generator
HFGI [68] CVPR'22 L. v v 1024 wr [13], [14] [11], [13], [67]

HyperInverter [69] CVPR22 L. v 1024 W [14] [11], [13], [41] two-phase inversion
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