
Modern Information Retrieval

Probabilistic Information Retrieval1

Hamid Beigy

Sharif university of technology

October 29, 2023

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Introduction

2. Relevance Feedback

3. Probabilistic Approach to IR

4. Probability Theory

5. Probability Ranking Principle

6. Appraisal and Extensions

7. References

1 / 35

Introduction

Introduction

1. An information need may be expressed using different keywords (synonymy) such as

aircraft vs airplane.

2. The same word can have different meanings (polysemy).

3. Vocabulary of searcher may not match that of the documents.

4. Solutions: refining queries manually or expanding queries automatically

5. Relevance feedback and query expansion aim to overcome the problem of synonymy.

2 / 35

Relevance Feedback

Basic idea of relevance feedback

1. The user issues a (short, simple) query.

2. The search engine returns a set of documents.

3. User marks some docs as relevant, some as non-relevant.

4. Search engine computes a new representation of the information need (should be better

than the initial query).

5. Search engine runs new query and returns new results.

6. New results have (hopefully) better recall.

3 / 35

Types of query expansion

1. Manual thesaurus (maintained by editors, e.g., PubMed)

2. Automatically derived thesaurus (e.g., based on co-occurrence statistics)

3. Query-equivalence based on query log mining (common on the web as in the “palm”

example)

4 / 35

Probabilistic Approach to IR

Probabilistic Approach to Retrieval

1. Given a user information need (query) and a collection of documents (document), a

system must determine how well the documents satisfy the query

2. An IR system has an uncertain understanding of the user query, and makes an uncertain

guess of whether a document satisfies the query

3. Probability theory provides a principled foundation for such reasoning under uncertainty

4. Probabilistic models exploit this foundation to estimate how likely it is that a document is

relevant to a query

5 / 35

Probabilistic vs. vector space model

1. Vector space models rank documents according to similarity to query.

2. The notion of similarity does not translate directly into an assessment of is the document

a good document to give to the user or not?

3. The most similar document can be highly relevant or completely nonrelevant.

4. Probability theory is arguably a cleaner formalization of what we really want an IR system

to do: give relevant documents to the user.

6 / 35

Probability Theory

Basic Probability Theory

1. For events A and B

Joint probability P(A ∩ B) of both events occurring

Conditional probability P(A|B) of event A occurring given that event B has occurred

2. Chain rule gives fundamental relationship between joint and conditional probabilities:

P(AB) = P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

3. Similarly for the complement of an event P(A):

P(AB) = P(B|A)P(A)

4. Partition rule: if B can be divided into an exhaustive set of disjoint subcases, then P(B) is

the sum of the probabilities of the subcases. A special case of this rule gives:

P(B) = P(AB) + P(AB)

7 / 35

Probability Theory

1. Bayes’ Rule for inverting conditional probabilities:

P(A|B) = P(B|A)P(A)
P(B)

=

[
P(B|A)∑

X∈{A,A} P(B|X)P(X)

]
P(A)

Can be thought of as a way of updating probabilities:

Start off with prior probability P(A) (initial estimate of how likely event A is in the absence

of any other information)

Derive a posterior probability P(A|B) after having seen the evidence B, based on the

likelihood of B occurring in the two cases that A does or does not hold

2. Odds of an event provide a kind of multiplier for how probabilities change:

Odds: O(A) =
P(A)

P(A)
=

P(A)

1− P(A)

8 / 35

Probability Ranking Principle

The Document Ranking Problem

1. Ranked retrieval setup: given a collection of documents, the user issues a query, and an

ordered list of documents is returned

2. Assume binary notion of relevance: Rd,q is a random variable, such that

Rd,q = 1 if document d is relevant w.r.t query q

Rd,q = 0 otherwise

3. Probabilistic ranking orders documents decreasingly by their estimated probability of

relevance w.r.t. query: P(R = 1|d , q)
4. Assume that the relevance of each document is independent of the relevance of other

documents

9 / 35

Probability Ranking Principle (PRP)

1. If the retrieved documents (w.r.t a query) are ranked decreasingly on their probability of

relevance, then the effectiveness of the system will be the best that is obtainable

2. If [the IR] system’s response to each [query] is a ranking of the documents [...] in order of

decreasing probability of relevance to the [query], where the probabilities are estimated as

accurately as possible on the basis of whatever data have been made available to the

system for this purpose, the overall effectiveness of the system to its user will be the best

that is obtainable on the basis of those data

10 / 35

Binary Independence Model (BIM)

1. Traditionally used with the PRP

2. Assumptions:

Binary(equivalent to Boolean): documents and queries represented as binary term incidence
vectors

E.g., document d represented by vector x⃗ = (x1, . . . , xM), where xt = 1 if term t occurs in d

and xt = 0 otherwise

Different documents may have the same vector representation

Independence: no association between terms (not true, but practically works - naive

assumption of Naive Bayes models)

11 / 35

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .

and Caesar Tempest

Cleopatra

Anthony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.

12 / 35

Binary Independence Model

1. To make a probabilistic retrieval strategy precise, need to estimate how terms in

documents contribute to relevance

2. Find measurable statistics (term frequency, document frequency, document length) that

affect judgments about document relevance

3. Combine these statistics to estimate the probability P(R|d , q) of document relevance

4. How exactly we can do this?

13 / 35

Binary Independence Model

1. P(R|d , q) is modeled using term incidence vectors as P(R|x⃗ , q⃗)

P(R = 1|x⃗ , q⃗) =
P(x⃗ |R = 1, q⃗)P(R = 1|q⃗)

P(x⃗ |q⃗)

P(R = 0|x⃗ , q⃗) =
P(x⃗ |R = 0, q⃗)P(R = 0|q⃗)

P(x⃗ |q⃗)

P(x⃗ |R = 1, q⃗) and P(x⃗ |R = 0, q⃗): probability that if a relevant or nonrelevant document is

retrieved, then that document’s representation is x⃗

Use statistics about the document collection to estimate these probabilities

14 / 35

Binary Independence Model

1. P(R|d , q) is modeled using term incidence vectors as P(R|x⃗ , q⃗)

P(R = 1|x⃗ , q⃗) =
P(x⃗ |R = 1, q⃗)P(R = 1|q⃗)

P(x⃗ |q⃗)

P(R = 0|x⃗ , q⃗) =
P(x⃗ |R = 0, q⃗)P(R = 0|q⃗)

P(x⃗ |q⃗)

P(R = 1|q⃗) and P(R = 0|q⃗): prior probability of retrieving a relevant or nonrelevant

document for a query q⃗

Estimate P(R = 1|q⃗) and P(R = 0|q⃗) from percentage of relevant documents in the

collection

Since a document is either relevant or nonrelevant to a query, we must have that:

P(R = 1|x⃗ , q⃗) + P(R = 0|x⃗ , q⃗) = 1

15 / 35

Deriving a Ranking Function for Query Terms

1. Given a query q, ranking documents by P(R = 1|d , q) is modeled under BIM as ranking

them by P(R = 1|x⃗ , q⃗)
2. Rank documents by their odds of relevance (gives same ranking)

O(R|x⃗ , q⃗) = P(R = 1|x⃗ , q⃗)
P(R = 0|x⃗ , q⃗)

=

P(R=1|q⃗)P(x⃗|R=1,q⃗)
P(x⃗|q⃗)

P(R=0|q⃗)P(x⃗|R=0,q⃗)
P(x⃗|q⃗)

=
P(R = 1|q⃗)
P(R = 0|q⃗)

· P(x⃗ |R = 1, q⃗)

P(x⃗ |R = 0, q⃗)

3. P(R=1|q⃗)
P(R=0|q⃗) is a constant for a given query - can be ignored

16 / 35

Deriving a Ranking Function for Query Terms

1. It is at this point that we make the Naive Bayes conditional independence assumption that

the presence or absence of a word in a document is independent of the presence or

absence of any other word (given the query):

P(x⃗ |R = 1, q⃗)

P(x⃗ |R = 0, q⃗)
=

M∏
t=1

P(xt |R = 1, q⃗)

P(xt |R = 0, q⃗)

2. So we obtain

O(R|x⃗ , q⃗) = O(R|q⃗) ·
M∏
t=1

P(xt |R = 1, q⃗)

P(xt |R = 0, q⃗)

17 / 35

Deriving a Ranking Function for Query Terms

1. Since each xt is either 0 or 1, we can separate the terms:

O(R|x⃗ , q⃗) = O(R|q⃗)×
∏

t:xt=1

P(xt = 1|R = 1, q⃗)

P(xt = 1|R = 0, q⃗)
×

∏
t:xt=0

P(xt = 0|R = 1, q⃗)

P(xt = 0|R = 0, q⃗)

18 / 35

Deriving a Ranking Function for Query Terms

1. Let pt = P(xt = 1|R = 1, q⃗) be the probability of a term appearing in relevant document

2. Let ut = P(xt = 1|R = 0, q⃗) be the probability of a term appearing in a nonrelevant

document

3. Can be displayed as contingency table:

document relevant (R = 1) nonrelevant (R = 0)

Term present xt = 1 pt ut
Term absent xt = 0 1− pt 1− ut

19 / 35

Deriving a Ranking Function for Query Terms

1. Additional simplifying assumption: terms not occurring in the query are equally likely to

occur in relevant and nonrelevant documents

If qt = 0, then pt = ut

2. Now we need only to consider terms in the products that appear in the query:

O(R|x⃗ , q⃗) = O(R|q⃗) ·
∏

t:xt=qt=1

pt
ut

·
∏

t:xt=0,qt=1

1− pt
1− ut

3. The left product is over query terms found in the document and the right product is over

query terms not found in the document

20 / 35

Deriving a Ranking Function for Query Terms

1. Including the query terms found in the document into the right product, but

simultaneously dividing by them in the left product, gives:

O(R|x⃗ , q⃗) = O(R|q⃗) ·
∏

t:xt=qt=1

pt
ut

·
∏

t:xt=qt=1

1− ut
1− pt

· 1− pt
1− ut

·
∏
t:xt=0
qt=1

1− pt
1− ut

= O(R|q⃗) ·
∏

t:xt=qt=1

pt(1− ut)

ut(1− pt)
·
∏

t:qt=1

1− pt
1− ut

2. The left product is still over query terms found in the document, but the right product is

now over all query terms, hence constant for a particular query and can be ignored.

3. The only quantity that needs to be estimated to rank documents w.r.t a query is the left

product

4. Hence the Retrieval Status Value (RSV) in this model:

RSVd = log
∏

t:xt=qt=1

pt(1− ut)

ut(1− pt)
=

∑
t:xt=qt=1

log
pt(1− ut)

ut(1− pt)

21 / 35

Deriving a Ranking Function for Query Terms

1. Equivalent: rank documents using the log odds ratios for the terms in the query ct :

ct = log
pt(1− ut)

ut(1− pt)
= log

pt
(1− pt)

− log
ut

1− ut

2. The odds ratio is the ratio of two odds:

the odds of the term appearing if the document is relevant (pt/(1− pt)), and

the odds of the term appearing if the document is nonrelevant (ut/(1− ut))

3. ct = 0: term has equal odds of appearing in relevant and nonrelevant docs

4. ct positive: higher odds to appear in relevant documents

5. ct negative: higher odds to appear in nonrelevant documents

22 / 35

Term weight ct in BIM

1. ct = log pt
(1−pt)

− log ut
1−ut

functions as a term weight.

2. Retrieval status value for document d : RSVd =
∑

xt=qt=1 ct .

3. So BIM and vector space model are identical on an operational level except that the term

weights are different.

4. In particular: we can use the same data structures (inverted index etc) for the two models.

23 / 35

How to compute probability estimates

1. For each term t in a query, estimate ct in the whole collection using a contingency table of

counts of documents in the collection, where dft is the number of documents that contain

term t:
documents relevant nonrelevant Total

Term present xt = 1 s dft − s dft
Term absent xt = 0 S − s (N − dft)− (S − s) N − dft

Total S N − S N

pt = s/S

ut = (dft − s)/(N − S)

ct = K (N,dft ,S , s) = log
s/(S − s)

(dft − s)/((N − dft)− (S − s))

24 / 35

Avoiding zeros

1. If any of the counts is a zero, then the term weight is not well-defined.

2. Maximum likelihood estimates do not work for rare events.

3. To avoid zeros: add 0.5 to each count

4. For example, use S − s + 0.5 in formula for S − s

25 / 35

Simplifying assumption

1. Assuming that relevant documents are a very small percentage of the collection,

approximate statistics for nonrelevant documents by statistics from the whole collection

2. Hence, ut (the probability of term occurrence in nonrelevant documents for a query) is

dft/N and

log[(1− ut)/ut] = log[(N − dft)/dft] ≈ logN/dft

3. This should look familiar: idf.

4. The above approximation cannot easily be extended to relevant documents. (why? check

it.)

26 / 35

Appraisal and Extensions

History and summary of assumptions

1. Among the oldest formal models in IR

Maron & Kuhns, 1960: Since an IR system cannot predict with certainty which document is

relevant, we should deal with probabilities

2. Assumptions for getting reasonable approximations of the needed probabilities (in the

BIM):

Boolean representation of documents/queries/relevance

Term independence

Out-of-query terms do not affect retrieval

Document relevance values are independent

27 / 35

How different are vector space and BIM?

They are not that different.

In either case you build an information retrieval scheme in the exact same way.

For probabilistic IR, at the end, you score queries not by cosine similarity and tf-idf in a

vector space, but by a slightly different formula motivated by probability theory.

How to add term frequency and length normalization to the probabilistic model.

28 / 35

Okapi BM25: Overview

1. Okapi BM25 is a probabilistic model that incorporates term frequency (i.e., it’s nonbinary)

and length normalization.

2. BIM was originally designed for short catalog records of fairly consistent length, and it

works reasonably in these contexts

3. For modern full-text search collections, a model should pay attention to term frequency

and document length

4. BestMatch25 (a.k.a BM25 or Okapi) is sensitive to these quantities

5. BM25 is one of the most widely used and robust retrieval models

29 / 35

Okapi BM25: Starting point

1. The simplest score for document d is just idf weighting of the query terms present in the

document:

RSVd =
∑
t∈q

log
N

dft

30 / 35

Okapi BM25 basic weighting

1. Improve idf term [log N/df] by factoring in term frequency and document length.

RSVd =
∑
t∈q

log

[
N

dft

]
· (k1 + 1)tftd
k1((1− b) + b × (Ld/Lave)) + tftd

2. tftd : term frequency in document d

3. Ld (Lave): length of document d (average document length in the whole collection)

4. k1: tuning parameter controlling the document term frequency scaling

5. b: tuning parameter controlling the scaling by document length

31 / 35

Okapi BM25 weighting for long queries

1. For long queries, use similar weighting for query terms

RSVd =
∑
t∈q

[
log

N

dft

]
· (k1 + 1)tftd
k1((1− b) + b × (Ld/Lave)) + tftd

· (k3 + 1)tftq
k3 + tftq

2. tftq: term frequency in the query q

3. k3: tuning parameter controlling term frequency scaling of the query

4. No length normalization of queries (because retrieval is being done with respect to a single

fixed query)

5. The above tuning parameters should ideally be set to optimize performance on a

development test collection. In the absence of such optimization, experiments have shown

reasonable values are to set k1 and k3 to a value between 1.2 and 2 and b = 0.75

32 / 35

Conclusions: Which ranking model should I use?

1. I want something basic and simple: use vector space with tf-idf weighting.

2. I want to use a state-of-the-art ranking model with excellent performance: use language

models or BM25 with tuned parameters

33 / 35

References

Reading

1. Chapter 11 of Information Retrieval Book2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to
Information Retrieval. New York, NY, USA: Cambridge University Press.

34 / 35

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction

to Information Retrieval. New York, NY, USA: Cambridge University Press.

35 / 35

Questions?

35 / 35

	Introduction
	Relevance Feedback
	Probabilistic Approach to IR
	Probability Theory
	Probability Ranking Principle
	Appraisal and Extensions
	References

