Machine learning theory
Boosting
Hamid Beigy

Sharif university of technology

April 2, 2023

Table of contents

1. Linear classifier

2. Ensemble Learning

3. Adaptive Boosting

4. Generalization bound of AdaBoost

5. Margin-based analysis

6. Summary

1/52

Linear classifier

Introduction

1. The family of linear classifiers is one of the most useful families of hypothesis classes.

2. Many learning algorithms that are being widely used in practice rely on linear predictors because
of
o the ability to learn them efficiently in many cases,
o linear predictors are intuitive,
e are easy to interpret, and
o fit the data reasonably well in many natural learning problems.

3. A linear classifier separates different classes by a linear separator.

2/52

Binary classification problem

1. Training data: sample drawn iid from set X C R"” according to some distribution D.

S = {(x11); -+, (Xemy ym)} € X x {1, 41},

2. Problem: find hypothesis h: X +— {—1,+1} in H, with small generalization error R(h).
3. Hypothesis space: H, = {x — sgn({w,x) + b) | w € R", b € R}.
4. A linear classifier is defined as h(x) = sgn ({(w,x) + b).

5. Vector w is orthogonal to the separator.

w + .7

6. We shown that VC(H,) = n+ 1.

(n+1) + log(1/9)
I E—
8. Implementing the ERM rule in the nonseparable case is known to be computationally hard.

7. We can learn this space using ERM paradigm, as long as the sample size is

3/52

Linear programming

1. Linear programs are problems that can be expressed as maximizing a linear function subject to
linear inequalities. That is
max (u, w
wew< W)

subject to Aw > v.

where

o w € R" is the vector of variables we wish to determine.
e A is an m X n matrix.
e u e R"and v € R" are vectors.

2. Linear programs can be solved efficiently.

4/52

Linear programming for designing linear classifiers

1.
2.
3.
4.

Suppose that the training data is linearly separable.
We are interested to find w and b that results in zero training error.
Let w = (b,wi, wa,...,w,) and x = (1, x1,...,Xn).

Hence, we are looking for w € R™™ such that for all i

sign({w, xi)) = yi

Equivalently, we are looking for w € R"*! such that for all i

yilw, x;) > 0.

Let w* be a vector that satisfies this condition.

Define v = min;(y; (w*,x;)) and let w = ¥~ Therefore, for all i we have

0%

1 .
yi{w, x;) = —yi(w", x;) > 1.
v

. We have thus shown that there exists a vector that for all / satisfies

yilw, x;) > 1.

5/ 52

Linear programming for designing linear classifiers

1. We have thus shown that there exists a vector that for all / satisfies

y,'<W, X,'> > 1.

2. To find a vector that satisfies the above inequality,

o Set A to be m x (n+ 1) matrix whose rows are the instances multiplied by y;: Aj = y; X xj;.
o Setvtobe(l,1,...,1) € R™*L

3. Then the above inequality becomes
Aw > v.

4. The LP form requires a maximization objective, thus, we set a dummy objective,
u=(0,...,0) € R™™

5. There are other algorithm for finding the linear classifier such as Perceptron.

6/ 52

Ensemble Learning

Introduction

1. Ensemble methods are general techniques in machine learning for combining several predictors to
create a more accurate one.
2. Two main categories of ensemble learning:
o Boosting
o Bagging
3. In the problem of PAC-learnability, we were trying to find learning algorithms that learned the
problem really well (to within some € error rate).
4. This is a strong guarantee, a strong learner is a classifier that is arbitrarily well-correlated with the
true classification.

7/52

Introduction

1. Two major issues in machine learning are

o Have a good tradeoff between approximation error and estimation error.
R(h) — R* = [R(h) — inf R(h inf R(h) — R*
()~ R = (R0 = inf R(8)) + inf RCA) ~ ")

Estimation error Approximation error

o Computational complexity of learning.
2. How do we achieve a good tradeoff between approximation error and estimation error.

o The error of an ERM learner can be decomposed into a sum of approximation error and estimation
error.

@ The more expressive the hypothesis class the learner is searching over, the smaller the approximation
error is, but the larger the estimation error becomes.

o A learner is faced with the problem of picking a good tradeoff between these two considerations.

3. Computational complexity of learning.

o For many interesting concept classes the task of finding an ERM hypothesis may be computationally
infeasible.

8 /52

Introduction

1. The idea behind boosting is to construct a strong learner by combining many weak learners.
2. A weak learner is defined to be a classifier that it can label examples better than random guessing.

3. Boosting is based on the question posed by Kearns and Valiant (1988, 1989):
Can a set of weak learners create a single strong learner?

4. Robert Schapire answered the question of Kearns and Valiant in 1990 by introducing Boosting
algorithm.

5. Freund and Schapire introduced AdaBoost algorithm in 1997.

9/52

Introduction

1. Breiman introduced Bagging algorithm in 1994.

2. The boosting paradigm allows the learner to have smooth control over tradeoff between

estimation and approximation errors.

3. The learning starts with a basic class (that might have a large approximation error), and as it
progresses the class that the predictor may belong to grows richer.

4. AdaBoost enables us to control the tradeoff between the approximation and estimation errors by

varying a single parameter.
5. Family of Boosting algorithms reduce variance and bias.

6. When a weak learner can be implemented efficiently, boosting provides a tool for aggregating such

weak hypotheses.

7. Bagging algorithm reduces variance and helps to avoid overfitting.

10 / 52

Weak vs. strong learning

1. Recall the definition of (strong) PAC learning:

Definition (Strong PAC learnability)

A concept class C is strongly PAC learnable using a hypothesis class H if there exists an algorithm A
such that for any ¢ € C, for any distribution D over the input space, for any € € (0, %) and § € (0, %)
given access to a polynomial (in % and %) number of examples drawn i.i.d. from D and labeled by
¢, A outputs a function h € H such that with probability at least (1 —), we have R(h) < e.

2. This definition is strong in the sense that it requires that R(h) can be driven arbitrarily close to 0

by choosing an appropriately small value of e.

11/ 52

Weak vs. strong learning

1. But what happens if we can’t get the error arbitrarily close to 07 Is learning all or none?

2. To answer these questions, we introduce the notion of weak PAC learning.

Definition (Weakly PAC learnability)
A concept class C is weakly PAC learnable using a hypothesis class H if there exists an algorithm A

and a value of v > 0 such that for any ¢ € C, for any distribution D over the input space, for any
6 € (0, 3), given access to a polynomial (in 5) number of examples drawn i.i.d. from D and labeled
1

by c, A outputs a function h € H such that with probability at least (1 —), we have R(h) < 5 —

3. We will sometimes refer to 7 as the advantage of A (over random guessing).

4. Weak learnability only requires A to return a hypothesis that does better than random guessing

12/ 52

Weak vs. strong learning

1. It's clear that strong learnability implies weak learnability.

Strong learnability implies the ability to find an arbitrarily good classifier with error rate at most ¢ > 0.
In weak learnability, we only need to output a hypothesis whose error rate is at most (% — ”/).

The hope is that it may be easier to learn efficient weak learners than efficient strong learners.

2. The question we want to answer is whether weak learnability implies strong learnability.

d+ log(1/6
From fundamental theorem, if VC(H) = d then my(e,) > Cli(/).
€

By setting € = (% - 7), d = oo implies that H is not weakly learnable.

From the statistical perspective (ignoring computational complexity), weak learnability is
characterized by VC(H) and therefore is just as hard as strong learnability.

o Computational complexity is the advantage of weak learning: the weak learning can be implemented

efficiently.

13/ 52

Weak vs. strong learning

The following theorem shows the learnability of weak learners.

Theorem (Weak learnability)
A class of hypothesis H is weakly learnable iff it has finite VVC dimension.

Proof.

1. Finite VC = PAC learnability = Weak learnability

VC(H) + log(1/6) .

2. Weak learnability = mu(5 —v,0) > G T is finite = Finite VC
27

1
2

More formally, we might ask:

If C is weakly learnable using H, must there exist some H’ such that C is (strongly) learnable
using H'?

14 / 52

Weak vs. strong learning

1. More formally, we might ask the following:
If C is weakly learnable using H, must there exist some H’ such that C is (strongly)
learnable using H'?
2. We can think about this question as follows.
e Fix an arbitrary € > 0.
e Suppose we are given a polynomial number (in 1/§ and 1/¢) of samples drawn i.i.d. from some
distribution D and labeled by a target ¢ € C, as well as a weak learning algorithm A for C.
o Can we incorporate A into a new algorithm that is guaranteed to produce a new function h such that
with high probability, R(h) < €?

15 / 52

Weak vs. strong learning

1. A natural question to ask is whether strong and weak PAC learning algorithms are equivalent.

2. Moreover, if this is true,
we would like to have an algorithm to convert a weak PAC learning algorithm into a strong PAC

learning algorithm.
3. Boosting is an algorithm that can do the above task and defined as follows.

Definition (Boosting algorithm)
A boosting algorithm is an algorithm that converts a weak learning algorithm into a strong learning

algorithm.

16 / 52

Weak learning (example)

Example (Learning the class of 3-partitions of R)
1. Let Hsp = {hg, g, | 01,02 € R, b € {—1,+1}} be class of 3-partitions of R as
+b if x <0

hglﬂz(X) = —b if 0 < x <6,
+b if x> 0,

2. An example hypothesis is

4 4
t t

01 0,

3. By setting v = %, we show that Hs, is weakly learnable by ERM over Decision Stumps (class of

threshold functions) B={x+—sgn(x —0) x b |0 € R, b€ {—1,+1}}.
4. For every distribution D over R consistent with Hs,, there exists a threshold function h such that

A 1 1 1
Rh<-—=-==.
()_2 6 3

17 / 52

Weak learning (example)

Example (Learning the class of 3-partitions of R)

1. We know that VC(B) = 2, if sample size is greater than Q (M) then with probability of

€
at least (1 — §), the ERMjg rule returns a hypothesis with an error of at most % + €.

2. Setting € = -, with probability of at least (1 — J), we have

R(ERMg(S)) < R(ERM35(S)) +e= 1 + L.
3. We see that ERMj5 is a weak learner for H.

18 / 52

Weak learning (example)

It is important to note that both strong and weak PAC learning are distribution-free.

The following example will shed more light on the importance of this.

Example (Learning with a fixed distribution)

=k] =
XLI/DD[X]

3. Consider the hypothesis h that predicts

N

3
4

1. Let C be the set of all concepts over {0,1}" U {z}, where z ¢ {0,1}".

2. Let D be the distribution that assigns mass % to z and mass % uniformly distributed over {0,1}".

x & ifke{0,1}"

if (x=12)
with prob. of 3 if x # z
with prob. of % ifx#z

19 / 52

Weak learning (example)

Example (Learning with a fixed distribution)

1. Consider the hypothesis h that predicts

c(z) if (x=12)

4. If we drop the distribution-freeness from the definition, C is weakly PAC learnable for the fixed
distribution D.

5. However, VC(C) = 2", hence C is not strongly PAC learnable (by modifying the definition to a
fixed distribution) using any algorithm.

6. This is because we would need at least m = Q(2") examples, which is not polynomial.

7. Hence we cannot necessarily convert a weak into a strong learning algorithm if we fix the
distribution.

h(x)=<¢ 0 with prob. of § if x #z
1 with prob. of % if x#2z
2. This hypothesis always correctly predict label of z and predict label of x # z with 50% accuracy.
3. The error of this hypothesis equals to R(h) = % X % = g < %

20 / 52

Adaptive Boosting

AdaBoost algorithm

o We are given
e Training set S = {(x1,y1), (X2, ¥2), -, (Xm, ¥m)} drawn from distribution D, where x; € X and
yi € {-1,+1}.
o A weak learner A which for all D (not necessarily the same as D), given S ~ D™ finds a h € BB such
that P[R(h) <3 —~] >1-34.
e The goal is to find a final hypothesis h € H such that P[R(h) < €] > 1 — 4.
@ The main idea behind AdaBoost is to run the weak learning algorithm several times and combine
the hypotheses from each run.

@ To do this effectively, we need to force the weak algorithm to learn by giving it a different D on

every run.
D, hy
D, h,
D
D h —
— A —
Dy hy

21 /52

AdaBoost algorithm

AdaBoost Algorithm

Inputs S: training set, B: hypothesis space for weak learners, and T: number of weak learners.
Output return a hypothesis h.

1. function ApaBoosT(S, B, T)
2 for i < 1 to mdo
3 Dl(l') — l
4: end for m
5 for t < 1to T do
6 Let he = arghmBin e = 57, De(i) I[h(x;) # y1]
€
7: Letatellog(l_ﬁt)
2 €t
8: Let Z; + 2y/e:(1 — €r)
9: for i < 1 to mdo.
10: Dt+1(i) <— Dt(l) exp [;atyiht()(i)]
11: end for '
12: end for
13: Let g £ Zthl aehe
14 return h = sgn(g)

15: end function

22/ 52

AdaBoost algorithm (example)

23/ 52

Minimizing exponential error

1. Consider the exponential loss function

2. The exponential loss function is defined by

R(ge) =D exp[—yige(xi)],
k=1

where gi(x) is a classifier defined in terms of a linear combination of base classifiers hj(x) as

g(x) =) aihi(x)

24 / 52

Minimizing exponential error (cont.)

1. The goal is to minimize R with respect to both oy and the parameters of the base classifiers h;.

2. Since the base classifiers are built sequentially, we shall suppose that the base classifiers
h1,...,h—1 and their weights a1, ..., a:—1 are fixed, and so we are minimizing only with respect
to o and ht.

3. Separating off the contribution from base classifier h, we can then write the R(g;) in the form

R(gt) = > exp[—ykge—1(xk) — ykarhe(x)]

NE

»
Il
-

D:(k) exp [—yrerehe(xx)]

I
M=

r
Il
—

where Dy(k) = exp [—y«kgt—1(xk)] is constant because we optimize only w.r.t a; and h¢(x).

25 / 52

Minimizing exponential error (cont.)

1. Let us to define
e T: as the set of instances that are correctly classified by h¢(x).
e M; as the set of instances that are miss classified by h:(x).

2. We can in turn rewrite the error function in the form of
Z Dt exp [—yk()éfht(Xk)]
=e ™ > Dik)+e™ y Di(k)

xx €Tt X €My
=e ™ Y Di(k)+e™ > Di(k)+e Y Di(k)—e > Di(k)
X €Tt X €My X, €M X, €M
=[e—e™] > Dt(k)+e*afZDt(k)
Xy € My k=1

= ™ — 7] ZDt) I[he(xk # yi]+e*"fZDt

26 / 52

Minimizing exponential error (cont.)

1. The error function becomes

m

R(g) = [— e] D De(k) Tlhe(xi #)] +e > Di(k)

k=1 k=1

€t

2. When minimizing R(g:) with respect to h;(x), the second term is constant, and is equivalent to

minimizing €; because [e‘“ — eﬂ“} does not affect the location of the minimum.

S a : OR
3. Minimizing R(g:) with respect to a: equals to solve OR(g:) _ 0

oot
aﬁ(gt) o e_”z Zxkth Dt(k) + e”[ZxkeMt Dt‘(k)
aat a (90(1:
=—e " Y Di(k)+e™ > Di(k)=0
x €Tt X, €M,

27 / 52

Minimizing exponential error (cont.)

1. Hence, we obtain

0=—e" > Di(k)+e™ Y Di(k)

x €Tt x, €M

2. Multiplying by e®t, becomes

> Di(k) =€ > Di(k)

x €Tt X €My
——— N———
(1—e€) €t

3. Solving this will results in

28 / 52

Minimizing exponential error (cont.)

1. The value of D;(k) was defined as
Di(k) = exp[—yxge—1(x«)] -
2. Then the value of Dy1(k) equals to

Dii1(k) = exp [—yrge(xk)]
= exp [7ykgt_1(xk) — ,Vk(]ftht(xk)]
= D¢(k)exp [—ykarhe(xk)]

3. Since D:11(k) is a probability density function, then we must have 7", Di11(k) = 1. Hence, we
have

Z Dt+1 Z Dt EXP ykafht(xk)]
k=1
Z Dt et 4 Z Dt

Xk €Tt X €My
=e %)" Di(k)+e* > Di(k) = e (1) + e™er.
XK €Tt Xy €M
N—_———— N——_——
1—et €t

29 / 52

Minimizing exponential error (cont.)

o Let Z: =37 | Diy1(k), hence we have

= Z Dt+1(k) = eiat(l — Et) + e(\tﬁt

- 1 1-— . .
@ By substituting a; = 5 log (7&) in the above equation, we have
€t

1—
thexp{ ,/ (1—€)+exp|In Eet]et
t
17€t €t
17
\/ €t vl—Ef

=2\ 1—et)

30 /52

Generalization bound of AdaBoost

Generalization bound of AdaBoost

Theorem (Generalization bound of AdaBoost)

Let H = {h X = {1,411} ‘ h =sgn (Zthl atht> ,ar € R hy € B} be the hypothesis space for
AdaBoost. Then, for all distribution D, all training sets S ~ D™, for every § > 0, with probability at
least (1 — 0), for all h € H we have

R(h) < R() + \/VC(H) :7|og(1/5).
Proof.
For proof, we must calculate
1. R(h).
2. VC(H).

31/52

Bounds on the empirical error of AdaBoost

Lemma

Let g(x) 2 3], avhe(x) be the weighted linear combination of weak learners. Then

Dr (i) = EPLyig(il

mHthl Z
Proof.
. . ~ _ D(i)
1. We defined D;11(i) as Di1(i) = > exp [—aryih:(xi)].
t
2. We can now solve Dr1(i) recursively.
. D+ (i
Dr (i) = 229 ep [aryihr ()]
T

exp[—ar_1yihra(x)] | exp[—aryihr(x)]

Dr-(7) Zr_1 Zr

2 2 7
.
1P [*y L O‘*h*(x")} _ ep[-yig(x)]

m Hszl Z ml_LT:l Z

— Dy(i) &P [—oyim(x)] | expl-aayiha(x)] | expl-aryihr(xi)]

32/52

Bounds on the empirical error of AdaBoost

Lemma

Let g(x) 2 3], avhe(x) be the weighted linear combination of weak learners and h(x) £ sgn (g(x)).
Then, we have

R(h) <]z

Proof.
We start by the definition of empirical loss.

m

%Zﬂ[h(xf) # yil = %Zﬂlyfg(xl') <0]

i=1

1 m 1 m T
™ Z e gk — ™ ; DT+1(i)mt1:[lzt

R(h)

IN

i=1

T m T
=[1z> prat)=]]z
t=1 i=1 t=1

33 /52

Bounds on the empirical error of AdaBoost

Theorem (Bounds on the empirical error of AdaBoost)

Let g(x) 2 >.[, achi(x) be the weighted linear combination of weak learners and h(x) £ sgn (g(x)).
Then, we have

. 1 2
R(h) <exp -2 (5 - et)] :
t=1
Furthermore, if for all t € {1,2,..., T}, we have v < (} —e:), then R(h) < e 2T,

Proof of Bounds on the empirical error of AdaBoost

By using the two preceding lemmas

34 /52

Bounds on the empirical error of AdaBoost

Proof of Bounds on the empirical error of AdaBoost (cont.)

By using the two preceding lemmas

ﬁ(h)gf[lzt E[z 1—&]:[{{\/(—7)(; > tﬁl[l_h]
< II[Vexp (—472) = f[lexp (—272) = exp {—2272 —e 2T,

t=1

To derive the bound of theorem, in second equality use with x = ¢;
2V/X(A=X) = Vax =42 =114 ax — a2 = /T— (1 —dx + &2) = /1 -2 (L —x)%.
The second inequality follows from the inequality 1 — x < e ™, which is valid for all x € R. (I

35 /52

Bounds on the VC(H)

Theorem (Bounds on the VC(H))

Let 1B be a base class and let H = {x — sgn (ZLI atht(x)> ‘ ae€R",Vt h, € B} be the
hypothesis space where the output of AdaBoost will be a member of it. Assume that both T and
VC(B) are at least 3. Then

VC(H) < T[VC(B) + 1][3log(T[VC(B) +1]) + 2].

Corollary (Sauer-Shelah Lemma)

Let H be a hypothesis classes with VC(H) = d, then for m > d > 1, we have

em

Mu(m) < (d) — o(m*)

Lemma

Let a > 0. Then: x > 2alog(a) = x > alog(x). It follows that a necessary condition for the
inequality x < alog(x) to hold is that x < 2alog(a).

36 / 52

Bounds on the VC(H)

Proof of Bounds on the VC(H).
1. Let VC(B) =d and C = {x1,...,xm} be a set that is shattered by H.
2. Each labeling of C by h € H is obtained by first choosing hi, ..., ht € 3 and then applying a
halfspace hypothesis over the vector (hi(x),..., hr(x)).
3. By Sauer’s lemma, at most (em/d)? different dichotomies induced by 3 over C.
4. We need to choose T hypotheses out of at most (em/d)? different hypotheses. There are at
most (em/d)?" ways to do it.
5. Next, for each such choice, we apply a linear predictor, which yields at most (em/ T)T
dichotomies.
6. Hence, the number of dichotomies is (em/d)? (em/T)" < m(@*17T,
7. Since we assume that C is shattered, we must have 27 < m(@+1T,
8. The above lemma tells us that a necessary condition for the preceding to hold is
(d—&-l)T| (d+1)T

0g2) %% 10g(2) < T[VC(B) + 1][3log(T[VC(B) + 1]) + 2].

37/ 52

Bounds on the VC(H)

1. Theorem Bounds on the VC(H) shows that VC(H) = O(dT log dT), thus, the bound suggests
that AdaBoost could overfit for large values of T.

The estimation error of AdaBoost grows linearly with T.
The empirical error of AdaBoost grows linearly with T.

Hence, T can be used to decrease the approximation error of AdaBoost.

o > 0N

However, in many cases, it has been observed empirically that the generalization error of
AdaBoost decreases as a function of the number of rounds of boosting T.

6. These empirical results can be explained using margin-based analysis.

38 /52

Margin-based analysis

L;-geometric margin

1. Confidence margin of a real-valued function g at a point x labeled with y is yg(x).

2. Defining geometric margin for linear hypotheses with a norm-1 constraint, such as hypotheses

returned by AdaBoost, which relates to confidence margin.

3. Function g = 3., ahe can be represented as (a, h), where o = (e, ..., a7)" and

4. For ensemble linear combinations such as those returned by AdaBoost, additionally, the weight

vector is non-negative: o > 0.

5. Geometric margin for such ensemble functions is based on norm-1 while geometric margin is based

on norm-2.

39 /52

L;-geometric margin

Definition (L; geometric margin)

The L;-geometric margin pg of g = Z;l ach: with o # 0 at a x, € X defined as

g(9)| _ [l ache(x)] _ [(a,h(x))]

pg(x) = =
¢ llelly llelly el
The Li-margin of g over a sample S = (x1, ..., Xm) is its minimum margin at the points in that
sample.
B . _ [(a, h(x))|
Pe = i, e = min L

To distinguish this geometric margin from the geometric margin of SVM, we use the following notations

p1(x) = 7|<0H2ﬁ)1()>| Ly — margin
p2(x) = % Ly — margin

40 / 52

L;-geometric margin

Lemma

. . ,,h . .
For p,q > 1, p and q are conjugate, that is % —+ %’ =1, then W is g—norm distance of h(x)
@
P

to the hyperplane (o, h(x)) = 0.

1. Hence, p2(x) is norm-2 distance of h(x) to the hyperplane (a, h(x)) = 0 and p1(x) is norm-co
distance of h(x) to the hyperplane (a, h(x)) = 0.

2. Define g = , then the confidence margin of g at x coincides with the Li-geometric margin of

&
llel]y

& vel) = 6 = s,

3. Since a: > 0, then pg(x) is convex combination of base hypothesis values h:(x).

41/ 52

Margin-based analysis

For any hypothesis set H of real-valued functions, conv(H) denotes its convex hull as

conv(H)= {z ik i

k=1

P
pzl,VkE{1,2,.‘.,p},hk€7{72/1k§1}

k=1

Lemma (Empirical Rademacher complexity of conv(H))

Let H = {h: X — R}. Then for any sample S, we have Rs(conv(H)) = Rs(H).

Proof. Rs(conv(H)) = —E 2P Z 7 Z ph
m o | 1oy hPGH Il <152
LT
=_E| sup sup D pu) oihi(x
mo | oo €M Hu\|1<1; ; :|
_ lE _ sup max thk(x
mo |m,.., h e ke{l..p} 4
= l]E sup ZU: l :7%'5(%)'
m o he’H

42 /52

Margin-based analysis

The following theorem was proved for SVM.

Theorem (Ensemble Rademacher margin bound)

Let H be a set of real-valued functions. Fix p > 0. Then, for any 6 > 0, with probability at least
(1 —0), the following hold for all h € conv(H):

R(h) <R,(h) + %Rm(H) +yfog/0)

R(h) <R, (h) + %fzs(H) + 3,/ E1/0)

Corollary (Ensemble VC-dimension margin bound)

Let H ={X ~— {—1,+1}} with VC-dimension d. Fix p > 0. Then, for any § > 0, with probability
at least (1 — 4), the following holds for all h € conv(H)

em
2,|2908 g [lo8(1/)
m 2m

43 /52

Margin-based analysis

These bounds can be generalized to hold uniformly for all p € (0,1], at the price of an additional term

2
log log, 5

m

of the form of

The given bound can not be directly applied to the function g returned by AdaBoost, since it is not a
convex combination of base hypotheses, but they can be applied to its normalized version g € conv(#H).

Notice that from the point of view of binary classification, g and g are equivalent but their empirical
margin losses are distinct.

Theorem (Bound on empirical margin loss)

Letg = Z;l athy denote the function returned by AdaBoost after T rounds of boosting and assume
forallt € {1,..., T} that ¢; < % which implies o > 0. Then for any p > 0, the following holds

;
Rsp(h) <2"]/ (1 —e)te
t=1

44 / 52

Margin-based analysis

Proof of Bound on empirical margin loss.
1. Recall that

Mu<0]<e ™

mHthl Z:

2. Then, we can write

m

=S 1 [v(x) — pllell, < 0]

i=1

Deot(i) = exp[—yig(xi)]

Zy =2

u*llo -
t72 g

er(1—€)

€t

1 m
< p= Zexp [—y;g(xi) +p HaHJ
i=1
1 & :
— ;Zepllalll [mHZt Dr41(i)
i=1 t=1
- T
— rllall |:mHZr — P X v |:mHZt
t=1 t=1
T 1 P
€
] v

45/ 52

Margin maximization

1. Does AdaBoost maximize Li-geometric margin?
2. Maximum margin for a linearly separable sample S = {(x1,y1), ..., (Xm, Ym)} is
i {a, h(x;
p—max min Yloh()
a ie{r2,..m} o,

3. Then, the optimization problem can be written as
max p

i ‘7h i .
subject to Hﬁaiﬂ(x» >p Vie{l,2,...,m}.
1

(o, h(x))

lledly

~

. Since is invariant to scaling of «, we can restrict ourselves to ||aff|; = 1.

46 / 52

Margin maximization

1. Since % is invariant to scaling of «, we can restrict ourselves to [|af|; = 1.
@l

2. Then AdaBoost leads to the following optimization problem

max p
[e%

subject to y; (a,h(x;)) >p Vie{l,2,...,m}

(Zat:1>/\(at>0 vte{1,2,...,T}).

3. The empirical results do not show a systematic benefit for the solution of the LP.
4. In many cases, AdaBoost outperforms LP algorithm.

5. The margin theory described does not seem sufficient to explain that performance.

47 / 52

Margins of SVM and AdaBoost

A []
o o
oo ®
@
(]
(]
(]
Norm |- 2

v

48 / 52

Summary

Summary

1. AdaBoost offers several advantages

o It is simple.

o Its implementation is straightforward.

o The time complexity of each round of boosting as a function of the sample size is rather favorable. If
AdaBoost uses Decision Stumps as base classifier, the running time is O(mnT).

o AdaBoost benefits from a rich theoretical analysis.

49 / 52

Summary

1. There are many theoretical questions related to AdaBoost algorithm
o The algorithm in fact does not maximize the margin.
o The algorithms that do maximize the margin do not always outperform it.
o The need to select the parameter T and B. Larger values of T can lead to overfitting. In practice, T
is typically determined via cross-validation.
o We must control complexity of B in order to guarantee generalization; insufficiently complex B could
lead to low margins.

o The performance of AdaBoost in the presence of noise, at least in some tasks, degrades.

50 / 52

Readings

1. Section 14.3 of Christopher M Bishop Book.
2. Chapters 9 and 10 of Shai Shalev-Shwartz and Shai Ben-David Book?.
3. Chapter 7 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar Book®.

! Christopher M. Bishop (2006). Pattern Recognition and Machine Learning. Berlin, Heidelberg: Springer-Verlag.
2Shai Shalev-Shwartz and Shai Ben-David (2014). Understanding machine learning: From theory to algorithms. Cambridge
University Press.
3Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine Learning. Second Edition. MIT
Press.

51 /52

References

ﬁ Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Berlin, Heidelberg:
Springer-Verlag.

@ Mobhri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine
Learning. Second Edition. MIT Press.

@ Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning: From theory
to algorithms. Cambridge University Press.

52 / 52

Questions?

	Linear classifier
	Ensemble Learning
	Adaptive Boosting
	Generalization bound of AdaBoost
	Margin-based analysis
	Summary

