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Introduction



Introduction

1. (Document) clustering is the process of grouping a set of documents into

clusters of similar documents.

2. Documents within a cluster should be similar.

3. Documents from different clusters should be dissimilar.

4. Clustering is the most common form of unsupervised learning.

5. Unsupervised = there are no labeled or annotated data.
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Clustering



The cluster hypothesis

1. Cluster hypothesis. Documents in the same cluster behave similarly with

respect to relevance to information needs.

2. All applications of clustering in IR are based (directly or indirectly) on the

cluster hypothesis.

3. Van Rijsbergen’s original wording (1979): “closely associated documents

tend to be relevant to the same requests”.
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Data set with clear cluster structure
Data set with clear cluster structure
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Goals of clustering

1. General goal: put related docs in the same cluster, put unrelated docs in

different clusters.

2. We’ll see different ways of formalizing this.

3. The number of clusters should be appropriate for the data set we are

clustering.

I Initially, we will assume the number of clusters K is given.

I Later: Semi–automatic methods for determining K

4. Secondary goals in clustering

I Avoid very small and very large clusters

I Define clusters that are easy to explain to the user
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Flat vs. Hierarchical clustering

1. Flat algorithms

I Usually start with a random (partial) partitioning of docs into groups

I Refine iteratively

I Main algorithm: K -means

2. Hierarchical algorithms

I Create a hierarchy

I Bottom-up, agglomerative

I Top-down, divisive
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Hard vs. Soft clustering

1. Hard clustering: Each document belongs to exactly one cluster.

I More common and easier to do

2. Soft clustering: A document can belong to more than one cluster.

I Makes more sense for applications like creating browsable hierarchies
I You may want to put sneakers in two clusters:

I sports apparel
I shoes

I You can only do that with a soft clustering approach.
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Flat algorithms

1. Flat algorithms compute a partition of N documents into a set of K clusters.

2. Given: a set of documents and the number K

3. Find: a partition into K clusters that optimizes the chosen partitioning

criterion

4. Global optimization: exhaustively enumerate partitions, pick optimal one

I Not tractable

5. Effective heuristic method: K -means algorithm
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K -means



K -means

I Perhaps the best known clustering algorithm

I Simple, works well in many cases

I Use as default / baseline for clustering documents
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Document representations in clustering

1. Vector space model

2. We measure relatedness between vectors by Euclidean distance, which is

almost equivalent to cosine similarity.

3. Almost: centroids are not length-normalized.
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K -means: Basic idea

1. Each cluster in K -means is defined by a centroid.

2. Objective/partitioning criterion: minimize the average squared difference

from the centroid

3. Recall definition of centroid:

~µ(ω) =
1

|ω|
∑

~x∈ω
~x

where we use ω to denote a cluster.

4. We try to find the minimum average squared difference by iterating two

steps:

I reassignment: assign each vector to its closest centroid

I recomputation: recompute each centroid as the average of the vectors that

were assigned to it in reassignment
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K-means Algorithm

K -means pseudocode (µk is centroid of ωk)

K -means({x⃗1, . . . , x⃗N},K )
1 (⃗s1, s⃗2, . . . , s⃗K )← SelectRandomSeeds({x⃗1, . . . , x⃗N},K )
2 for k ← 1 to K
3 do µ⃗k ← s⃗k
4 while stopping criterion has not been met
5 do for k ← 1 to K
6 do ωk ← {}
7 for n← 1 to N
8 do j ← arg minj ′ |µ⃗j ′ − x⃗n|
9 ωj ← ωj ∪ {x⃗n} (reassignment of vectors)

10 for k ← 1 to K
11 do µ⃗k ← 1

|ωk |
∑

x⃗∈ωk
x⃗ (recomputation of centroids)

12 return {µ⃗1, . . . , µ⃗K}

37 / 86
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K-means example (dataset for K = 2)

Worked Example : Set of points to be clustered

Exercise: (i) Guess what the

optimal clustering into two clusters is in this case; (ii) compute the
centroids of the clusters

38 / 86
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K-means example (initial centroids)

Worked Example: Random selection of initial centroids

×

×

39 / 86
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K-means example (Assign points to closest center)

Worked Example: Assign points to closest center
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K-means example (Cluster assignment)

Worked Example: Assignment
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K-means example (Recompute cluster centroids)

Worked Example: Recompute cluster centroids
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K-means example (Assign points to closest centroid)

Worked Example: Assign points to closest centroid
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K-means example (Cluster assignment)

Worked Example: Assignment
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K-means example (Cluster assignment)

Worked Example: Recompute cluster centroids
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K-means example (Recompute cluster centroids)

Worked Example: Assign points to closest centroid
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K-means example (Assign points to closest centroid)

Worked Example: Assignment
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K-means example (Cluster assignment)

Worked Example: Recompute cluster centroids
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K-means example (After convergence)

Worked Ex.: Centroids and assignments after convergence
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K -means is guaranteed to converge: Proof

1. Residual sum of squares (RSS) decreases during each reassignment step,

because each vector is moved to a closer centroid

RSS =
K∑

k=1

∑

x∈Ck

|x − µk |2

2. There is only a finite number of clusterings.

3. Thus, we must reach a fixed point.

4. Finite set & monotonically decreasing evaluation function implies

convergence
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Initialization of K -means

1. Random seed selection is just one of many ways K-means can be initialized.

2. Random seed selection is not very robust: It’s easy to get a suboptimal

clustering.

3. Better ways of computing initial centroids:

I Select seeds using some heuristic.

I Use hierarchical clustering to find good seeds

I Select i (e.g., i = 10) different random sets of seeds, do a K-means

clustering for each, select the clustering with lowest RSS.

I Use the following optimization function.

K = arg min
k

[RSS(k) + λk]

I How do you select λ?

I Using other objective functions.
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Model-based clustering



Model-based clustering

I k-means is closely related to a probabilistic model known as the Gaussian

mixture model.

p(x) =
K∑

k=1

πkN (x |µk ,Σk)

I πk , µk ,Σk are parameters. πk are called mixing proportions and each

Gaussian is called a mixture component.

I The model is simply a weighted sum of Gaussian. But it is much more

powerful than a single Gaussian, because it can model multi-modal

distributions.

I Note that for p(x) to be a probability distribution, we require that∑
k πk = 1 and that for all k we have πk > 0. Thus, we may interpret the

πk as probabilities themselves.

I Set of parameters θ = {{πk}, {µk}, {Σk}}
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Model-based clustering (cont.)

I Let use a K-dimensional binary random variable z in which a particular

element zk equals to 1 and other elements are 0.

I The values of zk therefore satisfy zk ∈ {0, 1} and
∑

k zk = 1

I The marginal distribution of x equals to

p(x) =
∑

z

p(z)p(x |z) =
K∑

k=1

πkN (x |µk ,Σk)

I We can write p(zk = 1|x) as

γ(zk) = p(zk = 1|x)

I We shall view πk as the prior probability of zk = 1, and the quantity γ(zk)

as the corresponding posterior probability once we have observed x .
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Gaussian mixture model (example)

112 2. PROBABILITY DISTRIBUTIONS
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Figure 2.23 Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant
density for each of the mixture components, in which the 3 components are denoted red, blue and green, and
the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability
density p(x) of the mixture distribution. (c) A surface plot of the distribution p(x).

We therefore see that the mixing coefficients satisfy the requirements to be probabil-
ities.

From the sum and product rules, the marginal density is given by

p(x) =

K∑

k=1

p(k)p(x|k) (2.191)

which is equivalent to (2.188) in which we can view πk = p(k) as the prior prob-
ability of picking the kth component, and the density N (x|µk,Σk) = p(x|k) as
the probability of x conditioned on k. As we shall see in later chapters, an impor-
tant role is played by the posterior probabilities p(k|x), which are also known as
responsibilities. From Bayes’ theorem these are given by

γk(x) ≡ p(k|x)

=
p(k)p(x|k)∑

l p(l)p(x|l)

=
πkN (x|µk,Σk)∑

l πlN (x|µl,Σl)
. (2.192)

We shall discuss the probabilistic interpretation of the mixture distribution in greater
detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters π,
µ and Σ, where we have used the notation π ≡ {π1, . . . , πK}, µ ≡ {µ1, . . . ,µK}
and Σ ≡ {Σ1, . . .ΣK}. One way to set the values of these parameters is to use
maximum likelihood. From (2.188) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =

N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(2.193)

9.2. Mixtures of Gaussians 433
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =

N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π
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EM for Gassian mixture models

1. Initialize µk , Σk , and πk , and evaluate the initial log likelihood.

2. E step Evaluate γ(znk) using the current parameter values

p(zk = 1|x) = γ(znk) =
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

3. M step Re-estimate the parameters using the current value of γ(znk )

µk =
1

Nk

N∑

n=1

γ(znk )xn

Σk =
1

Nk

N∑

n=1

γ(znk )(xn − µk)(xn − µk)T

πk =
Nk

N

where Nk =
∑N

n=1 γ(znk).
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Model-based clustering (example)

9.2. Mixtures of Gaussians 437
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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two
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Hierarchical clustering

I Imagine we now want to create a hierarchy in the form of a binary tree.

I Assumes a similarity measure for determining the similarity of two clusters.

I Up to now, our similarity measures were for documents.

I We will look at different cluster similarity measures.
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Hierarchical methods

I A hierarchical clustering method works by grouping data objects into a

hierarchy or “tree” of clusters.

HAN 17-ch10-443-496-9780123814791 2011/6/1 3:44 Page 460 #18

460 Chapter 10 Cluster Analysis: Basic Concepts and Methods
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Figure 10.6 Agglomerative and divisive hierarchical clustering on data objects {a,b,c,d,e}.
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Figure 10.7 Dendrogram representation for hierarchical clustering of data objects {a,b,c,d,e}.

different clusters. This is a single-linkage approach in that each cluster is represented
by all the objects in the cluster, and the similarity between two clusters is measured
by the similarity of the closest pair of data points belonging to different clusters. The
cluster-merging process repeats until all the objects are eventually merged to form one
cluster.

DIANA, the divisive method, proceeds in the contrasting way. All the objects are used
to form one initial cluster. The cluster is split according to some principle such as the
maximum Euclidean distance between the closest neighboring objects in the cluster. The
cluster-splitting process repeats until, eventually, each new cluster contains only a single
object.

A tree structure called a dendrogram is commonly used to represent the process of
hierarchical clustering. It shows how objects are grouped together (in an agglomerative
method) or partitioned (in a divisive method) step-by-step. Figure 10.7 shows a den-
drogram for the five objects presented in Figure 10.6, where l = 0 shows the five objects
as singleton clusters at level 0. At l = 1, objects a and b are grouped together to form the

I Hierarchical clustering methods

I Agglomerative hierarchical clustering

I Divisive hierarchical clustering
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Distance measures in hierarchical methods

1. Whether using an agglomerative method or a divisive method, a core need is

to measure the distance between two clusters, where each cluster is

generally a set of objects.

2. Four widely used measures for distance between clusters are as follows,

where |p − q| is the distance between two objects or points, p and q; µi is

the mean for cluster, Ci ; and ni is the number of objects in Ci . They are

also known as linkage measures.
I Minimum distance

dmin(Ci ,Cj) = min
p∈Ci ,q∈Cj

|p − q|

I Maximum distance

dmax(Ci ,Cj) = max
p∈Ci ,q∈Cj

|p − q|

I Mean distance dmean(Ci ,Cj) = |µi − µj |
I Average distance dmin(Ci ,Cj) = 1

ninj

∑
p∈Ci ,q∈Cj

|p − q|
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Dendrogram
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Time complexity of hierarchical methods

1. We must compute the similarity of all N × N pairs of documents.

2. In each of N iterations:.

I We scan the O(N2) similarities to find the maximum similarity.

I We merge the two clusters with maximum similarity.

I We compute the similarity of the new cluster with all other clusters.

3. There are O(N) iterations, each performing a O(N2) operation.

4. Overall complexity is O(N3).

5. Depending on the similarity function, a more efficient algorithm is possible.
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Hierarchical clustering (example)

1. Consider 8 points in 2-D plan and their Euclidean distances.

Example: hierarchical clustering; similarity functions

Cluster 8 objects a-h; Euclidean distances (2D) shown in diagram
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Hierarchical clustering (single link example)

1. In the first step, a-b, c-d, e-f, g-h merged.

Single Link is O(n2)
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2. The final clustering is

Clustering Result under Single Link

a b c d

e f g h

a b c e f g hd

60

Clustering Result under Single Link
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a b c e f g hd

60
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Hierarchical clustering (complete link example)

1. In the first step, a-b, c-d, e-f, g-h merged.

Complete Link
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2. In this step, we merge a-b/e-f and c-d/g-h.

Clustering result under complete link
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Complete Link is O(n3)

63

Clustering result under complete link
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Complete Link is O(n3)
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Flat or Hierarchical clustering?

1. When a hierarchical structure is desired: we should use hierarchical algorithm

2. Humans are bad at interpreting hierarchical clusterings (unless cleverly

visualized)

3. For high efficiency, use flat clustering.

4. For deterministic results, use hierarchical agglomerative clustering.

5. Hierarchical agglomerative clustering also can be applied if K cannot be

predetermined (can start without knowing K )
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Evaluation of clustering



Cluster validation and assessment

I Cluster evaluation assesses the feasibility of clustering analysis on a data set

and the quality of the results generated by a clustering method. The major

tasks of clustering evaluation include the following:

1. Assessing clustering tendency : In this task, for a given data set, we assess

whether a nonrandom structure exists in the data. Clustering analysis on a

data set is meaningful only when there is a nonrandom structure in the data.

2. Determining the number of clusters in a data set : Algorithms such as

k-means, require the number of clusters in a data set as the parameter.

A simple method is to set the number of clusters to about
√
n/2 for a data

set of n points.

3. Measuring clustering quality : After applying a clustering method on a data

set, we want to assess how good the resulting clusters are. There are also

measures that score clusterings and thus can compare two sets of clustering

results on the same data set.
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Assessing clustering tendency
HAN 17-ch10-443-496-9780123814791 2011/6/1 3:44 Page 485 #43

10.6 Evaluation of Clustering 485

Figure 10.21 A data set that is uniformly distributed in the data space.

a random variable, o, we want to determine how far away o is from being uniformly
distributed in the data space. We calculate the Hopkins Statistic as follows:

1. Sample n points, p1, . . . , p

n

, uniformly from D. That is, each point in D has the same
probability of being included in this sample. For each point, p

i

, we find the nearest
neighbor of p

i

(1  i  n) in D, and let xi be the distance between p

i

and its nearest
neighbor in D. That is,

xi = min

v2D
{dist(p

i

,v)}. (10.25)

2. Sample n points, q1, . . . , q

n

, uniformly from D. For each q

i

(1  i  n), we find the
nearest neighbor of q

i

in D � {q

i

}, and let yi be the distance between q

i

and its nearest
neighbor in D�{q

i

}. That is,

yi = min

v2D,v 6=q

i

{dist(q

i

,v)}. (10.26)

3. Calculate the Hopkins Statistic, H , as

H =
Pn

i=1 yiPn
i=1 xi +

Pn
i=1 yi

. (10.27)

“What does the Hopkins Statistic tell us about how likely data set D follows a uni-
form distribution in the data space?” If D were uniformly distributed, then

Pn
i=1 yi andPn

i=1 xi would be close to each other, and thus H would be about 0.5. However, if D were
highly skewed, then

Pn
i=1 yi would be substantially smaller than

Pn
i=1 xi in expectation,

and thus H would be close to 0.
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Cluster validation and assessment

I How good is the clustering generated by a method?

I How can we compare the clusterings generated by different methods?

I Clustering is an unupervised learning technique and it is hard to evaluate the

quality of the output of any given method.

I If we use probabilistic models, we can always evaluate the likelihood of a

test set, but this has two drawbacks:

1. It does not directly assess any clustering that is discovered by the model.

2. It does not apply to non-probabilistic methods.

I We discuss some performance measures not based on likelihood.
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Cluster validation and assessment

I The goal of clustering is to assign points that are similar to the same

cluster, and to ensure that points that are dissimilar are in different clusters.

I There are several ways of measuring these quantities

1. Internal criterion : Typical objective functions in clustering formalize the

goal of attaining high intra-cluster similarity and low inter-cluster similarity.

But good scores on an internal criterion do not necessarily translate into

good effectiveness in an application. An alternative to internal criteria is

direct evaluation in the application of interest.

2. External criterion : Suppose we have labels for each object. Then we can

compare the clustering with the labels using various metrics. We will use

some of these metrics later, when we compare clustering methods.
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Purity

I Purity is a simple and transparent evaluation measure. Consider the

following clustering.

25.1. Introduction 877

Figure 25.1 Three clusters with labeled objects inside. Based on Figure 16.4 of (Manning et al. 2008).

Clustering is an unupervised learning technique, so it is hard to evaluate the quality of the output
of any given method. If we use probabilistic models, we can always evaluate the likelihood of
a test set, but this has two drawbacks: first, it does not directly assess any clustering that is
discovered by the model; and second, it does not apply to non-probabilistic methods. So now
we discuss some performance measures not based on likelihood.

Intuitively, the goal of clustering is to assign points that are similar to the same cluster,
and to ensure that points that are dissimilar are in different clusters. There are several ways
of measuring these quantities e.g., see (Jain and Dubes 1988; Kaufman and Rousseeuw 1990).
However, these internal criteria may be of limited use. An alternative is to rely on some external
form of data with which to validate the method. For example, suppose we have labels for each
object, as in Figure 25.1. (Equivalently, we can have a reference clustering; given a clustering, we
can induce a set of labels and vice versa.) Then we can compare the clustering with the labels
using various metrics which we describe below. We will use some of these metrics later, when
we compare clustering methods.

25.1.2.1 Purity

Let Nij be the number of objects in cluster i that belong to class j, and let Ni =
∑C

j=1 Nij be
the total number of objects in cluster i. Define pij = Nij/Ni; this is the empirical distribution
over class labels for cluster i. We define the purity of a cluster as pi ! maxj pij , and the
overall purity of a clustering as

purity !
∑

i

Ni

N
pi (25.5)

For example, in Figure 25.1, we have that the purity is

6

17

5

6
+

6

17

4

6
+

5

17

3

5
=

5 + 4 + 3

17
= 0.71 (25.6)

The purity ranges between 0 (bad) and 1 (good). However, we can trivially achieve a purity of
1 by putting each object into its own cluster, so this measure does not penalize for the number
of clusters.

25.1.2.2 Rand index

Let U = {u1, . . . , uR} and V = {v1, . . . , VC} be two different partitions of the N data points,
i.e., two different (flat) clusterings. For example, U might be the estimated clustering and V
is reference clustering derived from the class labels. Now define a 2 × 2 contingency table,

I Let Nij be the number of objects in cluster i that belongs to class j and

Ni =
∑C

j=1 Nij be the total number of objects in cluster i .

I We define purity of cluster i as pi , max
j

(
Nij

Ni

)
, and the overall purity of a

clustering as

purity ,
∑

i

Ni

N
pi .
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Purity

I For the following figure, the purity is

25.1. Introduction 877

Figure 25.1 Three clusters with labeled objects inside. Based on Figure 16.4 of (Manning et al. 2008).

Clustering is an unupervised learning technique, so it is hard to evaluate the quality of the output
of any given method. If we use probabilistic models, we can always evaluate the likelihood of
a test set, but this has two drawbacks: first, it does not directly assess any clustering that is
discovered by the model; and second, it does not apply to non-probabilistic methods. So now
we discuss some performance measures not based on likelihood.

Intuitively, the goal of clustering is to assign points that are similar to the same cluster,
and to ensure that points that are dissimilar are in different clusters. There are several ways
of measuring these quantities e.g., see (Jain and Dubes 1988; Kaufman and Rousseeuw 1990).
However, these internal criteria may be of limited use. An alternative is to rely on some external
form of data with which to validate the method. For example, suppose we have labels for each
object, as in Figure 25.1. (Equivalently, we can have a reference clustering; given a clustering, we
can induce a set of labels and vice versa.) Then we can compare the clustering with the labels
using various metrics which we describe below. We will use some of these metrics later, when
we compare clustering methods.

25.1.2.1 Purity

Let Nij be the number of objects in cluster i that belong to class j, and let Ni =
∑C

j=1 Nij be
the total number of objects in cluster i. Define pij = Nij/Ni; this is the empirical distribution
over class labels for cluster i. We define the purity of a cluster as pi ! maxj pij , and the
overall purity of a clustering as

purity !
∑

i

Ni

N
pi (25.5)

For example, in Figure 25.1, we have that the purity is

6

17

5

6
+

6

17

4

6
+

5

17

3

5
=

5 + 4 + 3

17
= 0.71 (25.6)

The purity ranges between 0 (bad) and 1 (good). However, we can trivially achieve a purity of
1 by putting each object into its own cluster, so this measure does not penalize for the number
of clusters.

25.1.2.2 Rand index

Let U = {u1, . . . , uR} and V = {v1, . . . , VC} be two different partitions of the N data points,
i.e., two different (flat) clusterings. For example, U might be the estimated clustering and V
is reference clustering derived from the class labels. Now define a 2 × 2 contingency table,

6

17

5

6
+

6

17

4

6
+

5

17

3

5
=

5 + 4 + 3

17
= 0.71

I Bad clusterings have purity values close to 0, a perfect clustering has a

purity of 1.

I High purity is easy to achieve when the number of clusters is large. In

particular, purity is 1 if each point gets its own cluster. Thus, we cannot use

purity to trade off the quality of the clustering against the number of

clusters.
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Rand index

I Let U = {u1, . . . , uR} and V = {v1, . . . , vC} be two different clustering of N

data points.

I For example, U might be the estimated clustering and V is reference

clustering derived from the class labels.
I Define a 2× 2 contingency table, containing the following numbers:

1. TP is the number of pairs that are in the same cluster in both U and V

(true positives);

2. TN is the number of pairs that are in different clusters in both U and V

(true negatives);

3. FN is the number of pairs that are in different clusters in U but the same

cluster in V (false negatives);

4. FP is the number of pairs that are in the same cluster in U but different

clusters in V (false positives).

I Rand index is defined as RI , TP+TN
TP+FP+FN+TN

I Rand index can be interpreted as the fraction of clustering decisions that are

correct. Clearly RI ∈ [0, 1].
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Rand index (example)

I Consider the following clustering

25.1. Introduction 877

Figure 25.1 Three clusters with labeled objects inside. Based on Figure 16.4 of (Manning et al. 2008).

Clustering is an unupervised learning technique, so it is hard to evaluate the quality of the output
of any given method. If we use probabilistic models, we can always evaluate the likelihood of
a test set, but this has two drawbacks: first, it does not directly assess any clustering that is
discovered by the model; and second, it does not apply to non-probabilistic methods. So now
we discuss some performance measures not based on likelihood.

Intuitively, the goal of clustering is to assign points that are similar to the same cluster,
and to ensure that points that are dissimilar are in different clusters. There are several ways
of measuring these quantities e.g., see (Jain and Dubes 1988; Kaufman and Rousseeuw 1990).
However, these internal criteria may be of limited use. An alternative is to rely on some external
form of data with which to validate the method. For example, suppose we have labels for each
object, as in Figure 25.1. (Equivalently, we can have a reference clustering; given a clustering, we
can induce a set of labels and vice versa.) Then we can compare the clustering with the labels
using various metrics which we describe below. We will use some of these metrics later, when
we compare clustering methods.

25.1.2.1 Purity

Let Nij be the number of objects in cluster i that belong to class j, and let Ni =
∑C

j=1 Nij be
the total number of objects in cluster i. Define pij = Nij/Ni; this is the empirical distribution
over class labels for cluster i. We define the purity of a cluster as pi ! maxj pij , and the
overall purity of a clustering as

purity !
∑

i

Ni

N
pi (25.5)

For example, in Figure 25.1, we have that the purity is

6

17

5

6
+

6

17

4

6
+

5

17

3

5
=

5 + 4 + 3

17
= 0.71 (25.6)

The purity ranges between 0 (bad) and 1 (good). However, we can trivially achieve a purity of
1 by putting each object into its own cluster, so this measure does not penalize for the number
of clusters.

25.1.2.2 Rand index

Let U = {u1, . . . , uR} and V = {v1, . . . , VC} be two different partitions of the N data points,
i.e., two different (flat) clusterings. For example, U might be the estimated clustering and V
is reference clustering derived from the class labels. Now define a 2 × 2 contingency table,

I The three clusters contain 6, 6 and 5 points, so we have

TP + FP =

(
6

2

)
+

(
6

2

)
+

(
5

2

)
= 40.

I The number of true positives

TP =

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
= 20.

I Then FP = 40− 20 = 20. Similarly, FN = 24 and TN = 72.

I Hence Rand index

RI =
20 + 72

20 + 20 + 24 + 72
= 0.68.
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Adjusted rand index (example)

I Consider the following clustering

25.1. Introduction 877

Figure 25.1 Three clusters with labeled objects inside. Based on Figure 16.4 of (Manning et al. 2008).

Clustering is an unupervised learning technique, so it is hard to evaluate the quality of the output
of any given method. If we use probabilistic models, we can always evaluate the likelihood of
a test set, but this has two drawbacks: first, it does not directly assess any clustering that is
discovered by the model; and second, it does not apply to non-probabilistic methods. So now
we discuss some performance measures not based on likelihood.

Intuitively, the goal of clustering is to assign points that are similar to the same cluster,
and to ensure that points that are dissimilar are in different clusters. There are several ways
of measuring these quantities e.g., see (Jain and Dubes 1988; Kaufman and Rousseeuw 1990).
However, these internal criteria may be of limited use. An alternative is to rely on some external
form of data with which to validate the method. For example, suppose we have labels for each
object, as in Figure 25.1. (Equivalently, we can have a reference clustering; given a clustering, we
can induce a set of labels and vice versa.) Then we can compare the clustering with the labels
using various metrics which we describe below. We will use some of these metrics later, when
we compare clustering methods.

25.1.2.1 Purity

Let Nij be the number of objects in cluster i that belong to class j, and let Ni =
∑C

j=1 Nij be
the total number of objects in cluster i. Define pij = Nij/Ni; this is the empirical distribution
over class labels for cluster i. We define the purity of a cluster as pi ! maxj pij , and the
overall purity of a clustering as

purity !
∑

i

Ni

N
pi (25.5)

For example, in Figure 25.1, we have that the purity is

6

17

5

6
+

6

17

4

6
+

5

17

3

5
=

5 + 4 + 3

17
= 0.71 (25.6)

The purity ranges between 0 (bad) and 1 (good). However, we can trivially achieve a purity of
1 by putting each object into its own cluster, so this measure does not penalize for the number
of clusters.

25.1.2.2 Rand index

Let U = {u1, . . . , uR} and V = {v1, . . . , VC} be two different partitions of the N data points,
i.e., two different (flat) clusterings. For example, U might be the estimated clustering and V
is reference clustering derived from the class labels. Now define a 2 × 2 contingency table,

I Hence Rand index

RI =
20 + 72

20 + 20 + 24 + 72
= 0.68.

I Rand index only achieves its lower bound of 0 if TP = TN = 0, which is a

rare event. We can define an adjusted Rand index

ARI , index − E[index ]

max index − E[index ]
.
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Adjusted rand index (example)

I For computing adjusted Rand index, we build a contingency matrix, where

columns are gold clusters and rows are obtained clusters.

ARI , index − E[index ]

max index − E[index ]

=

∑
ij

(
nij
2

)
− [

∑
i (

ai
2)

∑
j (

bj
2 )]

(n
2)

1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
− [

∑
i (

ai
2)

∑
j (

bj
2 )]

(n
2)

I nij is the count in cell of (i , j) of contingency matrix.

I ai is the sum of row i of contingency matrix.

I bj is the sum of column j of contingency matrix.

I Exercise: Assume that the gold clustering is {{A,D}, {B ,C}, {E ,F}} and

obtained clustering is {{A,B}, {E ,F}, {C ,D}}, calculate ARI.
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Mutual information

I We can measure cluster quality is computing mutual information between U

and V .

I Let PUV (i , j) =
|ui∩vj |

N
be the probability that a randomly chosen object

belongs to cluster ui in U and vj in V .

I Let PU(i) = |ui |
N

be the be the probability that a randomly chosen object

belongs to cluster ui in U .

I Let PV (j) =
|vj |
N

be the be the probability that a randomly chosen object

belongs to cluster vj in V .

I Then mutual information is defined

I(U ,V ) ,
R∑

i=1

C∑

j=1

PUV (i , j) log
PUV (i , j)

PU(i)PV (j)
.

I This lies between 0 and min{H(U),H(V )}.

51/54



Mutual information

I Then mutual information is defined

I(U ,V ) ,
R∑

i=1

C∑

j=1

PUV (i , j) log
PUV (i , j)

PU(i)PV (j)
.

I This lies between 0 and min{H(U),H(V )}.
I The maximum value can be achieved by using a lots of small clusters, which

have low entropy.

I To compensate this, we can use normalized mutual information (NMI)

NMI (U ,V ) , I(U ,V )
1
2
[H(U) + H(V )]

.

I This lies between 0 and 1.
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