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Introduction




Introduction

ok N

. (Document) clustering is the process of grouping a set of documents into

clusters of similar documents.

Documents within a cluster should be similar.

Documents from different clusters should be dissimilar.
Clustering is the most common form of unsupervised learning.

Unsupervised = there are no labeled or annotated data.
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Clustering




The cluster hypothesis

1. Cluster hypothesis. Documents in the same cluster behave similarly with
respect to relevance to information needs.

2. All applications of clustering in IR are based (directly or indirectly) on the
cluster hypothesis.

3. Van Rijsbergen’s original wording (1979): “closely associated documents
tend to be relevant to the same requests”.
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Goals of clustering

1. General goal: put related docs in the same cluster, put unrelated docs in
different clusters.
2. We'll see different ways of formalizing this.
3. The number of clusters should be appropriate for the data set we are
clustering.
> Initially, we will assume the number of clusters K is given.
» Later: Semi—automatic methods for determining K
4. Secondary goals in clustering

» Avoid very small and very large clusters
» Define clusters that are easy to explain to the user
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Flat vs. Hierarchical clustering

1. Flat algorithms
» Usually start with a random (partial) partitioning of docs into groups
» Refine iteratively
» Main algorithm: K-means
2. Hierarchical algorithms
» Create a hierarchy
» Bottom-up, agglomerative
» Top-down, divisive ]
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Hard vs. Soft clustering

1. Hard clustering: Each document belongs to exactly one cluster.
» More common and easier to do
2. Soft clustering: A document can belong to more than one cluster.

» Makes more sense for applications like creating browsable hierarchies
» You may want to put sneakers in two clusters:
> sports apparel

» shoes

» You can only do that with a soft clustering approach.
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Flat algorithms

1. Flat algorithms compute a partition of N documents into a set of K clusters.
2. Given: a set of documents and the number K

3. Find: a partition into K clusters that optimizes the chosen partitioning
criterion
4. Global optimization: exhaustively enumerate partitions, pick optimal one

» Not tractable

5. Effective heuristic method: K-means algorithm m
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K-means




K-means

» Perhaps the best known clustering algorithm
» Simple, works well in many cases

» Use as default / baseline for clustering documents
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Document representations in clustering

1. Vector space model

2. We measure relatedness between vectors by Euclidean distance, which is
almost equivalent to cosine similarity.

3. Almost: centroids are not length-normalized.
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K-means: Basic idea

1. Each cluster in K-means is defined by a centroid.
2. Objective/partitioning criterion: minimize the average squared difference
from the centroid
3. Recall definition of centroid:
, 1 o
fi(w) = m ZX
XEw
where we use w to denote a cluster.

4. We try to find the minimum average squared difference by iterating two
steps:
» reassignment: assign each vector to its closest centroid
» recomputation: recompute each centroid as the average of the vectors that

were assigned to it in reassignment
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K-means Algorithm

K-MEANS({X1,...,Xn}, K)
1 (5,%,...,5«) < SELECTRANDOMSEEDS({X1, ..., Xy}, K)
2 for k< 1to K
3 do /jk — §k
4  while stopping criterion has not been met
5 dofor k< 1to K
6 do Wk < {}
7 forn<—1to N
8 do j < argmin |jijr — Xp|
9 wj <~ wj U {X,} (reassignment of vectors)
10 for k< 1to K
11 do /iy + ﬁ Y sew, X (recomputation of centroids)
12 return {ji1,..., [k}
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K-means example (dataset for K = 2)
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K-means example (initial centroids)

X

X o.o
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K-means example (Assign points to closest center)
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K-means example (Cluster assignment)
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K-means example (Recompute cluster centroids)

2
T
1 1 . 1
* Ko S|
1
1 1

17/54



K-means example (Assign points to closest centroid)
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K-means example (Cluster assignment)
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K-means example (Cluster assignment)
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K-means example (Recompute cluster centroids)
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K-means example (Assign points to closest centroid)
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K-means example (Cluster assignment)
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K-means example (After convergence)
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K-means is guaranteed to converge: Proof

1. Residual sum of squares (RSS) decreases during each reassignment step,
because each vector is moved to a closer centroid

K
RSS = Z Z|X—uk|2

k=1 xeCy

2. There is only a finite number of clusterings.
3. Thus, we must reach a fixed point.

4. Finite set & monotonically decreasing evaluation function implies
convergence
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Initialization of K-means

1. Random seed selection is just one of many ways K-means can be initialized.

2. Random seed selection is not very robust: It's easy to get a suboptimal

clustering.

3. Better ways of computing initial centroids:

| 4

>

>

Select seeds using some heuristic.

Use hierarchical clustering to find good seeds

Select i (e.g., i = 10) different random sets of seeds, do a K-means
clustering for each, select the clustering with lowest RSS.

Use the following optimization function.

K = arg mkin[RSS(k) + AK]

How do you select A?
Using other objective functions.
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Model-based clustering

» k-means is closely related to a probabilistic model known as the Gaussian

mixture model. B
p(x) =Y mN (x| 1k, i)
k=1

> Ty, bk, 2k are parameters. 7, are called mixing proportions and each
Gaussian is called a mixture component.

» The model is simply a weighted sum of Gaussian. But it is much more

powerful than a single Gaussian, because it can model multi-modal
distributions.

» Note that for p(x) to be a probability distribution, we require that
>, Tk = 1 and that for all k we have 7, > 0. Thus, we may interpret the
T as probabilities themselves.

» Set of parameters 0 = {{m}, {1}, {Zx}}
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Model-based clustering (cont.)

» Let use a K-dimensional binary random variable z in which a particular
element z, equals to 1 and other elements are 0.

» The values of z, therefore satisfy z, € {0,1} and Y, zx =1

» The marginal distribution of x equals to

pOx) = S p(2)p(x12) = 3 M (xljse, T)

» We can write p(zx = 1|x) as

Y(zx) = p(zx = 1|x)

» We shall view 7, as the prior probability of z, = 1, and the quantity v(z)
as the corresponding posterior probability once we have observed x.
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Gaussian mixture model (example)
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EM for Gassian mixture models

1. Initialize px, X, and 7, and evaluate the initial log likelihood.

2. E step Evaluate ~y(z,x) using the current parameter values

TN (X ok, L)
Z,-K:l TN (Xn|pj, ;)

3. M step Re-estimate the parameters using the current value of v(z,,)

p(zk = 1|x) = 7(zmk) =

1 N
Mk = ﬁk ; ’Y(an)xn

N
1
Y= D 7 (z0) O = ) O — )T
n=1

Ny
ﬂ—k:W

where N = -V ~(z).
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Hierarchical clustering




Hierarchical clustering

v

Imagine we now want to create a hierarchy in the form of a binary tree.
» Assumes a similarity measure for determining the similarity of two clusters.

Up to now, our similarity measures were for documents.

v

v

We will look at different cluster similarity measures.
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Hierarchical methods

» A hierarchical clustering method works by grouping data objects into a
hierarchy or “tree” of clusters.

1 2 4
Agglomerative Stelp 0 Stelp Stelp Stc:p 3 Stelp

(AGNES)

\4

Divisive
(DIANA)

<<
<

T T T T T
Step 4 Step 3 Step 2 Step 1 Step 0

» Hierarchical clustering methods

» Agglomerative hierarchical clustering
» Divisive hierarchical clustering
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Distance measures in hierarchical methods

1. Whether using an agglomerative method or a divisive method, a core need is
to measure the distance between two clusters, where each cluster is
generally a set of objects.

2. Four widely used measures for distance between clusters are as follows,
where |p — q| is the distance between two objects or points, p and g; p; is
the mean for cluster, C;; and n; is the number of objects in C;. They are
also known as linkage measures.

» Minimum distance
dmin(Cis CJ) = peg?,iqnecj‘p —q|

» Maximum distance

d C,C)= max —
max( i j) pEC,',qGCJ'|p q|

» Mean distance dmean(Ci, Gj) = i — 1]
» Average distance dmin(C;, Cj) = %nj Zpec,-,qecj lp— q|
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Time complexity of hierarchical methods

1. We must compute the similarity of all N x N pairs of documents.
2. In each of N iterations:.

» We scan the O(N?) similarities to find the maximum similarity.
» We merge the two clusters with maximum similarity.
» We compute the similarity of the new cluster with all other clusters.

3. There are O(N) iterations, each performing a O(N?) operation.
4. Overall complexity is O(N?3).

5. Depending on the similarity function, a more efficient algorithm is possible.
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Hierarchical clustering (example)

1. Consider 8 points in 2-D plan and their Euclidean distances.

a b ¢ d

[ ] [ ] [ ] [ ]

-~ 1 .

1.5
2

e h

[ ] ‘ % [ J
b T
c 2.5 1.5
d 35 25 1
e 2 V5 1/10.25 \/16.25
f NG 2 V6.25 V1025 | 1
g \/10.25 \6.25 2 V5 2.5 1.5
h V16.25 | V1025 | V5 2 35 2.5 1

[ [l [ b [ c [ d [ e [ f [ & |
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Hierarchical clustering (single link example)

1. In the first step, a-b, c-d, e-f, g-h merged.

c—d 15
e—f || 2 /6.25
gh || v6.25 |2 15 \

| || a-b | c—d | e—f |

2. The final clustering is
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Hierarchical clustering (complete link example)

1. In the first step, a—_b, c-d, e_—f, g—h me'rged.
5

—d 2 15
25
ef 2 V5 V10.25 V16.25
[v5] 2 N
g-h 1/10.25 1/6.25 2 Iﬂ 25 15
V1625 | 1025 | V5 2 25
[ [[ ab [ cd [ ef

2. In this step, we merge a-b/e-f and c-d/g-h.
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Flat or Hierarchical clustering?

1. When a hierarchical structure is desired: we should use hierarchical algorithm

2. Humans are bad at interpreting hierarchical clusterings (unless cleverly
visualized)

3. For high efficiency, use flat clustering.
4. For deterministic results, use hierarchical agglomerative clustering.

5. Hierarchical agglomerative clustering also can be applied if K cannot be
predetermined (can start without knowing K)
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Cluster validation and assessment

» Cluster evaluation assesses the feasibility of clustering analysis on a data set
and the quality of the results generated by a clustering method. The major
tasks of clustering evaluation include the following:

1. Assessing clustering tendency : In this task, for a given data set, we assess
whether a nonrandom structure exists in the data. Clustering analysis on a
data set is meaningful only when there is a nonrandom structure in the data.

2. Determining the number of clusters in a data set : Algorithms such as
k-means, require the number of clusters in a data set as the parameter.

A simple method is to set the number of clusters to about \/TQ for a data
set of n points.

3. Measuring clustering quality : After applying a clustering method on a data
set, we want to assess how good the resulting clusters are. There are also
measures that score clusterings and thus can compare two sets of clustering
results on the same data set.
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Assessing clustering tendency

42/54



Cluster validation and assessment

v

How good is the clustering generated by a method?

How can we compare the clusterings generated by different methods?

v

Clustering is an unupervised learning technique and it is hard to evaluate the

v

quality of the output of any given method.

If we use probabilistic models, we can always evaluate the likelihood of a
test set, but this has two drawbacks:

v

1. It does not directly assess any clustering that is discovered by the model.

2. It does not apply to non-probabilistic methods.

v

We discuss some performance measures not based on likelihood.
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Cluster validation and assessment

» The goal of clustering is to assign points that are similar to the same
cluster, and to ensure that points that are dissimilar are in different clusters.

» There are several ways of measuring these quantities

1. Internal criterion : Typical objective functions in clustering formalize the
goal of attaining high intra-cluster similarity and low inter-cluster similarity.
But good scores on an internal criterion do not necessarily translate into
good effectiveness in an application. An alternative to internal criteria is
direct evaluation in the application of interest.

2. External criterion : Suppose we have labels for each object. Then we can
compare the clustering with the labels using various metrics. We will use

some of these metrics later, when we compare clustering methods.
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Purity

» Purity is a simple and transparent evaluation measure. Consider the

following clustering.

AAA ABB AA
AAB BBC cCC

» Let Nj be the number of objects in cluster / that belongs to class j and
N; = ZjC:1 N be the total number of objects in cluster /.

» We define purity of cluster i as p; £ max <%) and the overall purity of a
_I 1

clustering as
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Purity

» For the following figure, the purity is

AAA ABB AA
AAB BBC cCccC

65+ 64_|_ 53 _ 5+4+43
176 176 175 17
» Bad clusterings have purity values close to 0, a perfect clustering has a

=0.71

purity of 1.

» High purity is easy to achieve when the number of clusters is large. In
particular, purity is 1 if each point gets its own cluster. Thus, we cannot use
purity to trade off the quality of the clustering against the number of

clusters.
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Rand index

» Let U={uw,...,ur} and V = {v,..., vc} be two different clustering of N
data points.
» For example, U might be the estimated clustering and V is reference
clustering derived from the class labels.
» Define a 2 x 2 contingency table, containing the following numbers:
1. TP is the number of pairs that are in the same cluster in both U and V
(true positives);
2. TN is the number of pairs that are in different clusters in both U and V
(true negatives);
3. FN is the number of pairs that are in different clusters in U but the same
cluster in V (false negatives);
4. FP is the number of pairs that are in the same cluster in U but different
clusters in V (false positives).

: : : N TP+TN
» Rand index is defined as Rl = TPTFPLENTTN

» Rand index can be interpreted as the fraction of clustering decisions that are
correct. Clearly R/ € [0, 1].
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Rand index (example)

v

Consider the following clustering

AAA ABB AA
AAB BBC cccC

v

The three clusters contain 6, 6 and 5 points, so we have

()9 -

The number of true positives

5 4 3 2
TP = = 20.
() () () ()
Then FP =40 — 20 = 20. Similarly, FN = 24 and TN = 72.
Hence Rand index

v

v

v

20+ 72

Rl = =
20+20+24+72

0.68.
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Adjusted rand index (example)

» Consider the following clustering

AAA ABB AA
AAB BBC cccC

» Hence Rand index

20+ 72

Rl = =
20+20+24+72

0.68.

» Rand index only achieves its lower bound of 0 if TP = TN = 0, which is a
rare event. We can define an adjusted Rand index

index — E[index]

ARl = .
max index — E[index]
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Adjusted rand index (example)

» For computing adjusted Rand index, we build a contingency matrix, where
columns are gold clusters and rows are obtained clusters.

index — E[index]
max index — E[index|

>, () - [~ ()= (9)]

2

ARl £

o @) - BORA

» nj is the count in cell of (i, /) of contingency matrix.
» a; is the sum of row / of contingency matrix.
> b;j is the sum of column j of contingency matrix.

» Exercise: Assume that the gold clustering is {{A,D},{B, C},{E,F}} and
obtained clustering is {{A, B}, {E,F},{C,D}}, calculate ARI.
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Mutual information

» We can measure cluster quality is computing mutual information between U
and V.

» Let Pyy(i,j) = |'mvf| be the probability that a randomly chosen object
belongs to cluster u, in U and vj in V.

» Let Py(i) = ‘”" be the be the probability that a randomly chosen object
belongs to cIuster ui in U.

» Let Py(j) = ‘Vf| be the be the probability that a randomly chosen object
belongs to cIuster vj in V.

» Then mutual information is defined

R C

I(U, V)2 ZZPUV ,J)log%.

» This lies between 0 and min{H(U), H(V)}.
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Mutual information

Then mutual information is defined

v

v

This lies between 0 and min{H{(U), H(V)}.

The maximum value can be achieved by using a lots of small clusters, which

v

have low entropy.

» To compensate this, we can use normalized mutual information (NMI)

(U, V)
3 [H(U) + H(V)]

NMI(U, V) &

This lies between 0 and 1.

v
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