
Modern Information Retrieval

Language Models for Information Retrieval1

Hamid Beigy

Sharif university of technology

November 18, 2022

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Introduction

2. Probabilistic Approach to IR

3. References

1/22

Introduction

Introduction

1. An language model is a model for how humans generate language.

2. We view the document as a generative model that generates the query.

3. What we need to do?

I Define the precise generative model we want to use.

I Estimate model parameters.

I Smooth to avoid zeros.

I Apply to query and find documents most likely to have generated the query.

I Present most likely document(s) to user.

2/22

What is a language model?

1. We can view a finite state automaton as a deterministic language model.

What is a language model?

We can view a finite state automaton as a deterministic language

model.

I wish

I wish I wish I wish I wish . . . Cannot generate: “wish I wish”

or “I wish I” Our basic model: each document was generated by a

different automaton like this except that these automata are
probabilistic.

24 / 50

2. This automaton generates documents such as I wish I wish I wish I wish

3. But it can’t generate documents such as I wish I or wish I wish.

4. Each document was generated by a different automaton like this except that

these automata are probabilistic.

3/22

A probabilistic language model

1. Consider the following probabilistic automaton.

A probabilistic language model

q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. This

is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1. STOP is not a word, but a special symbol indicating that

the automaton stops. frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048

25 / 50

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01

the 0.2 said 0.03

a 0.1 likes 0.02

frog 0.01 that 0.04

.
2. This is a one-state probabilistic finite-state automaton (a unigram language

model) and the state emission distribution for its one state q1.

3. STOP is not a word, but a special symbol indicating that the automaton

stops.

4. ”frog said that toad likes frog STOP”

P(string) = 0.01× 0.03× 0.04× 0.01× 0.02× 0.01

× 0.8× 0.8× 0.8× 0.8× 0.8× 0.2

≈ 0.0000000000048

4/22

Probabilistic Approach to IR

Unigram Language Model

1. How do we build probabilities over sequences of terms?

P(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t1t2)P(t4|t1t2t3)

2. A unigram language model throws away all conditioning context, and

estimates each term independently. As a result:

P(t1t2t3t4) = P(t1)P(t2)P(t3)P(t4)

3. A bigram language model conditions on the previous term

P(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t2)P(t4|t3)

5/22

What is a document language model?

1. A model for how an author generates a document on a particular topic.

2. The document itself is just one sample from the model (i.e., ask the author

to write the document again and he/she will invariably write something

similar, but not exactly the same).

3. A probabilistic generative model for documents.

6/22

Two Unigram Document Language Models

1. Consider two documents d1 and d2.

Language model for d1
w P(w |.) w P(w |.)
STOP .2 toad .01

the .2 said .03

a .1 likes .02

frog .01 that .04

.

Language model for d2
w P(w |.) w P(w |.)
STOP .2 toad .02

the .15 said .03

a .08 likes .02

frog .01 that .05

.

2. Consider query: q = ”frog said that toad likes frog STOP”

3. We have p(q|Md1) = 0.0000000000048

4. We have p(q|Md2) = 0.0000000000120

5. Since p(q|Md1) < p(q|Md2), hence document d2 is more relevant to the

query.

7/22

Query Likelihood Method

1. Users often pose queries by thinking of words that are likely to be in relevant

documents.

2. The query likelihood approach uses this idea as a principle for ranking

documents.

3. We construct from each document d in the collection a language model Md .

4. Given a query q, we rank documents by the likelihood of their document

models Md generating q: P(q|Md)

8/22

Query Likelihood Method

1. Each document is treated as (the basis for) a language model.

2. Given a query q

3. Rank documents based on P(d |q)

P(d |q) =
P(q|d)P(d)

P(q)

4. P(q) is the same for all documents, so we ignore it

5. P(d) is the prior – often treated as the same for all d

But we can give a higher prior to high-quality documents

6. P(q|d) is the probability of q given d .

7. For uniform prior: ranking documents according according to P(q|d) and

P(d |q) is equivalent.

9/22

Language models in IR

1. In the LM approach to IR, we attempt to model the query generation

process.

2. Then we rank documents by the probability that a query would be observed

as a random sample from the respective document model.

3. That is, we rank according to P(q|d).

4. Next: how do we compute P(q|d)?

10/22

How to compute P(q|d)

1. We will make the same conditional independence assumption as for Naive

Bayes.

P(q|Md) = P(〈t1, . . . , t|q|〉|Md) =
∏

1≤k≤|q| P(tk |Md)

(|q|: length of q; tk : the token occurring at position k in q)

2. This is equivalent to:

P(q|Md) =
∏

distinct term t ∈ q

P(t|Md)tft,q

tft,q: term frequency (#occurrences) of t in q

3. Multinomial model (omitting constant factor)

11/22

Parameter estimation

1. Missing piece: Where do the parameters P(t|Md) come from?

2. Start with maximum likelihood estimates

P̂(t|Md) =
tft,d
Ld

(Ld : length of d ; tft,d : # occurrences of t in d)

3. We have a problem with zeros, a single t with P(t|Md) = 0 will make

P(q|Md) =
∏

t P(t|Md) zero.

4. We need to smooth the estimates to avoid zeros.

12/22

Smoothing

1. Let

I Mc be the collection model;

I cft be the number of occurrences of t in the collection;

I T =
∑

t cft be the total number of tokens in the collection.

2. We can use

P̂(t|Mc) =
cft
T

3. We will use P̂(t|Mc) to smooth P(t|d) away from zero.

13/22

Jelinek-Mercer smoothing

1. We can use a mix of the probability from the document with the general

collection frequency of the word.

P(t|d) = λP(t|Md) + (1− λ)P(t|Mc)

2. High value of λ: conjunctive-like search – tends to retrieve documents

containing all query words.

3. Low value of λ: more disjunctive, suitable for long queries

4. Correctly setting λ is very important for good performance.

14/22

Jelinek-Mercer smoothing: Summary

1. Let

P(q|d) ∝ P(d)
∏

1≤k≤|q|

(λP(tk |Md) + (1− λ)P(tk |Mc))

2. What we model: The user has a document in mind and generates the query

from this document.

3. The equation represents the probability that the document that the user had

in mind was in fact this one.

15/22

Example

1. Let two documents d1 and d2 be in the collection:

I d1: Jackson was one of the most talented entertainers of all time

I d2: Michael Jackson anointed himself King of Pop

2. Query q: Michael Jackson

3. Use mixture model with λ = 1/2

I P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003

I P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

4. Ranking: d2 > d1

16/22

Dirichlet smoothing (Bayesian smoothing)

1. In Dirichlet smoothing, we use

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α

2. The background distribution P̂(t|Mc) is the prior for P̂(t|d).

3. Intuition: Before having seen any part of the document we start with the

background distribution as our estimate.

4. As we read the document and count terms we update the background

distribution.

5. The weighting factor α determines how strong an effect the prior has.

17/22

Vector space (tf-idf) vs. LM

precision significant

Rec. tf-idf LM %chg

0.0 0.7439 0.7590 +2.0

0.1 0.4521 0.4910 +8.6

0.2 0.3514 0.4045 +15.1 *

0.4 0.2093 0.2572 +22.9 *

0.6 0.1024 0.1405 +37.1 *

0.8 0.0160 0.0432 +169.6 *

1.0 0.0028 0.0050 +76.9

11-point average 0.1868 0.2233 +19.6 *

The language modeling approach always does better in these experiments. But

note that where the approach shows significant gains is at higher levels of recall.

18/22

Vector space vs BM25 vs LM

1. BM25/LM: based on probability theory

2. Vector space: based on similarity, a geometric/linear algebra notion

3. Term frequency is directly used in all three models.

I LMs: raw term frequency, BM25/Vector space: more complex

4. Length normalization

I Vector space: Cosine or pivot normalization

I LMs: probabilities are inherently length normalized

I BM25: tuning parameters for optimizing length normalization

5. idf: BM25/vector space use it directly.

6. LMs: Mixing term and collection frequencies has an effect similar to idf.

I Terms rare in the general collection, but common in some documents will

have a greater influence on the ranking.

7. Collection frequency (LMs) vs. document frequency (BM25, vector space)

19/22

Language models for IR: Assumptions

1. Simplifying assumption: Queries and documents are objects of the same

type. Not true!

I There are other LMs for IR that do not make this assumption.

I The vector space model makes the same assumption.

2. Simplifying assumption: Terms are conditionally independent.

I Again, vector space model (and Naive Bayes) make the same assumption.

3. Cleaner statement of assumptions than vector space

4. Thus, better theoretical foundation than vector space

I But “pure” LMs perform much worse than “tuned” LMs.

20/22

References

Reading

1. Chapter 12 of Information Retrieval Book2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press.

21/22

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008).

Introduction to Information Retrieval. New York, NY, USA: Cambridge

University Press.

22/22

Questions?

22/22

	Introduction
	Probabilistic Approach to IR
	References

