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Abstract. We consider the problem of computing shortest paths in
three-dimensions in the presence of a single-obstacle polyhedral terrain,
and present a new algorithm that for any p ≥ 1, computes a (c + ε)-
approximation to the Lp-shortest path above a polyhedral terrain in
O(n

ε
log n log log n) time and O(n log n) space, where n is the number

of vertices of the terrain, and c = 2(p−1)/p. This leads to a FPTAS for
the problem in L1 metric, a (

√
2 + ε)-factor approximation algorithm

in Euclidean space, and a 2-approximation algorithm in the general Lp

metric.

1 Introduction

Computing shortest paths in geometric domains is a fundamental problem in
computational geometry, having various applications in robot motion planning
and navigation systems. There is a large body of work in this area, a broad
overview of which can be found in the surveys by Mitchell [6, 7].

The problem of computing a two-dimensional shortest path among a set
of polygonal obstacles is widely studied, and there are algorithms [4] solving
the problem in the Euclidean metric (or in any Lp metric, p ≥ 1) in optimal
running time O(n log n), where n is the total number of vertices of the polygonal
obstacles. In three-dimensions, the problem of computing a shortest path among
a set of polyhedral obstacles is well-known to be NP-hard [2] even in L1 metric.
However, for several classes of obstacles, the L1-shortest path can be computed
in polynomial time. For instance, if the obstacle is a single “polyhedral terrain”
then the L1-shortest path can be computed exactly in O(n3 log n) time [8].

The first ε-approximation algorithm for the 3D Euclidean shortest path prob-
lem is given by Papadimitriou [9] with running time O(n4ε−2(N + log n

ε )2),
where n is the total number of vertices of the polyhedral obstacles, and N is the
maximum bit-length of the input integers. A different approach was taken by
Clarkson [3] resulting in an algorithm which is faster when nε3 is large. Asano
et al. [1] have slightly improved the running time of Papadimitriou’s algorithm
to O(n4ε−2 log N).

In this paper, we consider the 3D shortest path problem in the presence of
a single-obstacle polyhedral terrain, while distances are computed in general Lp

metric (p ≥ 1). The problem definition is as follows:



Problem Given an n-vertex polyhedral terrain T and two points s and t on or
above T , find the Lp-shortest path from s to t that fully stays on or above T .

Each input coordinate is assumed to be represented using a rational number
whose numerator and denominator are integers of bit-length at most N .

We present an efficient algorithm that computes a (1 + ε)-approximation to
the L1-shortest path above a polyhedral terrain in O(n

ε log n log log n) time and
O(n) space. As mentioned earlier, there is an exact algorithm for the problem in
L1 metric requiring O(n3 log n) time [8]. However, in practical applications the
input terrain is an approximation of the reality. Therefore, exact solutions are
often meaningless, and efficient approximation algorithms are usually preferred.

In general Lp metric, our algorithm computes a factor-(2(p−1)/p +ε) approxi-
mation to the Lp-shortest path above a polyhedral terrain in O(n

ε log n log log n)
time and O(n log n) space. This gives a (

√
2 + ε)-approximation algorithm for

the problem in the Euclidean space. Furthermore, by picking ε appropriately,
we will guarantee that the length of the approximate path is at most twice the
length of the optimal path in any Lp metric, p ≥ 1.

2 Preliminaries and Properties

Let T be a polyhedral terrain with n vertices, and let s and t be two points on
or above T . We assume without loss of generality that z(s) = 0 and z(t) ≥ 0.
Let πopt be the Lp-shortest path between s and t that fully stays on or above
T . We note that πopt is not necessarily unique. For a path π in the Lp metric,
the length of π denoted by ‖π‖p. Throughout this paper, we assume that p is
a fixed parameter. Therefore, we suppress p in our notations and simply write
‖π‖ instead of ‖π‖p.

Consider the plane w(h) : z = h. The intersection of T and w(h) partitions
w(h) into a free region, F(h), and an obstacle region, w(h)\F(h), as shown in
Fig. 1. (F(h) consists of those points on w(h) that lie on or above T ). We denote
by s(h) and t(h) the vertical projection of s and t on w(h), respectively. Let π̄(h)
be the Lp-shortest path from s(h) to t(h) that lies completely in F(h).

For h ≥ z(t), we construct a path from s to t above T as follows: we first move
from s along a vertical segment to s(h), then proceed from s(h) to t(h) along
the planar path π̄(h), and finally descend from t(h) along a vertical segment to
t. We call such a vertical-horizontal-vertical path a VHV-path with height h and
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Fig. 1. The intersection of terrain T and plane w(h).



denote it by π(h). Among all VHV-paths above T , we refer to the one with the
minimum Lp-length as the optimal VHV-path above T and denote it by π∗. We
note again that π∗ is not necessarily unique.

Mitchell and Sharir [8] have observed that in L1 metric, the optimal VHV-path
and the L1-shortest path above a polyhedral terrain have the same L1-length.
We can generalize this fact to any Lp metric as follows:

Observation 1 Let π∗ be the optimal VHV-path, and πopt be the Lp-shortest path
above a polyhedral terrain. Then ‖π∗‖ ≤ 2(1− 1

p )‖πopt‖.
Proof. Suppose that πopt is composed of k segments si = (ai, bi). We use xi, yi

and zi to refer to the length of the projection of si in the x-, y- and z-direction,
respectively. Let ci be the vertical projection of ai on a horizontal plane passing
through bi, and define σi = (bi, ci) and hi = (ai, ci). Then

‖σi‖+ ‖hi‖
‖si‖ =

(xp
i + yp

i )
1
p + zi

(xp
i + yp

i + zp
i )

1
p

=
ωi + zi

(ωp
i + zp

i )
1
p

where ωi = (xp
i + yp

i )1/p. The above quotient is maximized when ωi = zi, and
hence, it is at most 2ωi

p
√

2ωp
i

= 2(1− 1
p ).

Let h be the maximum z-coordinate of a point on πopt. It is clear that
‖π∗‖ ≤ ‖π(h)‖. The path πopt can be decomposed into two (possibly empty) z-
monotone subpaths π+ and π−, where π+ is ascending and π− is descending in
z-direction. Therefore,

∑
i ‖hi‖ = 2h−z(t). Furthermore, the vertical projections

of σi’s on w(h) form a path from s(h) to t(h) that completely lies in the free
region of w(h). Therefore,

∑
i ‖σi‖ ≥ π̄(h). Putting all together, we have

‖π(h)‖ = ‖π̄(h)‖+ 2h− z(t)

≤
k∑

i=1

‖σi‖+
k∑

i=1

‖hi‖ ≤ 2(1− 1
p )

k∑

i=1

‖si‖

which implies that ‖π∗‖ ≤ 2(1− 1
p )‖πopt‖. ut

By Observation 1, any algorithm that computes an ε-approximation to the
optimal VHV-path above a polyhedral terrain T , provides a factor-(2(p−1)/p + ε)
approximation to the Lp-shortest path above T in any Lp metric. The follow-
ing observation will be a main ingredient of our ε-approximation algorithm in
Section 4.

Observation 2 Let h > h′ > 0. If h− h′ ≤ ∆/2 then ‖π(h)‖ ≤ ‖π(h′)‖+ ∆.

Proof. Let L(h) = ‖π̄(h)‖. The free region of w(h), F(h), expands as h increases.
Therefore, L(h) is a decreasing function of h. It means that for h > h′, L(h) −
L(h′) ≤ 0. Using the fact that ‖π(h)‖ = L(h) + 2h− z(t) we get

‖π(h)‖ − ‖π(h′)‖ = L(h)− L(h′) + 2(h− h′)
≤ 2(h− h′) ≤ ∆. ut



3 Bounding the Length of the Optimal Path

In this section, we show how to efficiently find a crude approximation to the
optimal VHV-path, π∗, above a polyhedral terrain. More precisely, we find a real
number that approximates the length of π∗ to within a multiplicative-factor of
O(n). This crude approximation will be used in the next section to obtain an
ε-approximation to π∗.

For r > 0, let Cs(r) be a cube of side length 2r centered at s. We first prove
the following simple lemma.

Lemma 1. Given a value r > 0, we can check in O(n) time whether Cs(r)
contains a path from s to t that fully stays on or above T .

Proof. Let S be the top face of Cs(r) and w(r) be the plane containing S. To
see if Cs(r) contains a valid path from s to t, we just need to check if there is
a path connecting s(r) to t(r) in S \T . (We recall that s(r) and t(r) are the
vertical projections of s and t on w(r), respectively). The intersection of T and
w(r) forms a set of obstacles O = {O1, O2, . . .}, where each obstacle is a simple
polygon (we discard holes inside the obstacles). If T is stored in a proper data
structure like a DCEL1, we can obtain each Oi as a sorted list of its edges in
total linear time. For each obstacle Oi, we then compute S\Oi as a set of simple
polygons, and use standard point location methods to check if s(r) and t(r) lie
in the same polygon. This can be done in time linear to the size of Oi [10]. Thus,
performing the check on all obstacles can be done in O(n) overall time. ut

The next lemma provides a lower and an upper bound on the length of π∗.

Lemma 2. Let π∗ be the optimal VHV-path above T . We can find a value r such
that r ≤ ‖π∗‖ < 8nr in O(n log n) time and O(n) space.

Proof. Let r∗ be the smallest value for which Cs(r∗) contains a valid path from
s to t above T . Clearly, r∗ ≤ ‖π∗‖. If S is the top face of Cs(r∗), then there is
a path from s(r∗) to t(r∗) in S\T that consists of k segments of length at most
4r. It is easy to observe that k ≤ n − 1. Therefore, ‖π̄(r∗)‖ ≤ 4(n − 1)r∗, and
hence, ‖π∗‖ ≤ ‖π(r∗)‖ ≤ 4(n− 1)r∗ + 2r∗ < 4nr∗.

Now we show how to find a 2-approximation of r∗ in O(n log n) time. Let N
be the maximum bit-length of the integers in the input coordinates. It is clear
that r∗ ≤ 2N . Furthermore, we know that the shortest distance between any
pair of points in this setting is 2−3N (This is the distance between two parallel
planes specified with integer coefficients of bit length at most N , and thus a 3×3
determinant of such integers [9]).

For every integer i, we define ri ≡ 2i−3N−1. It is clear that rt ≤ r∗ ≤ rt+1 for
some t ∈ [0, 4N ]. We use the idea of binary search to find t using at most O(log N)
queries of the form “if Cs(ri) contains a valid path from s to t”. According to
Lemma 1, this requires O(n log N) = O(n log n) overall time. By setting r = rt,
we simply have r ≤ r∗ ≤ 2r, and hence r ≤ ‖π∗‖ < 8nr. ut
1 Doubly-Connected Edge List [10].



4 The ε-Approximation Algorithm

Let Π be the set of all VHV-paths between s and t that fully stay on or above
T . For R ≥ 0, we denote by ΠR the set of those paths in Π that lie completely
in the half-space z ≤ R. In other words, ΠR is the set of those VHV-paths whose
heights are restricted to be at most R. Let π∗R be the Lp-shortest path in ΠR.
For R < R′, we have ΠR ⊆ ΠR′ ⊆ Π. Therefore,

‖π∗R‖ ≥ ‖π∗R′‖ ≥ ‖π∗‖

where π∗ is the optimal path in Π. Furthermore, the following property holds
true:

‖π∗‖ ≤ R =⇒ ‖π∗R‖ = ‖π∗‖.
According to this property, there is a direct correlation between the search pa-
rameter R and the length of the optimal path in ΠR. It enables us to use a
pseudo approximation framework proposed by Asano et al. [1].

For ε > 0, a pseudo approximation algorithm for our problem computes a
path π(ε,R) ∈ ΠR such that

‖π(ε,R)‖ ≤ ‖π∗R‖+ εR.

The following lemma provides an efficient pseudo approximation algorithm for
our problem.

Lemma 3. For R ≥ 0 and ε > 0, there is a pseudo approximation algorithm that
computes a path π(ε,R) ∈ ΠR satisfying ‖π(ε,R)‖ ≤ ‖π∗R‖ + εR in O(n

ε log n)
time and O(n log n) space.

Proof. The algorithm is straightforward: For each 1 ≤ i ≤ d2/εe, we compute
π(hi) at heights hi = i × εR/2, and then, select the path with the minimum
Lp-length among the computed paths as π(ε,R). Let h∗ be the maximum z-
coordinate of a point on π∗R, i.e. ‖π∗R‖ = ‖π(h∗)‖. Clearly, h∗ falls in an interval
[hk−1, hk] for some 1 ≤ k ≤ d2/εe. Since hk − h∗ ≤ εR/2, Observation 2 implies
that ‖π(hk)‖ ≤ ‖π(h∗)‖+ εR and hence ‖π(ε,R)‖ ≤ ‖π∗R‖+ εR.

For the complexity, we recall that computing each π(hi) is equivalent to
constructing a planar Lp-shortest path π̄(hi), which can be accomplished in
O(n log n) time and O(n log n) space [5]. (Indeed, we need just linear space in
L1-metric [4]). Computing d2/εe such paths requires O(n

ε log n) total time. ut

We call R a low value in case ‖π(ε,R)‖ ≥ R, and a high value otherwise.
Asano et al. have proved the following nice property.

Lemma 4. [1] For α > 0, if Rl is a low value and Rh is a high value s.t.
Rh ≤ αRl, then ‖π(ε,Rh)‖ < (1 + α ε

1−ε )‖π∗‖.

By assuming α = 2 and ε ≤ 1/2, we always have αε/(1− ε) ≤ 4ε. Using
Lemma 4, one can therefore obtain a (1 + 4ε)-approximation to π∗, for any ε ≤



1/2, by simply finding a low value Rl and a high value Rh such that Rh ≤ 2Rl.
The following algorithm uses this fact to compute an ε-approximate VHV-path.

Algorithm 1 Find ε-Approximate VHV-Path

1: Find an r such that r ≤ ‖π∗‖ < 8nr (by Lemma 2)

2: Define Ri ≡ r2i, for all i ≥ 0

3: l ← 0 , h ← dlog2 ne+ 4

4: while h− l > 1 do

5: m ← d(l + h)/2e
6: if Rm ≤ ‖π(ε, Rm)‖ then l ← m else h ← m

7: Return π(ε, Rh)

Theorem 1. Algorithm 1 computes an ε-approximation to the optimal VHV-path
above a polyhedral terrain in O(n

ε log n log log n) time and O(n log n) space.

Proof. The correctness of the algorithm easily follows from the following loop
invariant: At the beginning of each iteration, Rl is a low value and Rh is a high
value. Note that before the first iteration, Rl = r ≤ ‖π∗‖ ≤ ‖π(ε,Rl)‖ and
Rh ≥ 16nr, thus ‖π(ε,Rh)‖ ≤ ‖π∗Rh

‖ + εRh = ‖π∗‖ + εRh < 8nr + 1
2Rh ≤

1
2Rh + 1

2Rh = Rh. Upon termination of the loop, we have Rh = 2Rl. Therefore,
by Lemma 4 the output is a (1+4ε)-factor approximation to π∗ for any ε ≤ 1/2,
and hence, the algorithm can be viewed as a (1 + ε′)-approximation algorithm
for any 0 < ε′ ≤ 1/8.

In each iteration of the loop, we need just one call to the pseudo approxima-
tion algorithm to verify whether Rm is a low value. The total number of calls to
the pseudo approximation algorithm is thus O(log log n). It immediately follows
from Lemma 3 that the running time of our algorithm is O(n

ε log n log log n) and
its space complexity is O(n log n). ut

By Observation 1, any ε-approximation to the optimal VHV-path immediately
gives a factor-(2(p−1)/p + ε) approximation to the Lp-shortest path above T .
Theorem 1 is therefore equivalent to the following:

Theorem 2. For any p ≥ 1, the Lp-shortest path above a polyhedral terrain can
be approximated to within a factor of 2(p−1)/p + ε using O(n

ε log n log log n) time
and O(n log n) space.

Corollary 1. For any fixed p ≥ 1, a 2-approximation to the Lp-shortest path
above a polyhedral terrain can be obtained in O(n log n log log n) time and O(n log n)
space.

Proof. It directly follows from Theorem 2 by picking ε = 1/p, and observing
that 1/p ≤ 2(1− 2−1/p) for all p ≥ 1. ut



5 Conclusions

In the real world, aircrafts flying over a terrain usually follow a simple pattern:
they first fly upwards to a certain height, then travel along a horizontal plane
at that height to a point above the target, and finally descend to the target. In
this paper, we showed how to efficiently approximate the optimal such vertical-
horizontal-vertical path to within a multiplicative factor of 1 + ε. This led to a
simple and efficient algorithm for approximating the Lp-shortest paths above a
polyhedral terrain to within a factor of 2(p−1)/p + ε.

While there are several FPTASs for approximating the Euclidean shortest
path among a set of polyhedral obstacles, none of these algorithms is specialized
for the case where the obstacle is a single polyhedral terrain. An interesting
question is whether we can exploit properties of the polyhedral terrains to obtain
more efficient FPTASs for this especial case of 3D shortest path problem. The
algorithm presented in Section 4 answers this question in affirmative for the L1

metric. For other Lp metrics (p ≥ 2) the question remains open.
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