
Process Patterns for MDA-Based Software Development

Mohsen Asadi, Naeem Esfahani, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

E-mail: mohsenasadi@mehr.sharif.edu, esfahani@ce.sharif.edu, ramsin@sharif.edu

Abstract—Information systems are expected to satisfy
increasingly ambitious requirements, while reducing
time–to–market has become a primary objective. This
trend has necessitated the advent of development
approaches that are better equipped and flexible enough
to cope with modern challenges. Model-Driven
Architecture (MDA) and Situational Method Engineering
(SME) are approaches addressing this requirement:
MDA provides promising means for automating the
software process, and revitalizes the role of modeling in
software development; SME focuses on project-specific
methodology construction, mainly through assembling
reusable method fragments (process patterns) retrieved
from a method base. We provide a set of high-level
process patterns for model-driven development which
have been derived from a study of six prominent MDA-
based methodologies, and which form the basis for a
proposed generic MDA Software Process (MDASP).
These process patterns can promote SME by providing
classes of common process components which can be used
for assembling, tailoring, and extending MDA-based
methodologies.

Keywords-Situational Method Engineering, Model-
Driven Development, Process Patterns

I. INTRODUCTION
Most software systems cannot be built from scratch

anymore, and as systems get ever more complex, reuse
is becoming increasingly important. Promoting
reusability is almost impossible without abstraction;
irrelevant details should be shaved off if reusability is to
be achieved. There are several trends that are trying to
make software engineering concepts and artifacts more
abstract, and we can clearly see the emergence of
research paradigms around these trends.

As a software engineering approach, Model-Driven
Development (MDD) is one of the results of these
trends. The main goals in MDD are portability,
interoperability, and reusability; in order to achieve
these goals, developers create and evolve the software
at different levels of abstraction – each corresponding
to a layer – while transitions between layers are meant
to be automatic. The Model-Driven Architecture
(MDA) is a particular realization of MDD, at the core
of which several standards and modeling approaches
have been introduced to enable users to create, manage

and translate the models produced [1]. However, MDA
incorporates no concrete process for software
development. Hence, developers should either adapt
existing traditional methodologies to make them
suitable for use in an MDA context, or use new
methodologies especially devised to support MDA rules
and standards. In MDA-based development, the main
model produced is a Platform Independent Model
(PIM), later transformed into one or more Platform
Specific Models (PSMs). The major benefit of this
approach is that the PIM is isolated from the platform;
abstractions are thus separated from implementations.

Another outcome of abstraction trends in software
engineering is the pattern-based approach to software
systems modeling and development [2]. Architectural-
and design patterns are particularly well-known in this
context; however, patterns have also been defined and
used in the context of software processes themselves,
giving rise to process patterns [2, 3]. Situational
Method Engineering (SME) approaches, which focus
on project-specific construction of methodologies, have
much benefited from the notion of process patterns, as
SME is mainly applied through assembling reusable
method fragments (akin to process patterns) which are
retrieved from a method base. SME thus provides a
degree of flexibility which is far superior to that
supported by heavyweight processes such as the
Rational Unified Process (RUP) [4].

Since the idea behind both MDD and the Pattern
movement is the promotion of abstraction and reuse,
extracting process patterns from MDA-based
methodologies will help achieve an even greater level
of abstraction. We provide a set of high-level process
patterns for MDA-based model-driven development,
and a generic process model for MDA-based
methodologies. The patterns have been derived from a
study of six prominent MDA-based methodologies, and
can promote situational method engineering by
providing classes of common process components.

This paper is organized as follows: The general
framework for pattern-based processes is described in
the next section; Section 3 defines the MDA Software
Process (MDASP) as an instance of the proposed
framework, specifically targeting the MDA context;
Section 4 introduces the process patterns derived from
the MDASP and six major MDA-based methodologies;

2010 Eighth ACIS International Conference on Software Engineering Research, Management and Applications

978-0-7695-4075-7/10 $26.00 © 2010 IEEE

DOI 10.1109/SERA.2010.25

204

2010 Eighth ACIS International Conference on Software Engineering Research, Management and Applications

978-0-7695-4075-7/10 $26.00 © 2010 IEEE

DOI 10.1109/SERA.2010.32

190

Section 5 shows how the MDASP corresponds to the
six methodologies used as pattern sources; Section 6
discusses the potential applications of the proposed
MDA-based process patterns, and Section 7 contains
the conclusions and some suggestions for future work.

II. A PATTERN-BASED PROCESS FRAMEWORK
Process patterns should adhere to a standard if they

are to be retrieved and reused effectively; such a
standard, however, does not exist. Some methodologies
and method composition/configuration approaches [5]
have incorporated the concept of process patterns, and
have defined a template for defining and applying them.
Gnatz et al. have focused on defining a process
framework for the definition and use of process patterns
[6]. We have refined and restructured the framework
proposed in [6] through applying the layered
architecture proposed in [2]. The resulting pattern-based
process framework (Fig. 1) has been used for
instantiating our generic MDA-based software process.

Figure 1. Pattern-based process framework

The patterns are organized in three layers [2]. In the
bottom layer, task process patterns reside, depicting the
detailed steps required to perform a specific low-level
action. A stage process pattern is composed of a
number of task process patterns. These patterns define
the steps required for completing one stage of the
process. Phase process patterns depict the interactions
occurring among constituent stage process patterns to
complete a phase of the process.

Each and every pattern has a problem description,
roles by which it is performed, and initial/result
contexts. The problem is a high level description of why
this pattern is required and what will be solved by
applying it. A role may be assigned to a person or tool
to apply a pattern. Finally, the context describes the
configuration of artifacts before and after the execution
of the pattern. In this paper, we have described all of
these elements (except for roles) for each of the patterns
introduced. Moreover, we have also listed the input and
output artifacts.

III. MDA SOFTWARE PROCESS (MDASP)
The general framework defined above has been

used in devising an MDA Software Process (MDASP).
The MDASP (Fig. 2) is a generic process model for
MDA-based methodologies. Its constituent process
patterns have been extracted through a comprehensive
study of six prominent MDA-based methodologies:
MODA-TEL [7], MASTER [8], C3 [9], ODAC [10],
DREAM [11], and DRIP-Catalyst [12].

MDASP includes three serial phases, which in turn
consist of internal iterative stages. The first phase
initiates the project and provides the resources
necessary for commencing the development. The
software is then developed and deployed into the user
environment through enacting the other two phases.
Umbrella activities are performed throughout the entire
lifecycle; we have therefore used the convention
proposed in [2] and [13] for depicting them, showing
them on an arrow spanning the whole lifecycle.

There is no similar generic process-pattern-based
software process model for the MDA context; however,
this model has been inspired by the process-pattern-
based Object-Oriented Software Process (OOSP)
proposed in [2], and the Agile Software Process (ASP)
proposed in [13]. OOSP is more general and
consequently more abstract in comparison with
MDASP: OOSP spans all object-oriented
methodologies regardless of their types [2], whereas in
MDASP, patterns are limited to those found in MDA-
based development methodologies. Therefore, MDASP
differs greatly from OOSP in structure and pattern
content. The differences mainly arise from the
principles that define MDA-based development: For
example, the automatic transformation of the PIM to
the PSM, verification/validation of models, and
automatic transformation of the PSM to code are most
meaningful in an MDA context. On the other hand,
MDASP differs from ASP [13] as to underlying
concepts: MDA and all the methodologies based on it
are model-driven, with the models being the key
artifacts of software construction, whereas ASP and
most agile methodologies are model-phobic. The
following sections provide a more detailed description
of our proposed MDA-based process patterns.

IV. MDASP PROCESS PATTERNS
In this section, the proposed process patterns are

described in detail. These patterns constitute the
MDASP, and have been classified according to the
pattern-based software development framework; i.e., as
phase-, stage-, and task process patterns.

A. Phase Process Patterns
MDASP consists of three serial phases, each of

which is a phase process pattern in its own right:

205191

Figure 2. The proposed MDA Software Process (MDASP)

Project Initiation. The main goal of this phase is to
provide a foundation for a successful software development
endeavor. It provides justification for the project, and
produces the requirements model, the required infrastructure,
an initial plan, and management documents. The constituent
stages of this phase (CIM Definition, Requirements Analysis,
Justification, Planning and Management, and Infrastructure
Setup) are performed iteratively.

Model-Based Construction. This phase produces the
software in a model-driven manner. A complete and precise
model of the structure and behavior of the system – the
Platform Independent Model (PIM) – is first created based
on the Requirements Model. The PIM is then transformed
into the Platform-Specific Model (PSM), and finally into an
executable release. The Define PIM stage creates the PIM via
applying object-oriented analysis and design techniques. The
Transformation stage checks the validity of the model
through applying model checking techniques, and then
refines the model according to the specific particulars of the
platform. The resulting PSM is consequently transformed
into code. The code thus created cannot be complete, so the
Coding and Testing stage completes the code and performs
unit testing. The Generalization stage abstracts and stores the
products for future reuse.

Deployment and Maintenance. The objectives of this
phase are to successfully deliver the developed system to the
user and to keep the system in production afterwards. The
developers need to perform Testing in the Large on the
application by using system-level testing techniques. The
application is then deployed into the user environment
through the Deploy stage. After deployment, users should be
supported through providing training, consultation, and
system Maintenance. A Postmortem review is also
conducted, through which the development process is
improved, and lessons learned from the project are
documented.

B. Stage Process Patterns
Stage process patterns comprise the bulk of phase

process patterns. The objectives of phase patterns are

realized through the interaction of their constituent stage
patterns. Most stage patterns are executed iteratively. The
stage process patterns that constitute the different phases of
MDASP are explained throughout the rest of this section.

Justify. The objective is to justify the project by

performing a feasibility study, and also to provide the
necessary resources based on the requirements, project
documents, project scope, customer viewpoints, and previous
experiences (Fig. 3). Feasibility study is performed through
analyzing the Financial, Technical, Operational, Human-
factor, and Resource-plan feasibilities of the project, each of
which corresponds to a task pattern in the Justify stage
pattern. At the end of the stage, the Garnering Initial Support
task obtains customer approval and support for starting the
project.

Define CIM. The Computation Independent Model

(CIM) is a contextual model of the problem domain, based
on which the system’s PIM is later produced. While the PIM
considers the system as a software-intensive one, CIM is not
a model of the software system, but an essential model
complementing the requirements through delineating the
scope of the system in the problem domain, based on
customer viewpoints and project descriptions. The Extract
System Objectives, Describe System Scope, Identify High
Level Services, and Identify External Users tasks are the
main activities of this stage (Fig. 4).

Figure 3. Components of Justify stage pattern

206192

Figure 4. Components of Define CIM stage pattern

Requirements Analysis. The aim of this stage is to
define the requirements model, in which each requirement
has a unique and unambiguous definition (Fig. 5).
Knowledge of existing applications, customer viewpoints,
project vision and documents, and the business case are the
inputs to this stage. To realize the aim of this stage, the
following tasks are performed: Capture User Requirements,
which elicits and documents the requirements; Refine
Requirements, which aggregates, decomposes, and alternates
the requirements; Develop Requirements Model, which uses
requirements documents to define a model of the
requirements, depicting the capabilities (functional
requirements) and the enforcers (non functional
requirements) of the system; and Requirements Prioritization
prioritizes the requirements through applying prioritization
techniques such as MoSCoW rules [14]. Requirements
documents and requirements models are produced as output.

Define Infrastructure. The define-infrastructure stage

provides the foundation (resources) necessary to complete
the project successfully (Fig. 6). The inputs to this stage
include the requirements document, business case, project
description, and experiences gained from previous projects.
The Define and Organize Initial Team task forms the
development team. It is not necessary to have a complete
team from the start, as the team can be reorganized during
the development process. The Tool Selection task identifies
the appropriate tools for developing the system. Since
development is model-driven and some tasks are to be
performed automatically, general tools (such as modeling
tools, documentation tools and project management tools)
and MDA-based tools (that perform model transformation
and code generation) are both needed. The Select Platform
and Specify Transformation Type tasks select the final
platform of the system and the type of the transformation
applied, respectively. Metadata is managed by the Metadata
Management task.

Prioritize

Requirements

Refine
Requirements

Develop
Requirements

Model

Capture User
Requirements

Knowledge of Existing
Applications, Customer

Viewpoints, Project Vision
and Documents, Business

Case

Requirements
Model and
Documents

Figure 5. Components of Requirements Analysis stage pattern

Figure 6. Components of Define Infrastructure stage pattern

The Define Methodology Conventions task is not found
in any of the existing MDA-based methodologies, yet it is
considered as an essential activity in some other types of
methodologies (such as agile methods). It has therefore been
specified as optional. The team definition, tools selection,
transformation documents, metadata documents, and
platform selection documents are produced as output.

Planning and Management. This stage produces the

initial plan of the project as well as the initial management
documents (Fig. 7). It receives the project infrastructure,
initial requirements, project objectives, and feasibility-study
results as input, and produces the project plan, risk
assessment, and initial management documents. The
Resource and Effort Estimation task produces the list of
project tasks and the resources required. The Time
Estimation task predicts the time needed for performing each
task (assumptions and constraints are also documented). The
Define Initial Management task documents all the
information needed for project management (such as the
project plan, project schedule, and communication paths).
The Risk Assessment task identifies the risks and their
priorities, and suggests strategies for mitigating them.

Define PIM. The objective of this stage is to model the

detailed structure and behavior of the system without any
consideration given to platform specifications (Fig. 8).
Furthermore, remaining requirements are discovered and the
requirements model is completed. The PIM produced is a
blueprint of the software system that shows how the system
functions. The requirements model, management documents,
and project infrastructure are the inputs to this stage. The
Develop Analysis Model task uses the requirements model to
create the internal view of the system without any
technological details, maintaining separation of concerns
between functional and non-functional aspects. The Design
Architecture task defines an architecture for the application,
and specifies the relationships between the main components
of the system.

Figure 7. Components of Planning and Management stage pattern

207193

Figure 8. Components of Define PIM stage pattern

The Develop Design Model task uses the analysis model
and architecture to create the design model by detailing the
analysis model and adding complementary parts. For each of
the models produced, repositories of reusable models
(compiled from previous projects) are examined so that
utmost reuse is made of models/frameworks. Team members
should then Achieve Agreement on the PIM produced.

Transformation. One of the main objectives of the

MDA is to maximize automatic generation of the
deliverables. To achieve this objective, it provides certain
methods for transforming abstract models to their concrete
counterparts, and ultimately, to executable code. Most of the
activities of this stage (Fig. 9) are performed through MDA
tools. Inputs to this stage are the PIM, transformation
documents, platform specifications, requirements model, and
management document, and the executable system is
produced as output. The Verification/Validation task aims at
correcting PIM errors prior to transformation into the PSM.
The Rules Modification and Extension task is where
transformation rules are changed in cases where tools do not
support the required mapping rules, or if a specific goal
requires the definition of different rules. The Transform PIM
to PSM task creates the PSM from the PIM by using tools.
Before transformation, platform particulars and
transformation rules must be set up in the tool. The PSM to
Code Transformation task produces the executable code
from the PSM. The Check Traceability task is performed
after transformation to ensure consistency between source
and target models.

Coding/Testing. The objective of this stage is to produce

the complete executable code (Fig. 10). Since current MDA
tools cannot generate complete code from the PSM, we need
to complete the generated code manually. Unit testing is
required in order to check the correctness of the code. The
inputs to this stage include the generated code, requirements
model, PIM, and PSM. The Complete Code task assigns
incomplete parts of the code to the developers.

Figure 9. Components of Transformation stage pattern

Figure 10. Components of Coding/Testing stage pattern

The developers then complete the code according to the
PIM and PSM. The code must be synchronized with the
PSM, and the PSM should be synchronized with the PIM.
The Source model and Target model Synchronization stage
propagates code changes to the PSM and PIM. We will
further explain this stage in the next section. Every coded
part must be tested after completion. These tests are not at
the system level, and typically consist of unit tests, black box
tests, regression tests, and integration tests. The tasks related
to testing include: Plan Tests, Prepare Test Model, Prepare
Test Cases and Test Scripts, Execute Tests, and Correct
Defects and Document Test Results. Automatic testing by
test tools is possible to some extent, but manual testing is
usually necessary in order to complement tool-based testing.

Source Model and Target Model Synchronization.

This stage aims at detecting and resolving the inconsistencies
between models (Fig. 11). Inconsistencies exist between the
PIM and the PSM, and also between the PSM and the code.
Round-trip engineering is an approach for maintaining
consistency between changing software artifacts. In order to
support round-trip engineering in MDA, certain tasks are
performed by the developers. This stage receives source and
destination models as input. The Define Inconsistencies task
describes consistency and inconsistency semantics in an
MDA context. The Specify Inconsistencies task detects the
inconsistencies that should be resolved. The Define Rectify
Strategy task produces strategies for rectifying the
inconsistencies. The strategies are then applied, as needed, to
produce the synchronized models as output.

Test in the Large. The objective of this stage is to

perform final system- and acceptance tests, and to act on the
defects detected (Fig. 12).

Figure 11. Components of Source Model and Target Model

Synchronization stage pattern

208194

Figure 12. Components of Test in the Large stage pattern

Testing in the large consists of testing techniques such as
function testing, system testing, user acceptance testing,
stress testing, operations testing, and alpha/beta/pilot testing
[2]. The requirements, test documents, PIM, PSM, and
generated code are the inputs to this stage.

Generalization. The generalization stage is essential to

an organization’s reuse efforts, as it forces project managers
to make time for making the artifacts reusable [2].
Reusability in MDA is manifest in the remapping of the PIM
to different PSMs. Another essential type of reusability is the
reuse of existing model components to create the PIM and
PSM; this type of reusability is not directly addressed by
MDA, and is deferred to methodologies instead. The
generalization stage aims at making the models (including
the code) reusable, so that they can be used either in the
current project or in future projects. The work products
created during previous stages are received as input (Fig.
13). The Identify Reusable Work Product task finds the
potentially reusable artifacts, the Make Work Product
Reusable task performs abstraction through holding
generalization sessions, and the Document and Store
Reusable Work Product task tags the reusable components
and stores them in repositories for future reuse.

Postmortem Review. This stage receives the

management document, project plan and infrastructure as
input, analyzes the outcome of the project, and documents
the lessons learned for use in future projects (Fig. 14).
Incomplete documents created during the development
process are completed by the Project Documentation
Completion task. Initial estimates are then compared to the
actual values in the current state of the project, and the
methods practiced in the project are analyzed. Team
members are assessed and rewarded appropriately. A
training plan is outlined to address skill deficiencies in the
development team(s).

Figure 13. Components of Generalization stage pattern

Figure 14. Components of Postmortem Review stage pattern

Deployment. This stage aims to deliver the developed
system to the end user. It receives the final system and
project documents as input, and through applying the
Prepare User Documents and Train Users, Set Up the User
Environment, and Transition to User Environment tasks,
delivers the system to the end user (Fig. 15). This stage must
be performed with strict attention to the constraints
delineated in the project infrastructure.

Maintenance. The objective of this stage is to keep the

system in production after deployment (Fig. 16). Users are
supported through the Support task. Correction and
enhancement is handled by the Identify Defect and
Enhancement task. Evaluate Functionality checks whether
the system satisfies the requirements.

V. REALIZATION OF THE PROPOSED PROCESS PATTERNS
IN MDA-BASED METHODOLOGIES

In order to verify MDASP, we have studied the mutual
correspondence between the generic process and the MDA-
based methodologies used as resources.

Table 1 shows how the phases of the six MDA-based
methodologies correspond to (realize) the proposed phase-
and stage process patterns. The realization table shows that
the proposed process patterns do indeed cover the
methodologies used as the bases.

VI. APPLICATIONS OF THE PROPOSED MDA PROCESS
PATTERNS

Situational Method Engineering is concerned with the
construction/adaptation of a methodology according to the
characteristics of the project situation at hand [10]. Two
well-known approaches of SME are assembly-based and
paradigm-based [5]. The assembly-based approach
constructs the target methodology or enhances an existing
methodology through reusing process components. The
paradigm-based approach instantiates, abstracts or adapts an
existing meta-model to produce the target methodology.

Figure 15. Components of Deployment stage pattern

209195

Figure 16. Components of Maintenance stage pattern

As mentioned earlier, the process patterns proposed
herein can be used as process components in the assembly-
based approach of SME. MDA-based methodologies can

thus be constructed through assembling these components
based on given organizational settings or the characteristics
of the project at hand. Furthermore, the paradigm-based
approach of SME can use MDASP as a metamodel to
instantiate and adapt process- and product models. Processes
can thus be built by using a predefined instantiation and
assembly procedure using the proposed metamodel and
patterns. This approach is very similar to that of OPEN/OPF
[15] and Rational Method Composer (RMC) [16].

TABLE I. REALIZATION OF THE PROPOSED PROCESS PATTERNS IN MAJOR MDA-BASED METHODOLOGIES

Methodology Phases Corresponding stage process patterns

MODA-TEL

Project management phase Justify, Planning and Management
Preliminary preparation phase Define Infrastructure
Detailed preparation phase Define Infrastructure
Infrastructure setup phase Define Infrastructure

Execution phase
Requirements Analysis, Define PIM, Transformation,
Coding/Testing, Test in the Large, Deployment,
Maintenance

MASTER

Capture user requirements phase Requirements Analysis
PIM context definition phase Define CIM
PIM requirements specification phase Requirements Analysis
PIM analysis phase Define PIM
Design phase Define PIM, Transformation
Coding and integration phase Coding/Testing
Test phase Coding/Testing, Test in the Large
Deployment phase Deployment

C3

Standardization phase Generalization
Software development phase Define PIM
Model design phase Define PIM
Code generation Transformation, Coding/Testing
Application deployment phase Deployment

ODAC
Analysis phase Define PIM
Design phase Transformation
Implementation phase Transformation, Coding/Test, Test in the Large

DREAM

Domain analysis phase Requirements Analysis
Product line scoping phase Requirements Analysis
Framework modeling phase Define PIM
Application requirements Requirements Analysis
Application-specific design phase Define PIM
Framework instantiation phase Define PIM, Transformation
Model integration phase Define PIM, Transformation
Application detailed design Transformation
Application implementation phase Transformation, Coding/Testing

DRIP-Catalyst

Problem to solution transition phase Define PIM
Platform-independent architectural design phase Define PIM
Platform-independent detailed design phase Define PIM
Formal verification phase Transformation
PIM to PSM transition phase Transformation
PSM to code phase Transformation
Completion phase Coding/Testing
Deployment phase Test in the Large, Deployment

210196

VII. CONCLUSIONS AND FUTURE WORK
We have introduced a set of process patterns and a

generic process model for MDA-based software
development. The generic process model organizes and
structures the patterns in a cohesive lifecycle. The patterns
were identified through top-down refinement of the generic
process and the study of six well-known MDA-based
methodologies. We have shown that the proposed process
patterns fully cover the six methodologies used as pattern
sources. The resulting patterns can be used in method
engineering to build a bespoke MDA-based methodology or
to adapt an existing software process to MDA standards.

The research can be furthered in several directions. The
finer-grained task process patterns have not been thoroughly
covered; a more in-depth analysis is required for providing
comprehensive coverage of the task patterns. Due to the lack
of sources of process patterns for MDA-based umbrella
activities, they have not been addressed in this research;
focus can be shifted to heavyweight methodologies and other
MDD approaches as sources of insight into umbrella process
patterns. A similar research is being conducted on embedded
real-time methodologies. The ultimate goal is to exploit the
similarities between embedded real-time and MDA-based
processes in order to explore the existence of patterns in
hardware-software co-design.

REFERENCES
[1] J. Miller, and J. Mukerji, MDA Guide Version 1.0.1, Object

Management Group (OMG), 2003.
[2] S.W. Ambler, Process Patterns: Building Large-Scale Systems Using

Object Technology, Cambridge University Press, 1998.
[3] R. Ramsin, and R.F. Paige, “Process-centered review of object

oriented software development methodologies,” ACM Computing
Surveys, vol. 40, no. 1, 2008, pp. 1-89, doi:
10.1145/1322432.1322435.

[4] P. Kruchten, The Rational Unified Process: An Introduction,
Addison-Wesley, 2000.

[5] J. Ralyté, R. Deneckère, and C. Rolland, “Towards a generic model
for situational method engineering,” Lecture Notes in Computer
Science, vol. 2681, 2003, pp. 95–110, doi: 10.1007/3-540-45017-3.

[6] M. Gnatz, F. Marschall, G. Popp, A. Rausch, and W. Schwerin,
“Towards a living software development process based on process
patterns,” Lecture Notes in Computer Science, vol. 2077, 2001, pp.
182–202, doi: 10.1007/3-540-45752-6.

[7] A. Gavras, M. Belaunde, L.F. Pires, and J.P. Almeida, “Towards an
MDA-based development methodology,” Lecture Notes in Computer
Science, vol. 3047, 2004, pp. 230–240, doi: 10.1007/b97879.

[8] X. Larrucea, A.B.G. Dıez, and J.X. Mansell, “Practical model driven
development process,” Proc. Second European Workshop on Model
Driven Architecture, 2004, doi: 10.1.1.95.5229.

[9] T. Hildenbrand and A. Korthaus, “A model-driven approach to
business software engineering,” Proc. Eighth World Multi-
Conference on Systemics, Cybernetics and Informatics, 2004, pp. 18–
21, doi: 10.1.1.84.8505.

[10] M.P. Gervais, “ODAC: An agent-oriented methodology based on
ODP,” Autonomous Agents and Multi-Agent Systems, vol. 7, no. 3,
2003, pp. 199–228, doi: 10.1023/A:1024797300606.

[11] S.D. Kim, H.G. Min, J.S. Her, and S.H. Chang, “DREAM: A
practical product line engineering using model driven architecture,”
Proc. Third International Conference on Information Technology and
Applications, 2005, pp. 70–75, doi: 10.1109/ICITA.2005.118.

[12] N. Guelfi, R. Razavi, A. Romanovsky, and S. Vandenberg, “DRIP
Catalyst: an MDE/MDA method for fault-tolerant distributed
software families development,” Proc. OOPSLA & GPCE Workshop
on Best Practices for Model Driven Development, 2004.

[13] S. Tasharofi, and R. Ramsin, “Process patterns for agile
methodologies,” International Federation for Information Processing-
IFIP, Vol. 244, 2007, pp. 222-237, doi: 10.1007/978-0-387-73947-2.

[14] DSDM Consortium, and J. Stapleton, DSDM: Business-Focused
Development, 2nd ed., Addison-Wesley, 2003.

[15] D. Firesmith, and B. Henderson-Sellers, The OPEN Process
Framework: An Introduction, Addison-Wesley, 2001.

[16] P. Kroll, “Introducing IBM Rational Method Composer,” Nov. 2005,
published on the Web at: http://www-
128.ibm.com/developerworks/rational/library/nov05/kroll.

211197

