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Although fluctuations in the waiting time series have been studied for a long time, some important issues
such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained
unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations
with Hurst exponents belonging to the interval 1/2 < H < 1. We also study positive-negative level asymmetry
of the waiting time distribution. We find that the logarithmic difference of waiting times series has a short-range
correlation, and then we study its stochastic nature using the Markovian method and determine the corresponding
Kramers-Moyal coefficients. As an example, we analyze the velocity fluctuations in high Reynolds number
turbulence and determine the level dependence of Markov time scales, as well as the drift and diffusion coefficients.
We show that the waiting time distributions exhibit power law tails, and we were able to model the distribution

with a continuous time random walk.
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I. INTRODUCTION

Stochastic processes occur in many phenomena, ranging
from various indicators of economic activities in the stock
market to velocity fluctuations in turbulent flows and heartbeat
dynamics, etc. [1]. There are several advanced methods
to analyze such time series. The well-known methods are,
for instance, detrended fluctuation analysis [2], detrended
moving average [3], wavelet transform modulus maxima [4],
rescaled range analysis [5], scaled windowed variance [6],
Markovian method [7], detrended cross-correlation analysis
[8], multifactor analysis of multiscaling [9], inverse statistics
[10], etc. (see Refs. [1,7,11,12] for other methods).

Probability density function (PDF) of the first-passage
times or waiting times (WT) has been studied extensively in
the literature and has been used in the different fields such
as physics, economic, biology, etc. For instance, knowing
the mean first passage time is important in the study of
the transport of biological molecules, such as DNA, RNA,
and proteins, across nanoporous membranes, which is of
fundamental importance to life processes. This transport is
known as the translocation process [13,14]. The translocation
and its distribution is important in gene therapy [15], drug
delivery [16], and rapid DNA sequencing [17]. Another
important application of the WT is in market risk analysis [18]
(see also Refs. [19-21] for other applications).

Here we concentrate on the inverse statistic analysis and the
Markovin method. In the inverse statistics we are interested in
studying the waiting time distributions for different increment
levels [22-26]. One of the main findings of inverse statistics in
financial markets is discovery of asymmetry between the most
likely time to profit and to loss. This gain-loss asymmetry is
revealed by inverse statistics and closely related to empirically
finding first passage time. Indeed, for financial indices it was
found that while the maximum of the inverse statistics for a
given positive return occurs at a specific time, the maximum
of the inverse statistics for the same negative return appears
much earlier [27-30].
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In practice, the inverse statistics provide the distribution of
waiting times needed to achieve a predefined increment level
obtained from every time series. This distribution typically
goes through a maximum at a time called the optimal time
scale, which is the most likely waiting time for obtaining a
given level.

Although the fluctuations in WT series have been known
for a long time, however, some important issues, such as
its long-range memory, its stochastic features have so far
remained unstudied. To investigate its long-range memory
we use the standard power spectrum or detrended fluctuation
analysis (DFA) of WT series and study its exponents to detect
the short- or long-range memory [2].

We would also like to address a question that for given
fluctuating sequentially measured set of WT series, how does
one find its dynamical equation, assess their underlying trends,
and discover the characteristics of the fluctuations that generate
the measured WT series in the statistical sense?

To answer this question we study the stochastic nature of
WT series using the Markovian method [7]. The Markovian
method is a robust statistical method which has been developed
to explore an effective equation that can reproduce stochastic
data with an accuracy comparable to the measured one
[7,31-40]. As many early researchers have confirmed, one
may utilize it to (1) reconstruct the original process with
similar statistical properties and (2) understand the nature and
properties of the stochastic process.

One of the main tasks in this paper is to quantify most
relevant statistical properties such as characteristic time scales
of series, drift, and diffusion coefficients. Here we use the
Markovian method to analyze the WT fluctuations for high
Reynolds number turbulence time series. Using this method
we find the level dependence of Markov time scales, drift,
and diffusion coefficients of process. We show that the “log
returns” (logarithmic differences) of the WT series have short-
range correlation and can be modeled by a Langevin dynamics
with multiplicative noise. By fitting the observational data we
have succeeded in finding the different Kramers-Moyal (KM)
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coefficients D™ and have shown that the fourth-order coeffi-
cient tends to zero, whereas the first and second coefficients
have well-defined limits. Then by addressing the implications
dictated by theorem (Pawula theorem) we find a Fokker-Planck
evolution operator. The Fokker-Planck description of proba-
bility measure is equivalent with the Langevin description of
log-returns WT series.

The rest of this paper is organized as follows: In Sec. II we
give a short review of inverse statistics and show that the WT
series has long-range correlation for turbulence time series.
We show that the WT distributions exhibit power law tails
and model the distribution with continuous time random walk.
In Sec. III we analyze the WT series using the Markovian
method and find the Kramers-Moyal coefficients. Section IV
closes with a discussion and conclusion of the present results.

II. LONG-RANGE CORRELATION
IN “WAITING TIME” SERIES

Understanding intermittency effects in some stochas-
tic processes and the associated multiscaling spectrum of
exponents is one of the important problems in time series
analysis. For a given process x(¢), the traditional way of
describing the intermittency is to consider the scaling behavior
of increments Ax = x(f + t) — x(¢) between two points of
the time series, raise this difference to the moment g, and
then study the variation with respect to the distance between
the two points, also called structure functions, where the
corresponding scaling exponents are called structure function
exponents.

In inverse statistics it is proposed to invert the structure
function equation, and consider instead averaged moments
of the distance between two points, given a x(¢) difference
between those points:

([AX(D1Y) ~ |t]% — ([t(Ax)]Y) ~ |Ax|™. (1)

For monofractal (nonintermittent or linear) time series one
expects a trivial set of exponent §,, where the variation with
the moment g is determined by one exponent. In the case
of intermittent and singular data this would be completely
different and §, will be nonlinear function of ¢. To demonstrate
the method we use the data for velocity time series in free-jet
turbulence with helium gas at 4.2 K (with Reynolds number
Re ~~ 800 000 and about 10% data points).

Let us first study the memory in the WT series. Here we
report that the WT series for a given increment level have
long-range correlation with Hurst exponents 1/2 < H < 1.
Consider a given level y, i.e., y = v(t + 7) — v(t), where
v(?) is the velocity time series of turbulence. Now construct
the series ® = {11,15, ...}, where 7; are the waiting times
to observe the level y and are in the units of data lag. The
® series are an implicit function of the level y. We use the
DFA method to extract the scaling exponent of the WT series
fluctuations [2].

In Figs. 1 and 2 the WT series and its corresponding log
returns for level 0.50 (where o is the variance of original
velocity time series) are plotted. For the © series, we find that
the Hurst exponent depends on y and has values belonging
to interval 1/2 < H < 1. For instance, for the negative levels
—0.50,—1.50,—-2.50,—3.50, and —4.50, the obtained Hurst
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FIG. 1. Waiting time series for the level y = 0.50. The units are
in lag and n is the number of data for 7.

exponents are 0.74, 0.77, 0.81, 0.84, and 0.91, respectively.
The error bars are about £0.02. For the positive levels 0.5a,
1.50, 2.50, 3.50, and 4.50, we found the Hurst exponents
to be 0.64, 0.64, 0.65, 0.68, and 0.71, respectively. This
analysis shows that the WT series for negative increments has
longer memory with respect to those with positive values, and
this analysis shows that WT series has long-range correlation
function for both positive and negative levels.

The probability distribution function (PDF) of the ® series
for different levels is given in Fig. 3 and can be modeled with

a generalized y function as [22]
B> \"
_ , 2
exp { (T T 2

v B>
C(a/v) |t + Tol*H!

where «, v, 8, and T are constants which are depend on the
level y. In Fig. 3 we provide the fitting parameter § = o + 1
for T > Tj and obtain the exponent to be § = 1.5 £ 0.1. The
exponent is almost independent of the level y. It appears that
the waiting times PDFs have a fat right tail with power-law
behavior in the interval with about two orders of magnitude.
Also as shown in Fig. 3 the PDF tails for positive and negative
levels are almost the same (considering their error bars).

We observe that the optimum time scale for small positive
and negative levels such as +0.50 and £1o coincides with
each others, whereas for the large levels such as 40 the
maximum of negative level occurs earlier than positive level.
This phenomenon is similar to the gain-loss asymmetry in
financial time series. Physically it stems from the fact that in
turbulence the third order moment of increments (longitudinal)
is negative, ((A,v)?) < 0, which means that for given length
scale r, the number of events with negative increments
are more popular than positive values. Therefore in inverse

P(z,y) =

0 20 40 60 80  100x10°

n

FIG. 2. Log returns of the waiting time series for level y = 0.50,
ie., x, = log(t,+1/T)-
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FIG. 3. (Color online) The probability distribution P(r) of
waiting time t needed to reach levels y = £0.50, £10, and +20.
Solid line is the fitted curve based on Eq. (2).

statistics as well a population for negative increment levels
will be more popular, and then their maximum in a PDF occurs
earlier. In Fig. 4 we plot the PDF of WT series for levels £4.5¢0,
and it is evident that the maximum of the PDF for a negative
level is about 200 data points earlier than those for the positive
level.

The WT series also can be modeled by the continuous time
random walk (CTRW) [43—47]. In this approach the survival
time probability distribution ¥ (7) [which has the relation with
P(t,y) as P(t,y) = —dy¥/(t)/dt] can be shown to behave as

¥ (7) = Eg(—1P), 3)

where E ﬁ(—tﬂ ) is the Mittag-Leffler function of order § and
0 < B < 1. The Mittag-Leffler function has asymptotic in the
limit T — oo: ¥ (1) ~ sin(Bm) /7 T'(B)/7~.

Therefore the waiting time PDF, P(t,y), behaves as

N sin(Br) (B + 1)
T B+l

P(z,y) 4)
The WT PDF is well fitted by a power law function having an
exponent 8 = 0.5; see Ref. [48] for more details.

III. MARKOV ANALYSIS OF THE
“WAITING TIMES” SERIES

To obtain short-range correlated data from © series,
we define logarithmic returns (log returns) series as x; =
log (t;+1/7:). We found that for given level y the log-return
series has short-range correlation, therefore it appears that can
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FIG. 4. (Color online) The probability distribution function P(t)
of waiting time t needed to reach levels y = +4.50. The maximum
of the PDF for the negative level occurs earlier than the positive level.
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FIG. 5. (Color online) The probability distribution P(x) of a log-
return waiting times series for the levels y = £0.5¢0, £10, +20, and
+4.50. The orange curve is a Gaussian PDF with variance 2 and is
plotted for comparison.

be modeled by a Langevin equation [7]. It was straightforward
to show, using three different methods, that the resulting series
x; are also stationary. (1) We computed the averages and
variances of the series x; in moving windows of increasing
sizes to check that they are essentially invariant. (2) We
computed the spectral densities S(w) of the series x;. The
result, S(w) ~ w? with 8 ~ 0, indicated the absence of long-
range correlations in x;. (3) We also analyzed the series x;
using the detrended fluctuation analysis [2] to further check
that the series x; are stationary. Thus, the series x; are, at least
to a good degree of approximation, stationary. The log return
of WT series, depicted in Fig. 1, is plotted in Fig. 2. The PDF of
the WT log returns for different levels y are plotted in Fig. 5.
The PDFs are positive skewed and have fat right tail (with
respect to the Gaussian PDF) structure. This means that with
high probability the waiting time t;; is greater than t;. The
variance X and skewness S of log returns for different levels
y are given in Table L.

Since long-range, nondecaying correlations are absent in
x(t), but short-range decaying correlations do usually exist,
we first check whether the data follow a Markov chain [7]. If
so, we measure the Markov time scale ¢);, the minimum time
interval over which the data can be considered as a Markov
process.

Let us review the steps that lead to the development of a
stochastic equation, based on the (stochastic WT) data set,
which is then utilized to reconstruct the original data, as well
as an equation that describes the phenomenon [7].

(1) As the first step we check whether the data follow a
Markov chain and, if so, estimate the Markov time scale (MTS)

TABLE 1. The variance ¥, maximum of x;, and skewness S of
log returns for different levels y.

Level y[o] Variance X Skewness S Max(|x;|)
-0.5 1.60 0.73 ~13
0.5 1.62 0.67 ~12
-1 1.23 1.12 ~11
1 1.21 1.12 ~11
-2 0.86 1.66 ~10
2 0.86 1.58 ~9
—4.5 0.58 2.68 ~11
4.5 0.59 2.44 ~9
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(here Markov number) n,,. The MTS is the minimum time Therefore a process is Markov if Eq. (5) is satis-
interval over which the data can be considered as a Markov fied for a certain time separation, with the nj being
process. There are several method to estimate the MTS [7]. ny =n3z —ny. To measure the ny, we have the fol-
The simplest way to estimate n,, for a stationary process is to lowing relation for any three-point PDF in terms of
use the least square method. For a Markov process one has conditional probability functions: P(x3,n3;X2,12;X1,11) =
P(x3,n3|x2,n2; x1,n1) P(x2,n2; x1,n1). Using the Markov pro-

P(x3,n3|x2,n2;x1,n1) = P(x3,n3|x2,12), (5)  cesses properties we obtain Puarkov(X3,73; X2,12; X1,11) =

P(x3,n3]|x2,n2) P(x2,n2; x1,n1). So we can compute the de-
where x; and ny are the kth WT log return and its number in ~ Vviations of Pyjaroy from a three-point joint PDF, using the
the series, respectively. least square method:

[P(x3,13; X2,12; X1,11) — Puarkov(X3,13; X2,125 X1,11)]?

2 2
o°+ OMarkov

X2 = /d)C3 dx, dx; , (6)

where 0% + 0,,,, are the variance of the terms in the drift term and D® as a diffusion term which represents
nominator. Take n; = 0 and n, = 2n3, then plot the reduced the stochastic part. The Fokker-Planck equation describes

X% x2= xﬁz (N is the number of degrees of freedom), as a  the evolution of probability density function of a stochastic

function of time scale n, — ny. The n,, is that value of n3 — n; proc§s§ generated by the Langevin equation (we use the Itd’s
at which 2 is minimum. definition) [41]
(2) Deriving an effective stochastic equation that describes
the fluctuations of the quantity x(n) constitutes the second ad
step. R —x(m) = DVGe.m) +v/ DO fw). (1)

The Markovian nature of the log returns of WT fluctuations
enables us to derive a Fokker-Planck equation (a truncated  Here n is the data point number in log-return time series and
Kramers-Moyal equation) for the evolution of the PDF p(x,n), derivative with respect to n means x(n + 1) — x(n). Also f(n)
in terms of number n. The Chapman-Kolmogorov (CK)  isarandom force, §-correlated white noise in n with zero mean
equation, formulated in differential form, yields the following and Gaussian distribution, (f(n) f(1n')) = 28,
Kramers-Moyal (KM) expansion [41]: Using Egs. (8) and (9), for collected data sets, we calculate
drift, DV, and diffusion, D®, coefficients, shown in Figs. 6

o0
Bip(x’n) — Z <_i>k (DO e, m) p(e,m)], (7y and 7.1t turns out that the dri.ft cgefﬁcient l?“) is z(lz)lir}ear
n pa 0x function in x, whereas the diffusion coefficient D' is a
fourth-order polynomial. For large values of x, our estimations
where D"™(x,n) are called the Kramers-Moyal coefficients. become poor, and the uncertainty increases. To plot different
These coefficients can be estimated directly from the moments,  drift coefficients D" (and D®) for different levels in one
M™, and the conditional probability distributions as figure we normalize the x data to their maximum, i.e.,
1 x = m The values of max|x| for different levels are given
DPx,n)y=— lim M®, (8)  inTablel.
k' An—ny

We computed the fourth-order coefficient D® and found
MO — L / dx'(x' — x)*p(x’,n + An|x,1).  (9) that, D® ~ 10~2D®. Furthermore, it becomes clear that we

An are able to separate the deterministic and the noisy components

For a general stochastic process, all Kramers-Moyal
coefficients are different from zero. According to the Pawula’s
theorem, however, the Kramers-Moyal expansion stops after
the second term, provided that the fourth-order coefficient
D™ (x,n) vanishes. In that case, the Kramers-Moyal expansion
reduces to a Fokker-Planck equation (also known as the >
backwards or second Kolmogorov equation) [41] =

A

d d 9?2
— p(x,n) = { ——DW(x,n) + — DP(x,n) { p(x,n).
on ox ox2

(10)

Also the evolution equation for conditional probability density
function is given by the above equation except that p(x,n) FIG. 6. (Color online) Drift coefficient DV (x,y) for different
is replaced by p(x,n|x;,n;). Here D is known as the level y.
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FIG. 7. (Color online) Diffusion coefficient D®(x,y) for
different level y.

of the fluctuations in terms of the coefficients D"’ and D®
[33,42].

We find that the MTS ny for log returns is almost
independent from the level y and is about 10 data lag. The
analysis of the data yields the following approximates for the
drift and diffusion coefficients for x:

DY(x) = a(y)x, DP(x)=b(y)+c(y)x*+dy)x*, (12)

where coefficients a, b, ¢, and d for positive levels are
given by

a(y) = —0.003 — 0.125y + 0.095y2 — 0.028y° 4 0.004y*,
b(y) = 0.006 4+ 0.018y + 0.017y* — 0.007y* — 0.001y*,
c(y) = —0.023 — 0.031y — 0.009y% — 0.004y> + 0.002y*,
d(y) = 0.074 — 0.027y — 0.010y” 4 0.014y> — 0.003y*.
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Also the coefficients a, b, ¢, and d for negative levels are
given by

a(y) = —0.059 — 0.033y +0.045y — 0.017y° 4 0.003y*,
b(y) = —0.008 + 0.051y — 0.044y2 4 0.016y> — 0.003y*,
c(y) = 0.025 — 0.078y + 0.056y* — 0.018y> + 0.003y*,

d(y) = —0.070 + 0.285y — 0.226y> + 0.078y> — 0.012y*.

Moreover, if we analyze different parts of the time series
separately, we find (1) almost the same Markov time scale n
for different parts of the time series, but with some differences
in the numerical values of the drift and diffusion coefficients,
and (2) that the drift and diffusion coefficients for different
parts of the time series have the same functional forms, but
with different coefficients in equations.

IV. CONCLUSION

The “waiting time” series often represent nonstationary
series that are very difficult to analyze. In this paper we
analysed the log-returns of WT series using the Markovian
method. The method is based on (1) constructing a stationary
series based on the successive WT series, (2) checking whether
the new series follows the properties of a Markov process,
and (3), if so, analyzing the series based on the Markov
processes and the Kramers-Moyal expansion. In many cases,
such as the present study, the expansion terminates after the
second-order term, hence yielding a Fokker-Planck equation,
which is equivalent to a Langevin equation. We present the
results for the waiting time series in inverse statistics of high
Reylond turbulence data; however, the method is general and
applicable to a large class of nonstationary processes.
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