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Abstract

We investigate exact results of isotropic turbulence in three dimensions when the pressure gradient is negligible. We
derive exact two-point correlation functions of the density in three dimensions and show that the density-density correlator
behaves as |x; — x2|™", where a3 =2 + %\/3_3 It is shown that, in three dimensions, the energy spectrum E(k) in the
inertial range scales with exponent 2 — Tlim ~ 1.5212. We also discuss the time scale for which our exact results are valid
for strong 3D turbulence in the presence of pressure. We confirm our predictions by using the recent results of numerical
calculations and experiment. © 1998 Published by Elsevier Science B.V.

PACS: 47.27.AK; 47.27.Jv

1. Introduction

Recently, many efforts have been made towards a
non-perturbative understanding of turbulence [1-1 2].
A statistical theory of turbulence has been put forward
by Kolmogorov [13], and further developed by oth-
ers [ 15-17]. The approach is to model turbulence us-
ing stochastic partial differential equations. The sim-
plest approach to turbulence is Kolmogorov’s dimen-
sional analysis, which leads to the celebrated k=53 law
for the energy spectrum. This is obtained by decree-
ing that the energy spectrum depends neither on the
wavenumber, where most of the energy resides, nor on
the wavenumber of viscous dissipation. Kolmogorov
conjectured that the scaling exponents are universal,
independent of the statistics of large-scale fluctuation
and the mechanism of the viscous damping, when the

Reynolds number is sufficiently large. In fact the idea
of universality is based on the notion of the “inertial
subrange”. By inertial subrange we mean that for very
large values of the Reynolds number there is a wide
separation between the scale energy input L and the
typical viscous dissipation scale 7 at which viscous
friction becomes important and the energy is turned
into heat.

However, recently it has been found that there is a
relation between the probability distribution function
(PDF) of the velocity and those of the external force
[18]. This observation has been confirmed by exper-
iments [19], and numerical simulations [20].

In this direction, Polyakov [5] has recently offered
a field theoretic method to derive the probability dis-
tribution or density of states in (1 4+ 1) dimensions
in the problem of the randomly driven Burgers equa-
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tion [21]. In one dimension, turbulence without pres-
sure is described by the Burgers equation (see also
Ref. [14] concerning the relation between the Burg-
ers equation and KPZ equation). In the limit of a high
Reynolds number, using the operator product expan-
sion (OPE), Polyakov reduces the problem of compu-
tation of correlation functions in the inertial subrange,
to the solution of a certain partial differential equation
[22,23] (see also Ref. [28], about the generalization
of Polyakov’s approach) to find the probability den-
sity and scaling exponent of the moments of the “lon-
gitudinal” velocity difference in the three-dimensional
strong turbulence.

In this paper we consider three-dimensional
isotropic turbulence without pressure, which is de-
scribed by the Navier-Stokes equations, when the
pressure gradient is negligible. We derive Polyakov’s
master equations in higher dimensions and solve
them, in the three dimensions. We derive the exact
exponent of two-point density correlation functions
and the energy spectrum exponent. We also discuss
the time scale for which our exact results are valid for
strong 3D turbulence in the presence of the pressure.

2. Turbulence without pressure in three
dimensions

We consider the following quantity,

ex=p(x,t)exp[A-u(x)], (1)

where p and u are the density and the velocity satis-
fying the Navier-Stokes equations,

u,+(u-V)u=vV2u—%+f(x,t), (2)

P1+3a(Pua) =0’ (3)

where p and v are the pressure and viscosity, respec-
tively. The stirring force f(x, ) is a Gaussian random
force with the following correlation,

(f,L(x,t)f,,(x',t’))=k,“,(x—x')8(t—t’), (4)

where @, v = X1,X2, ..., XN.

We start with the situation when Vp =~ 0. This
mode has a characteristic time of T, ~ AL/C;, where
AL and C are the typical dimension of the inertial
range of the system and the velocity of sound in the

turbulent system, respectively. The existence of this
time scale means that for the times ¢ < T,, we can ig-
nore the pressure term in the Navier-Stokes equations
and therefore our results are valid only for this time
scale.

To investigate the statistical description of Egs. (2)
and (3), we consider the following two-point gener-
ating functional,

Fa(A1, Az, xp, x3)
= (p(x1)p(x2) exp[A; - u(x1) + Az - u(x2)1).
(5)

We write Egs. (2) and (3) in two points x; and x;
foruy,uy, ..., uyand p(x) and multiply the equations
in p(x2), A1y, p(x1) p(x2), ..., A1y p(x1) p(x2) and
P(x1), Ao p(X1)p(%2) .., and Az p(x1) p(%2),
respectively.

We add the equations and multiply the result to
explA; - u(x1) + Az - u(x2)], and averaging with
respect to external random force, we find

a
> i uk
{f=1,2}ﬂ=X| yees XN i

= > CiutDy (6)

{i=1,2},p=x1,... x5

5,F2+

where C; , and D, are

2. Cu

{i=1.2},/.L=x1 ..... XN

-y

{i.j=12},p.p=x1,....xN

AipAjpku(xi—x))Fy (7)

and

Dy = (vp(x1) p(x2) [ A1 - Viu(x1) + A2 - Vu(x2)]
x exp[ Ay - u(x1) + Az - u(x2)]), (8)

where we have used Novikov’s theorem. D, is known
as the anomaly term [5].

Now we consider the anomaly term in the limit of
small » or high Reynolds numbers. It is noted that
this term can not be written in terms of F,. To find
its structure we consider the symmetries of the basic
equations. The basic equations are Galilean invariant
and are also invariant under the rescaling of density as
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p — ap. On the other hand, the final expression for
D, must contain the ultraviolet finite operators Vu,
p and e**. The only finite combination satisfying the
rescaling p — ap is pe*™ (see Ref. [24] for more
detail). Therefore, D, has the following form,

D, = aF, (9)

where a is generally a function of A; and A,.

As mentioned above, we have to calculate the tran-
sient solution of Eq. (6). We find the temporal part of
F> as e~'/Tv and therefore we write Fy =¢~"/T Fy; by
substituting it into Eq. (6), one can find the following
equation for £,

{i=1.2} u=x1,....xy

-2

{i.j=1.2},pv=x1....xn

)t,',/,,/\j,,,k#,,(x,‘ —x,-)Fz = alﬁz,
(10)

where @’ = a + 1/T,.
Also in this Letter, we suppose that k,, has the
following form,

|xi — x,

212 S

kv (xi — x;) = k(0) (l -
(xi - xj)p.(xi — xj)v)

. (1

with k(0),L=1.

Now let us consider the Eq. (10) in three dimen-
sions. We change the variables as, x+ = x; & X3,
A. = A; + Ay and A_ = 1(A; — Ay) and consider
the spherical coordinates, so that x_ : (r,8,¢) and
A_: (P, 8, ¢"). Direct calculation shows that

4 5 3
- - — 7
E Waﬂi = a/\_#é?u_ = cosyérap

i=lu=x,y,z  H =X, Y.Z

sin @ cos 6’ cos(¢ — ¢') — cos@sin b’

0,39
o
sin@sin(¢ — ¢’)
———————————0,0y
+ p sin@’ e

sin @’ cos@cos(p — @’) —cos@’'sin _,

313

r

cos @ sin(@ — ¢')
———————— 090y
rp’sin @’ 8%

_ cosé'sin(e — ¢) cos(p — ¢')

398y + Doy

rp'siné rp' sin@sing’
cos@cosf cos(¢ — ¢’) + sinfsinf’
: 0
rp
sin @’ sin(¢ — ¢’
_ (¢ —¢') 34, (12)

rsiné

and

Z Ai,p.Aj,yk,u.v(xi - xj)

{i.j=1,2} . up=x,3,2
=[rPp? +2(x_ Ay + y_ Aoy + 2-A_;)?]
=r2p%(1 +2cos?y), (13)
where cosy = cos@cos @’ + sin#sind’ cos(¢ — ¢').

Now using Eqgs. (12), (13) for isotropic turbulence
we obtain

1—s2 1+ 52
(sa,a,',—s( gy L5,

rpl rpl
1 —s? 1—s? .
+ 7 8,95 + a,’,as—rzp'z(1+2s2)>ﬁz

=d (p)F, (14)

where cosy = s. The p’ dependence of the a'(p’)
anomaly must be chosen to conform to the scaling and
can be different depending on the scaling properties
of the force correlation functions. In general, in the
case of isotropic turbulence, the stirring correlation
function behaves as k,, ~ 1 — r?, where in our case
we have 57 = 2. Therefore, a’ must depend on p’ as
follows, @’ (p') = afp’’, where o= (2—7) /(1 +7).
It is evident that for our case a’ is independent of p’.
Let us consider the universal scaling invariant solution
of Eq. (33) in the following form,

B, r) =g(nFp'r®) gr)=r (15)

where 6 = %(77 + 1), and a3 is the exponent of two-
point correlation functions of density and also using
Eq. (11) we find 6 = 1.

We substitute Eq. (15) into Eq. (14), and find the
following relation for F(p'r),
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ass , ; s(1=5%) , 1+5?
( - Tap -+ Sapar — rpl ds + rp’ as
1 —s? 1-s2 1—s?
~a3———38; + ——9:9, + 859,
rp P r

—r2p%(1+ 2s2))F(p’r) =ayF(p'r), (16)

where aj = ap + 1/T, = const.

Since the two-point density correlators exist, in the
limit of p’ — 0, F(p'r) tends to a constant and thus
we have to look for the solution of F among the fam-
ily of positive, finite and normalizable solutions of
Eq. (16). On the other hand, taking the Laplace trans-
formation of the above equation, one can show that,
to consider the physical solution, so that {u(x;) —
u(x2)) = 0, we have to consider the case g = 0 or
ag = —1/T,. However, for different types of correla-
tion for the stirring force, e.g. k,, ~ 1 — r", with
n # 2, we have to include aj [23].

Now, we propose the following ansatz for F(p'r),
with z = p'r,

F(z,5) =e? /O, (17)

Using Eq. (16), we find ¥ = 3/2 and f(s) satisfy the
following equations,

25F()2H3F() F () (1= 52) + f(5) (=5 +5°)

= (1+2s%),
—s(1 =) f(s)" + [(4+a3) — (2+a3)s*1 f'(s)
+ (3 +3a3)5f(s) =0 (18a)

also from Eq. (18a), one can derive the following
initial conditions for f(s),

\/§+x/T1_

) (19)

2 '
f)= == f)
It is interesting to note that the equation for f(s)
(i.e. Eq. (18a)) is the same as equation which is found
in the instanton approach [8].
The function f(s) has the following expansion
around s = 1,

2 V3411

f(s)=7§+T
5v/33 — 61

32(3v3 - 2V11)

(s—1)+

(s—1D>+... (20)

Now using the boundary conditions on f(s) (i.e.
Eq. (19)), and positivity of the probability distribu-
tion function we find

as ~ 2.9574. (21)

_12++/33
- 6
Noting the fact that p’ has dimension —1, we can find
the following scaling relation for the density of the
energy €(x),

e(ax) = ale(x), (22)

where A=1- 1‘—2\/ 33, and therefore we can determine
the behaviour of the energy spectrum exactly as

33
/3:2-—\{—2—:1.52128. (23)

E(k) ~ k#,
This behaviour of the energy spectrum is known as
the non-Kolmogorov power law which has been ob-
served experimentally [25,27] and also in numerical
simulations [25,26].

Numerical calculations have been performed in
Refs. [25,26], where was used the Wiener-Hermit
expansion. It was shown that the energy spectrum
behaves as E(k) ~ k=152 for systems without
boundaries (i.e. free turbulence) and also for a finite
system this spectrum is not stable. In Refs. [25,26]
it has been shown that in the inertial subrange for a
finite system the energy spectrum starts with a slope
—1.521, and after a moderate time which is less than
the characteristic time 7, ~ L/uy,s (where L and tyy,
are the large scale of the system and the rms value
of the initial velocity fluctuation, respectively) the
equilibrium is attained and has transformed to —5/3.
In other words, the —5/3 law is the stable algebraic
spectrum for the Navier-Stokes equations after a time
of order 7.

The experimental results (reported by Wissler
[25,27]) show that the non-Kolmogorov spectrum
has been observed also experimentally only for mod-
erate times less than 7;. It is noted that in general
for a turbulent flow um,s < C; and therefore the pres-
sure time scale has the property that 7, < T¢. Also
an energy spectrum with smaller exponents than the
Komogorov ones has been observed in real-life exper-
iments when the Reynolds number is not sufficiently
large enough. The value of ag (which is proportional
to the inverse of the Reynolds number) shows that
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one can interpret our short-time asymptotic also with
these experiments ! . In this paper the question of un-
der what condition an equilibrium is attained (after
the moderate time) remains open, though judged by
experiments and numerical calculations.

Finally we can derive the PDF for the velocity dif-
ference and show that it tails as e~ in the limit
|u| — +oo, which is in agreement with other ap-
proaches [ 18] for three-dimensional turbulence.
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