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Abstract. Using the cross-correlation of the wavelet transformation, we
propose a general method of studying the scale dependence of the direction of
coupling for coupled time series. The method is first demonstrated by applying
it to coupled van der Pol forced oscillators and coupled nonlinear stochastic
equations. We then apply the method to the analysis of the log-return time series
of the stock values of the IBM and General Electric (GE) companies. Our analysis
indicates that, on average, IBM stocks react earlier to possible common sector
price movements than those of GE.
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1. Introduction

Large interacting systems are abundant in Nature and society and have been studied for
a long time [1]. They vary anywhere from hydrology, ecology, and biological systems to
traffic flow, stock markets, and spatial distributions of unemployed people. The key to
understanding such a wide variety of systems and phenomena is a simple fact: an effect is
preceded by a cause. Hence, one must develop the ability for distinguishing the cause—the
driver—from the effect—the recipient—which would then make it possible to estimate the
direction along which information flows, or the direction of causal influence. If the system
is such that one cannot interfere in it, then the fact that the cause precedes the effect
implies that it contains information about the effect’s or the recipient’s future that is not
contained in its past, whereas the opposite is not true. Such a simple observation was in
fact the basis for the Granger causality [2], one of the best known methods of determining
the direction of causal influence in the analysis of time series. Although the Granger
causality was originally developed for econometric analysis, it has since been applied to a
wide variety of problems in physics, geoscience and social sciences, and biology [3]–[6].

There are already many methods for uncovering causal influences between two
processes. They include, in addition to the Granger causality [2, 7], information-theoretic
characteristics [8]–[11], state-space [12]–[14] and double-wavelet [15, 16] analyses, and
modelling of phase dynamics [17]–[19]. The last approach is based on concepts from
the nonlinear theory of oscillations, and is perhaps one of the most sensitive methods
currently available for analysing nonlinear systems that are endowed with a relatively
stable oscillation period [20, 21]. Tokuda et al [22] and Timme [23] proposed estimators of
couplings in ensembles of oscillators based on phase dynamics modelling, which formulate
and solve the problem for deterministic processes. In the former case the estimators are
computed on the basis of a single time series, but the coupling architecture must be
simple and known a priori, while at the same time the generalization of the method to
systems with a large number of quantities to be estimated is very difficult. The approach
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of Timme [23] requires close individual frequencies of the oscillators, in order to be able
to manipulate them. The coupling strengths are determined from a set of time series that
correspond to different, strictly synchronized regimes [24, 25]. Other approaches include
those that use the multidimensional Langevin dynamics [26] to investigate which time
series drives the other, the permutation information approach [27] and the phase-slope
index method [28].

In this paper we introduce a robust method for studying the timescale dependence of
the correlation and directional relationships between two time series. The method, which
is based on using the wavelet transformation (WT) of the time series, can detect the
driving source at any given timescale or frequency. The main advantage of the method
is that it detects the directionality in each timescale, whereas other methods provide
information only for the entire time series. The method is demonstrated by first analysing
a pair of coupled van der Pol (VDP) forced oscillators and coupled nonlinear stochastic
equations. We then apply the method to high frequency log-return time series of the IBM
and General Electric (GE) companies, representing the product of the stock values and
their volumes. In this case the method provides a simple explanation as to why the stocks
react to a common sector price movements with different delays.

The rest of the paper is organized as follows. In section 2 the proposed method is
described in detail. Its demonstration for coupled nonlinear oscillators, for which we
already know the result, is presented in section 3. Next, coupled nonlinear stochastic
equations are analysed in section 4. We then apply the method to the coupling of time
series of two companies, namely, IBM and GE, which also demonstrates why one stock may
react to a common factor faster or slower than the other one. The paper is summarized
in section 6.

2. The method

As the first step we compute the WTs WX(a, t) of the two time series, say A and B. The
WT of a time series X is defined by

WX(a, t) =
1√
a

∫ ∞
−∞

X(u)Ψ∗
(
u− t
a

)
du. (1)

Here, Ψ is the mother wavelet for the wavelets that should be soliton-like with zero
mean, and ∗ indicates a complex conjugate. We use the Morlet function, Ψ(u) =
π−1/4 exp(2iπf0u) exp(−u2/2) as the mother wavelet, where f0 is a constant. WX(a, t)
is usually referred to as the wavelet detail coefficient in which a is a timescale parameter.
The coefficients WX(a, t) are complex-valued and have amplitude WX = |WX(a, t)|
and a scale–time dependent phase φ(a, t). The probability distribution function (PDF)
of the WT coefficients, P (WX(a, t)), depends on the amplitude WX and phase φ,
i.e. P (WX(a, t),W∗X(a, t)) dWX dW∗X = P (WX , φ; a, t) dWX dφ. Integration over the phase
φ yields the PDF for the amplitudes WX , and the same holds for the PDF of the phase.
The explicit form of the PDF for WX with Gaussian-distributed real and imaginary parts
of WX(a, t) is given in [29].
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Next, we define the correlation functions of WX(a, t) for two time series A and B as

〈WA(a = 1/f, t− τ)W∗B(a = 1/f, t)〉
〈WA(a = 1/f, t− τ)WB(a = 1/f, t) exp(φA(a, t− τ)− φB(a, t))〉 (2)

where 〈· · ·〉 denotes the ensemble averaging. This is the two-point correlation function
of four fields, WA, WB, φA and φB, and it is, in general, difficult to delineate how the
correlation function depends on the four fields. Therefore, we define correlation functions
for the WT amplitudes and the averaged phase differences by

C1(τ) = 〈WA(a = 1/f, t− τ)WB(a = 1/f, t)〉 (3)

and

C2(τ) = 〈|φA(a, t− τ)− φB(a, t)|〉 (4)

The PDF in averaging C1(τ) is determined from the joint PDF of WX(a, t)s by
integrating over φ1 and φ2, which gives us the joint PDF for WXs, i.e. P (WA,WB; a, t).
The correlation function C1(τ) measures the intensity of the correlation of two time series
at scale a, which may have a maximum in some lag τ . The statistical averaging of the
phase difference, i.e. C2(τ), provides information about the time lag over which the two
series are synchronized. If the phase shift is constant, then the systems are synchronized.
The in-phase state then corresponds to 0 phase shift, and anti-phase to phase shift π.

We say that series A has correlation with series B over timescale a (or frequency
f = 1/a) if the calculated cross-correlation coefficients of the absolute values of the WTs
of A and B series over the timescale a have a well-defined maximum at some finite lag τ .
For positive τ the time series A is ahead of the time series B and vice versa. In general,
the time lag τ is a function of the timescale a. Here, the values of the cross-correlation
function for a given τ are determined with a 1σ confidence level.

3. Application to coupled nonlinear oscillators

To demonstrate the utility of the method, let us analyse two coupled forced nonlinear
oscillators, a subject of much recent interest [30]–[32], due to their importance to the
modelling of a variety of phenomena and processes. Of these, the classical self-sustained
VDP oscillator is a paradigm for oscillating limit cycles or relaxation oscillations. Thus, we
first demonstrate the method’s utility by investigating directionality in a pair of coupled
VDP forced oscillators, for which we know the result. The coupled VDP forced oscillators
are given by

ẍ1 − µ(1− x2
1)ẋ1 + ω1x1 + ε1x2 = η1(t),

ẍ2 − µ(1− x2
2)ẋ2 + ω2x2 + ε2x1(t− t0) = η2(t).

(5)

At first, we set ω1 = 1, ω2 = 10, µ = 1, t0 = 0 and consider mutually independent noises,
〈ηi(t)ηj(t

′)〉 = σ2δi,jδ(t − t′), with the standard deviations σ2
j = 0.3 for j = 1, 2. All the

parameters are fixed, except the coupling ε2 from oscillator 1 to 2; we also set ε1 = 0. Thus,
any change detected by the proposed method would be related to the changes made in
the actual coupling between the two systems. The time series x1,2(t) were generated for
three values of ε2, namely, 0.0, 0.1, and 10. We choose the time step of the integration of
equation (5) to be ∆t = 0.001.
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Figure 1. (a) Averaged phase difference of the WTs of the two VDP oscillators
for (a) ε2 = 0; (b) ε2 = 0.1 and (c) ε2 = 10. The series contains 104 data points.

Figures 1(a)–(c), present the averaged phase difference WTs of the two time series for
ε2 = 0, 0.1, and 10. Figures 2(a) and 2(b) present the amplitudes of the cross-correlation
coefficients of the two WTs for ε2 = 0 and 10. It appears that for the uncoupled VDP
oscillators (ε2 = 0) there is no order in the cross-correlations of the amplitudes C1(τ), and
that the averaged phase difference C2(τ), with each scale behaving independently of the
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Figure 2. (a) The cross-correlation coefficients of the wavelet amplitudes of the
VDP oscillators for the couplings (a) ε2 = 0.0 and (b) ε2 = 10. (c) The cross-
correlation coefficients of the wavelet amplitudes of the VDP oscillators for the
coupling ε2 = 10 and t0 = −5000 data points.

others, is exactly similar to the cross-correlations of the amplitudes and phase differences
of two independent white noises.

For the coupled case (ε2 = 0.1, 10), however, the averaged phase difference is between 0
(in phase) and π (anti-phase), and its behaviours over different scales are not independent.
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Figure 3. The cross-correlation coefficients of the wavelet amplitudes of the
coupled nonlinear stochastic equations for ε = 10 with t0 = −8000 data points.

We note that due to the existence of random forcing ηi(t), the time series x1,2(t) have a
wide spectrum with peaks at the main frequencies ω1 and ω2.

In figures 2(b) and (c) the red and blue areas possess, respectively, positive and
negative correlation coefficients. The amplitude of the cross-correlation coefficients
indicates the coupling between the two time series, whereas the sign of the location of the
maximum of the correlation coefficients determines which oscillator is ahead or follows the
other. As shown in figure 2(b), the peaks in the cross-correlation coefficients are located
in lag τ = 0.

Next, consider the case in which all the parameters are fixed, except the time delay t0.
Thus, any change detected by the proposed method would be related to the changes made
in the delay time of the two systems. The time series x1,2(t) were generated for ε2 = 10.
As shown in figure 2(c) the peak of the cross-correlation has shifted to τ = t0 (we chose
t0 to be −5000 data points). Therefore, as expected, the method enables us to detect the
time delay of the coupling of two oscillators.

4. Application to coupled nonlinear stochastic equations

As the second demonstration of the method we consider the coupled nonlinear stochastic
equations, given by [26]

dy1 = −y1 dt+
√

dt f1(t); dy2 = −y2 dt− εy1(t− t0)y2(t) dt+
√

dtf2(t), (6)

with 〈fi(t)〉 = 0, 〈fi(t)
2〉 = 0.3, and 〈f1(t)f2(t

′)〉 = 0. Once again, all the parameters are
fixed, except the coupling ε from the process 1 to 2. Thus, any change detected by the
proposed method would be related to the changes made in the actual coupling between
the two processes. The time series y1,2(t) were generated for two values of ε, namely, 0
and 10, with ∆t = 0.001.

We find results for the phase difference of two time series that are similar to those for
the VDP oscillators. Figure 3 presents the amplitudes of the cross-correlation coefficients
of the WTs of the two time series for ε2 = 10 and t0 = −8000 data points. We find that
the results for the system of coupled nonlinear stochastic equations are similar to those
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Figure 4. The cross-correlation of the wavelet amplitudes of the IBM and GE
series over the timescale 2–322 340 s during (a) August 1995, and (b) December
1997. Blue and red relate, respectively, to the time and timescales for which the
IBM or GE series is ahead of the other one. The colour bars show the strength of
the amplitude of the wavelets’ correlation. The first peak on the left side of zero
with the largest amplitude for each timescale determines which series is ahead of
the other one in responding to a common cause (taking into account the estimated
errors of the cross-correlation coefficients).

for the VDP forced oscillators. Indeed, a non-zero t0 results in a shift in the position of
the peaks of amplitude correlation functions from τ = 0 to t0.

5. Application to financial time series

Next, we use the method to study the log-return time series of IBM and GE, which
have zero mean and are normalized (unit variance). The log-returns are defined by
A(t) = ln(xt+1/xt), where xt is the product of the price and volume of stock of A at
time t. The data analysed are for 1995–2000 with high frequency sampling over 8000 h;

doi:10.1088/1742-5468/2013/02/P02042 8

http://dx.doi.org/10.1088/1742-5468/2013/02/P02042


J.S
tat.M

ech.(2013)
P

02042

Scale dependence of the directional relationships between coupled time series

Figure 5. The location τ of the largest amplitude of the cross-correlations of
the WTs for each timescale. Blue and red indicate, respectively, the times and
frequencies at which the GE’s or IBM’s series is ahead. The colour bars are in
units of seconds.

on average we have one data point for every 23 s. Between every two data points we use
a linear fit to connect them. The reason is that the data belong to different clicking times
and, thus, need some pre-processing before one is able to consider them as the two time
series at a specific time t.

Figures 4(a) and (b) present the cross-correlations coefficients of the amplitudes of
the WTs of the two time series for about one month, that contain data over about 106 s,
during August 1995 and December 1997. The timescales are from 2 to 322 340 s. Blue and
red relate, respectively, to the time and timescales for which the IBM or GE stocks are
ahead of the others, i.e. respond faster to a change in the market. The averaged coefficients
in each row indicate that the GE stocks are ahead of IBM’s in August 1995, whereas it is
the IBM stocks that are ahead of GE’s in December 1997.

In figure 5 we moved along the data from 1995 to 2000, with a window size of about
one month, to detect the location τ of the largest amplitude of the cross-correlations of
the WTs for each timescale. Then, we investigated the averaged time lags from 1995 to
2000 for various timescales. If the averaging is done in the horizontal direction of figure 5,
the results are those shown in figure 6, which indicate that the time lag τ is positive,
particularly over the timescales 104–105 s, implying that it is the IBM stocks that are
ahead of GE’s during 1995–2000. In other words, the IBM stocks react to possible common
sector price movements earlier than GE’s.

The results were further checked by using the permutation information (PI)
approach [27], which enables one to quantify the directionality of a coupling between
interacting oscillators and to detect dynamical changes in complex time series. We
obtained results similar to those described above. The statistical significance of the results
was checked by generating 103 realizations of surrogate data from the original ones. For
each realization we applied an independent and different surrogate technique, specifically
designed to destroy only the cross-correlation, and preserve the structure of the data
intact [27].
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Figure 6. Averaged time lags from 1995–2000 for various timescales (frequencies).
The averaging was done in the horizontal direction of figure 4. The area that has
positive averaged time lag indicates that it is the IBM series that is ahead of the
GE’s.

6. Summary

Using the cross-correlation of the amplitudes of the WTs of two coupled time series, we
proposed a general method for studying the direction of the coupling for the two series.
The main advantage of our method is that it enables one to determine the timescale
dependence of the directionality for the two series. The method was demonstrated through
its application to coupled nonlinear oscillators and coupled nonlinear stochastic equations.
It was also used to analyse the log-return time series of IBM and GE.
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