
Multiscale probability distribution of pressure fluctuations in fluidized beds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

J. Stat. Mech. (2012) P07008

(http://iopscience.iop.org/1742-5468/2012/07/P07008)

Download details:

IP Address: 134.106.40.32

The article was downloaded on 17/07/2012 at 09:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2012/07
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.S
tat.M

ech.(2012)
P

07008

ournal of Statistical Mechanics:J Theory and Experiment

Multiscale probability distribution of
pressure fluctuations in fluidized beds

Fatemeh Ghasemi1, Muhammad Sahimi2,5,
M Reza Rahimi Tabar3,4 and Joachim Peinke4

1 Department of Chemical Engineering and Materials Science, University of
Minnesota, Minneapolis, MN 55455, USA
2 Mork Family Department of Chemical Engineering and Materials Science,
University of Southern California, Los Angeles, CA 90089-1211, USA
3 Department of Physics, Sharif University of Technology, Tehran 11155-9161,
Iran
4 Institute of Physics, Carl von Ossietzky University, D-26111 Oldenburg,
Germany
E-mail: Fatemeh.Ghasemi@gmail.com, moe@iran.usc.edu,
rahimitabar@gmail.com and peinke@uni-oldenburg.de

Received 19 February 2012
Accepted 13 June 2012
Published 16 July 2012

Online at stacks.iop.org/JSTAT/2012/P07008
doi:10.1088/1742-5468/2012/07/P07008

Abstract. Analysis of flow in fluidized beds, a common chemical reactor, is of
much current interest due to its fundamental as well as industrial importance.
Experimental data for the successive increments of the pressure fluctuations time
series in a fluidized bed are analyzed by computing a multiscale probability
density function (PDF) of the increments. The results demonstrate the evolution
of the shape of the PDF from the short to long time scales. The deformation of
the PDF across time scales may be modeled by the log-normal cascade model.
The results are also in contrast to the previously proposed PDFs for the pressure
fluctuations that include a Gaussian distribution and a PDF with a power-law
tail. To understand better the properties of the pressure fluctuations, we also
construct the shuffled and surrogate time series for the data and analyze them
with the same method. It turns out that long-range correlations play an important
role in the structure of the time series that represent the pressure fluctuation.
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1. Introduction

Fluidized bed (FBs) are packed beds of particles through which a fluid or fluids flow at
such high velocities that the particles are loosened and suspended in the fluid. A stream
of gas blows upward through a layer of fine solid particles and sets them in motion. At
a certain gas velocity, usually referred to as the minimum fluidization velocity vm, the
gravity and drag force are balanced, leading to the suspension of the particles without
being transported. If the gas velocity exceeds vm, then the excess gas flows through the bed
of the particles as bubbles, the bed is said to be fluidized, and the mixture of the fluids
and particles acts as though it is a fluid. Fluidized beds represent a common chemical
reactor that have been studied for a long time [1]–[4].

Despite being seemingly simple, the fluid mechanics of the FBs, which represents a
two-phase system, is extremely complex. Given that the FBs are used in combustion of
solid fossil fuels and biomass, many exothermic reactions in the chemical industry, oil
refinery operations, and biochemical and environmental cleanup processes, as well as in
heating, cooling, drying, and coating particles in the pharmaceutical industry, gaining
better understanding of the fluid mechanics of the FBs is highly important.

Similar to many other fluid mechanical systems, the dynamic characteristics of the
FBs manifest themselves in terms of the fluctuations of their properties, and in particular
density and pressure of the system. Moreover, the FBs exhibit highly stochastic behavior,
which is due to a variety of factors, including the jetting and bubbling of the FB, and the
motion of the fluidized particles. The stochastic nature of the properties of the FBs and
the fluctuations in the pressure and density give rise to complex time series, the analysis of
which is fraught with difficulties and pitfalls. As is well known, the analysis of stochastic
time series remains an active area of research [5]. One purpose of the present paper is to
present a method of analyzing such data that arise in FBs.

Due to the stochastic nature of the pressure in a FB, it is natural to develop
statistical methods for investigating the times series that represent it. Indeed, research
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efforts in this direction have a relatively long history [6]–[9]. Various approaches for
analyzing the pressure fluctuations have been proposed, including the classical continuum
equations [6]–[9], the idea [10, 11] that the pressure fluctuation series follow a fractional
Brownian motion [12, 13], or that the probability density function (PDF) of the
fluctuations [14] may be described by a Tsallis distribution [15].

In the first half of the 1990s, Daw and co-workers [16, 17] and Schouten and van
den Bleek [18] proposed the application of techniques from chaos analysis to pressure
fluctuation data from a FB, which were subsequently applied extensively in the second
half of the 1990s. An attractive feature of the approach was that it could handle FB
dynamics in a way that was different from many conventional methods: rather than a
reductionist approach to capture the movement of all the individual particles, it considered
the spatio-temporal patterns encountered in a FB as a whole. But, similar to many other
real-life systems, such as climatological, economical and physiological ones, it is extremely
difficult, if not impossible, to prove that a FB is a chaotic system, or that it exhibits
certain chaotic features [19]. For example, van der Schaaf et al [20, 21] showed that the
interpretation of the entropy of pressure series of a FB should be done with great care.

On the other hand, Gheorghiu et al [22] proposed the study of the PDF of the
successive pressure increments, ∆p = p(t + ∆t) − p(t), over a variable time delay ∆t,
instead of the pressure series itself. The study of such increments was inspired by signal
processing methods in turbulence research, where the relevant variable is typically the
velocity fluctuations. The advantage of using the pressure increments is that the resulting
series is robust to long-term trends and that, implicitly, the time scale and dynamics of
the pressure are included. Gheorghiu et al [22] argued that the PDF is not Gaussian,
but has a power-law tail. Bai et al [23] argued that the PDF may be well described by
the Student’s t-distribution, and claimed that the fundamental origin of the power-law
distribution of pressure fluctuations is the broad, power-law nature of the bubble or void
size distribution, and not any spatial or temporal long-range correlations that are often
proposed as the cause of power-law statistics. The bubble polydispersity was attributed
to bubble growth that involves coalescence and breakup.

In a recent paper [24] we analyzed extensive new data for pressure fluctuations in a FB,
and demonstrated that the data possess multifractal properties. In the present paper we
shed further light on the properties of the pressure fluctuations time series by computing
the evolution with the time of a multiscale PDF for the data.

The rest of this paper is organized as follows. In section 2 the data and their
measurement are described. Section 3 describes the new method of analyzing the data.
Section 4 analyzes the PDF of the successive increments of the pressure data by
constructing its shuffled and surrogate series. Section 5 describes briefly the similarities
between pressure fluctuations in the FBs and local velocity fluctuations in turbulent flows.
The paper is summarized in section 6.

2. Measurement of the data

The data [24] were measured in a FB of sand particles, with an inside diameter of 80 cm,
a height of 93 cm, and a bed mass of 700 kg. Sand particles of diameters 356, 532 and
760 µm were used. The superficial gas velocity was 40 cm s−1. The bed was in the bubbling
fluidization regime (also called ‘freely’ bubbling bed). The data were measured at the wall

doi:10.1088/1742-5468/2012/07/P07008 3

http://dx.doi.org/10.1088/1742-5468/2012/07/P07008


J.S
tat.M

ech.(2012)
P

07008

Multiscale probability distribution of pressure fluctuations in fluidized beds

Figure 1. (a) The data at the depth of 44 cm. (b) The detrended increments of
the data shown in (a).

at 34, 44, and 54 cm above the bottom of the FB with a measurement frequency of
200 Hz. The pressure fluctuations were recorded and the average was set to zero. In each
experiment the local pressure fluctuation measurements were performed, following the
procedure described by van Ommen and Mudde [25]. The pressure probes were 10 cm
long with an internal diameter of 4 mm, which guaranteed an undisturbed transfer of the
signal in the frequency range of interest. The end of each probe was covered by a wire
gauze in order to prevent the fluidized particles from intruding and blocking the probe,
and thus affecting the pressure measurements. The gauze has no effect on the pressure
signal. Piezoelectric pressure sensors of the Kistler-type 7261 connected to the probes were
used to measure the pressure fluctuations. The time series were then low-pass filtered with
a cutoff frequency of 60 Hz. 16 bits analog-to-digital conversion was subsequently applied
at a sample frequency of 200 Hz. The pressure fluctuation time series with a duration of
60 min were measured. Each of the three data sets contained a little over 720 000 data
points. Figure 1 presents the data at height h = 44 cm. For clarity we also show in the
inset the fluctuations over a much shorter time scale. The data at the other two heights
are similar to those shown in figure 1 [24].

While the pressure fluctuations are straightforward to measure, their interpretation
is not so. It has been shown that the pressure series is a combination of the local bubble
passages and nonlocal compression waves, with the latter resulting from a number of
hydrodynamic phenomena. When a gas bubble rises upward through the FB and passes the
measurement point, the pressure fluctuates with a characteristic shape that is described
by the so-called Davidson model [1, 2]. The model assumes that the FB is infinitely wide.
Since small diameter columns are typically used in such experiments, the effect of moving
bed mass must be taken into account [20, 21]. In the lower part of a bubbling bed the
bubble passage makes a relatively small contribution to the pressure fluctuations. But, the
contribution becomes more significant when moving upward [20, 21], because the bubble
diameter increases with increasing height, whereas the amplitude of the compression waves
decreases with increasing height.

On the other hand, compression waves can propagate both upwards and downwards
through the bed. The amplitude of a downward-traveling compression wave remains
constant, if the diameter of the bed is small, whereas that of an upwards-moving wave
decreases linearly and vanishes at the bed [19]. The fast-traveling compression waves
may originate from bubble generation, coalescence, and eruption, as well as being due to
fluctuations in the gas flow.
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3. Analysis of the data

Before embarking on the analysis of the data, we should point out that an important
point must be taken into account when analyzing any time series. Recall that if we
have an ensemble of data sets, the assumption of homogeneity of the variance implies
that within each of the data sets the variance is the same. But, for a single data set,
homogeneity implies that if we divide the set into many segments, the variances of all
the segments are equal and, thus, it is essentially equivalent to a second-order stationary
process. On the other hand, if neither of the two conditions is fulfilled, slow convergence
to a Gaussian or even a non-Gaussian PDF with fat tail—one with a long tail such
that the stochastic variable has a nonvanishing probability of occurring—can arise. To
quantitatively characterize the non-Gaussian property at any scale, the standardized PDF
(variance normalized to one) is constructed.

The data are first detrended in order to remove any possible trends in the time series,
and then are processed by the procedure described below. To do so, we fit p(t) in each
interval [1 + τ(k − 1), τk] of length 2τ (where k is the index of the box) to a polynomial
function of order three. Higher-order polynomials may also be used, but as pointed out
by Kiyono et al [26, 27], there is no significant difference between the detrended data
with respect to the order of detrending polynomials if the order is greater than two.
This is also in agreement with our past experience with detrending many distinct types
of time series [5]. Thus, in the following analysis we use third-order polynomials that
are accurate and computationally efficient. The fitted polynomials represent the trends
in the corresponding segment. The detrended increments on the scale τ are defined by
Zτ (t) = p∗(t + τ) − p∗(τ), where τ ∈ [1 + τ(k − 1), τk], with p∗(t) being the detrended
series, i.e. the deviation of p(t) from its fitted values. Figure 1 also presents the data for
the detrended Zτ (t) for τ = 2 with its values over a short time scale in the inset.

We now argue that for a fixed time t, the fluctuations at scales τ and λτ are related
through the cascading rule

Zλτ = WλZτ (t), ∀τ, λ > 0, (1)

where ln(Wλ) is a random variable that relates the two scales. Iterating equation (1) forces
(implicitly) the random variable Wλ to have a log infinitely-divisible distribution [28].
It has been demonstrated [26, 27, 29] that one of the simplest candidates for the
cascading process (1) is a non-Gaussian PDF with fat tails that is modeled by a random
multiplicative process

Zτ (t) = χτ (t) exp[ωτ (t)], (2)

where χτ and ωτ are both Gaussian random variables with zero mean and variances σ2
χ

and σ2
ω, respectively, which are independent of each other. The PDF of Zτ (t) has fat tails,

depending on the variance of ωτ , and is expressed by [30]

Pτ (Zτ ) =

∫
1

σ
Fτ (Zτ/σ)Gτ (lnσ) d lnσ, (3)
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Figure 2. Deformation of standardized PDFs of the increments Zτ across the
scales, where στ is the standard deviation of Zτ . (a) The standardized PDFs (in
semi-logarithmic scale) for time scales (from top to bottom) τ = 2, 5, 10, 20, 30
and 50, and height h = 44 cm. Solid curves show the functions obtained from
the cascade equation. (b) and (c) show the PDFs for the surrogate and shuffled
series, respectively.

where Fτ and Gτ are both Gaussian with zero mean and variances σ2
τ and λ2

τ , respectively.
It is usually assumed [5] that Gτ is given by

Gτ (lnσ) =
1√

2πλτ
exp(−ln2σ/2λ2

τ ), (4)

and similarly for Fτ [30]. As λτ increases, fat tails and a peak around the mean value
become evident. The PDF converges to a Gaussian when λτ → 0. Equation (3) is
equivalent to that for a log-normal cascade model that has been developed for velocity
fluctuations in fully-developed turbulence [31, 32]. For reasons that are not understood
yet, equation (3) also provides accurate approximations for the non-Gaussian PDFs that
describe such diverse phenomena and systems as foreign currency exchange markets [28,
29], fluctuations in heartbeat intervals [33], and seismic time series [34, 35], which are
essential to understanding earthquakes.
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Figure 3. Dependence of the fitting parameter λτ of the cascade equation for
detrended data on the time scale τ at height h = 44 cm.

We computed the PDF of the increments Zτ , fitted it to equation (3), and estimated
the variance λ2

τ of Gτ (ωτ ). Figure 2 presents the resulting standardized PDFs of the
detrended increments Zτ across scales τ . It is clear that the cascade modeling provides
an accurate fit of the data for the increments across the time scale τ (except, in some
cases, in the tail of the PDF). Figure 2 also indicates that the PDFs exhibit continuous
deformation as the time scale τ varies. The Gaussian PDF emerges only at large τ . This
finding is in contrast to the previous suggestions for the PDF that we compute, which
included a Gaussian distribution [36] at all times, as well as one with a power-law tail [22].

In addition to the accurate fit of the PDF by the equation (3), we also obtained a
rapidly-decaying λτ as a function of τ . Figure 3 depicts the resulting fitting parameter λτ
of the equation (3) for the detrended data. As pointed out earlier, when λτ → 0, one has a
Gaussian PDF. The logarithmic behavior of λτ is of special interest, because it is related
to the power-law scaling of all the moments of the increments Zτ , as can be seen easily
by integrating equation (3), provided that the variance of Zτ follows a power-law scaling
in τ . Such a power-law scaling is similar to the structure of local velocity fluctuations in
turbulent flow [30].

It is important to understand the effect of detrending on the results. Thus, we define
the pressure increments on the scale τ by, Zτ (t) = p(t + τ) − p(τ), where τ > 0 and
p(t) represents the data without detrending. The resulting successive increments Zτ (t) for
the height h = 44 cm are presented in figure 4. We then constructed the PDF of Zτ (t)
for various τ by the method described earlier, and estimated the fitting parameter λτ .
The results for the PDF of the data increments without detrending and measured at
height h = 44 cm are shown in figure 5 for various time scales τ . Figure 6 presents the
resulting fitting parameter λτ . Though the numerical values of λτ (τ) for the data without
detrending is smaller than those with detrending, a comparison of the results for the
detrended and undetrending data indicates that the PDFs and the fitting parameters are
qualitatively similar with and without detrending, hence indicating that the original data

doi:10.1088/1742-5468/2012/07/P07008 7
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Figure 4. The increments Zτ of the data shown in figure 1, but without
detrending.

Figure 5. Deformation of standardized PDFs of the increments Zτ of the data
without detrending across time scales, with στ being the standard deviation of
Zτ , for time scales (from top to bottom) τ = 2, 5, 10, 20, 30 and 50, and height
h = 44 cm. Solid curves show identical functions obtained from cascade equation.

did not contain any trends. Similar results were obtained for the data measured at 34 and
54 cm above the bottom of the FB.

4. The surrogate and shuffled series

We further studied the PDF of the successive increments of the pressure fluctuations, in
order to better understand the origin of the properties of the time series [37]. To do so, we
computed the surrogate [38, 39] and shuffled time series of the original data. To form the
shuffled series, we randomized the order of the data points in the underlying series, but
preserved their values. To generate a surrogate series, we proceeded as follows. Suppose
that the time series p(t) = {p1, p2, . . . , pN} contains N data points. The discrete Fourier

doi:10.1088/1742-5468/2012/07/P07008 8
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Figure 6. Dependence of the fitting parameter λτ of the cascade equation on the
time scale τ at height h = 44 cm. The results are for undetrended data.

transform of p(t), corresponding to times t = 0,∆t, 2∆t, . . . , (N−1)∆t, is then computed,

F(ω) =
N−1∑
n=0

p(tn) exp(2iπωN∆t). (5)

The computed Fourier transform was then written as F(ω) = A(ω) exp[iφ(ω)], with A(ω)
being the amplitude and φ(ω) the phase. F(ω) was evaluated at discrete frequencies,
ω = −N∆ω/2, . . . ,−∆ω, 0,∆ω, . . . , N∆ω/2, where ∆ω = 1/(N∆t). The phase at each
frequency was then randomized and uniformly distributed in [0, 2π]:

Ã(ω) = A(ω) exp{i[φ(ω) + ψ(ω)]}, (6)

where ψ(ω) is a random variable, selected uniformly in the range [0, 2π). By numerically
computing the inverse Fourier transform we obtained the surrogate time series, which
has the same spectral density and autocorrelation function as that of the original data
set [38, 39]. Note that the shuffling of the time series destroys the correlations in the series.
Therefore, if the time scale-dependence of the PDF P (Zτ ) is due to only the correlations,
the shuffled series must have scale-invariance properties.

After constructing the shuffled and surrogate series, we analyzed them by the method
described in section 3. The resulting PDFs for both series are also shown in figure 2 for the
detrended data measured at h = 44 cm. The scale-dependence of the fitting parameter λτ
for the same detrended data is also shown in figure 3. Note that the surrogate series has
the same type of PDF as the original series, with the same type of evolution to a Gaussian
at large times, and the same type of the fitting parameter λτ . On the other hand, the
shuffled series takes on the well-defined Gaussian PDF shape for all the time scales, hence
indicating that the cascade equation (3) arises as a result of long-range correlations in the
pressure fluctuation time series.

doi:10.1088/1742-5468/2012/07/P07008 9
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5. Similarity with turbulence

As mentioned earlier, the cascade model has also been shown to provide an accurate
representation of the PDF of local velocity fluctuations in turbulent flow. The natural
question that arises is whether there is any similarity between pressure fluctuations in
fluidized beds and velocity fluctuations in turbulent flow. Turbulent flows are characterized
by a constant energy flux that is dissipated at very small scales by the fluid viscosity,
representing the dominant physics of turbulent flow. On the other hand, in FBs the
energy is dissipated by the collapse of the bubbles. Though it is not yet completely
understood, such a dissipation mechanism might dominate the short-time dynamics of
the pressure fluctuations, in which case the dissipation mechanisms of the two phenomena
are completely different.

On the other hand, the apparent similarity between the pressure fluctuations in a
FB and velocity fluctuations in turbulence might in part be due to the existence of the
cascades of information contained within the large-to-small scale fluctuations that exist in
both phenomena. The cascade exhibits itself in the deformation of the PDF as a function
of the time scale τ , the key parameters for fitting the data for both phenomena to the
cascade model. Such a similarity between the two phenomena clearly warrants further
investigation.

6. Summary

The results presented in this paper indicate that pressure fluctuations in fluidized beds may
be analyzed accurately by the cascade model that has been proposed for the fluctuations of
the local velocities in turbulent flows. In particular, the probability density function (PDF)
of the successive increments of the pressure fluctuation data is shown to follow the cascade
equation used in turbulent flow for modeling of the PDF of the successive increments of
local velocity fluctuations. The PDF evolves, however, towards a Gaussian distribution
at large times. The surrogate and shuffled time series for the pressure fluctuations were
also analyzed. The PDF for the surrogate time series and its evolution over various time
scales are also well represented by the same type of the PDF. Thus, that the cascade
equation provides an accurate representation of the PDF of the successive increments of
the pressure data is due to the long-range correlations that exist in the data for fluidized
beds.
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