
April 2012

EPL, 98 (2012) 14005 www.epljournal.org

doi: 10.1209/0295-5075/98/14005

Coherent backscattering of electromagnetic waves in random
media

A. Sheikhan
1
, P. Maass

2 and M. Reza Rahimi Tabar2,3

1National Institute for Theoretical Physics - Private Bag X1, 7602 Matieland, South Africa
2 Fachbereich Physik, Universität Osnabrück - Barbarastraße 7, 49076 Osnabrück, Germany, EU
3Department of Physics, Sharif University of Technology - 11365-9161, Tehran, Iran

received 13 December 2011; accepted in final form 13 March 2012
published online 13 April 2012

PACS 46.65.+g – Continuum mechanics of solids: Random phenomena and media
PACS 05.60.Cd – Transport processes: Classical transport
PACS 42.79.Sz – Optical elements, devices, and systems: Optical communication systems,

multiplexers, and demultiplexers

Abstract – The single and multiple scattering regimes of electromagnetic waves in a disordered
system with fluctuating permittivity are studied by numerical simulations of Maxwell’s equations.
For an array of emitters and receivers in front of a medium with randomly varying dielectric
constant, we calculate the backscattering matrix from the signal responses at all receiver points j
to electromagnetic pulses generated at each emitter point i. We show that the statistical properties
of the backscattering matrix are in agreement with the recent experimental results for ultrasonic
waves (Aubry A. and Derode A., Phys. Rev. Lett., 102 (2009) 084301) and light (Popoff S. M.
et al., Phys. Rev. Lett., 104 (2010) 100601). In the multiple scattering regime the singular value
distribution of the backscattering matrix obeys the quarter-circle law.
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Wave propagation in heterogeneous media is of both
fundamental scientific and practical interest and has been
studied for a long time [1]. A well-known approach for
studying single and multiple scattering of waves is the
analysis of backscattering phenomena. Various groups
have reported the observation of coherent backscatter-
ing of light [2–6] and sound [7–10], which manifests itself
as a peak in the backscattered intensity and originates
from the constructive interference between pairs of waves,
where one of the waves is multiply scattered along a
path and the other wave is multiply scattered along the
corresponding time-reversed path. In condensed-matter
physics, the coherent backscattering leads to weak local-
ization of electrons in metals with impurities [11,12]. The
long-range Coulomb interaction between the electrons,
however, makes the analysis of the localization prob-
lem very difficult [13]. Classical waves, by contrast, do
not interact with one another and therefore provide an
ideal probe for studying localization phenomena. Due to
multiple scattering, the propagation of intensity in the
scattering medium becomes diffusive with a diffusion coef-
ficient D. If the diffusive length scale

√
Dt at time t is

much smaller than the distance R between source and
scattering medium,

√
Dt�R, the width of the backscat-

tering peak decreases as λ/
√
Dt [14,15], where λ is the

wavelength. For long times, R�√Dt, the backscattered
intensity exhibits a narrow peak (coherent contribution)
which lies on top of a wide arc (incoherent contribution).
The width of the narrow peak is independent of time
and of the order λ/R [16,17], while the width of the arc
increases as

√
Dt .

In recent experimental studies of coherent backscatter-
ing with ultrasonic waves [18], an array of emitters and
receivers placed in front of the scattering medium has
been used, where an incident pulse is emitted from one
array element i and the backscattered signal is recorded
in all elements j, as sketched in fig. 1. The responses of
the elements j to the emitted signals in the element i are
given by the complex elements Kij of the backscattering
matrix K. For a disordered medium, K can be considered
as a random matrix and its statistical properties have
been analyzed in recent experiments with ultrasonic waves
and light [18–20]. Factorization of the symmetric and
non-Hermitian matrix K by singular value decomposition
yields K =USV †, where U and V are unitary matrices
and S is a diagonal matrix with the non-negative singular
values s as diagonal elements. The distribution ρ(s) of the
singular values is different for single and multiple scatter-
ing regimes. In the multiple scattering regime, according
to the random matrix theory, it was expected to obey

14005-p1



A. Sheikhan et al.

Fig. 1: (Color online) The setup for the simulation. An array of
antennas is placed in front of the medium and the medium is
made of parallel bars perpendicular to the page with different
dielectric constant (different colors).

the the quarter-circle law. In the single scattering regime,
ρ(s) was shown to follow a Hankel distribution [18].
Here we address the question whether the features

observed in recent experiments can be seen in numeri-
cal simulations of Maxwell’s equations. To this end, we
consider a two-dimensional setup resembling the one used
in the experiments with ultrasonic waves [18] and deter-
mine the coherent backscattering from a medium with
randomly varying dielectric function ε(x). The experimen-
tal set-up is a collection of rods with the same physical
properties. The rods are located randomly in the x -z plane
with their axes perpendicular to this plane. To mimic this
system we considered bars on a regular grid with random
dielectric constants ε drawn from a uniform distribution
with mean value ε0 and variance W . We find that the
spatial and temporal variation of the backscattered inten-
sity display the features found in experiment. The distrib-
ution of the backscattering matrix elements Kij is nearly
Gaussian (for the case studied here, where ε(x) exhibits no
long-range correlations), and the distribution of singular
values of K obeys the quarter-circle law.
Figure 1 shows the two-dimensional set-up considered

in our modeling approach: A chain of antennas i is placed
along the x-direction with a distance R in the z-direction
from the scattering medium. The optical properties of the
scattering medium are characterized by a fixed magnetic
permeability µ= 1 and a statistically homogeneous
random dielectric function ε(x, z) = ε̄+ η(x, z), where ε̄=
〈ε(x, z)〉 denotes its mean value, and the fluctuating part
η(x, z) is a uniformly distributed white noise with corre-
lation function 〈η(x1, z1)η(x2, z2)〉=W 2δ(x1−x2)δ(z1−
z2). For the emitted pulse in elements i, we consider two
different polarizations of the electromagnetic field, corre-
sponding to incident electric fields with either perpendic-
ular or parallel orientation to the scattering medium. The

pulse ψi(x, t) emitted from array’s antenna i has central
frequency ω and is Gaussian in time with width σt and
Gaussian in the center of the antenna i with width σx:

ψi(x, t) = sin(ωt) exp

{
− (t− t0)

2

σ2t

}
exp

{
− (x− i)

2

σ2x

}
.

(1)

The field Ψi(x, t) is the electric or the magnetic field.
To simulate the multiple and single scattering processes,

we considered a set-up as shown in fig. 1 and locate
a bar with random dielectric constant in each lattice
point. Then we solve the Maxwell equations by the finite-
difference time-domain (FDTD) method [21–23]. To apply
the FDTD method for the Maxwell equations one needs
to write the discrete form of the equations in a staggered
mesh (Yee’s mesh) [21]. The random part of the dielectric
constant is rescaled as η′ = η/ε̄ and is non-correlated
and uniformly distributed in the interval [−σ,+σ]. The
permittivity should be positive, so there is a restriction
for the amplitude of disorder, i.e. |σ|< 1 (the details
can be found in [22]). The variance W 2 is related to

σ as W 2 = σ2

3d2 . Also the lattice constant considered in
the dimensionless Maxwell equations is d= 1, the time
step is dt= d/8 = 1/8. The whole parameters reported
here are in rescaled space-time units. The whole system
is a 500d× 1000d grid with disordered medium of size
250d× 1000d at a distance z =R= 250d from the array.
The simulation stops before the boundaries affect the
backscattered waves. There are 64 antennas in the array
at z = 0 that send and receive the wave.
We start with the situation where the incident electric

field is parallel to the rods. Let hij(t) be the backscattered
signal detected in antenna j when the initial pulse is emit-
ted into the medium from antenna i. Because of the reci-
procity the impulse response matrixH(t) is symmetric. To
study the process in different time scales,H(t) is truncated
into short time windows. For different time windows (∆t),
we have kij(T, t) = hij(T − t)[Θ(t+∆t/2)−Θ(t−∆t/2)],
where Θ is the Heaviside function. The backscattering
matrix K(T, f) at time T and frequency f is calculated
by the discrete Fourier transform of the matrix K(T, t).
Calculating this matrix is the first step in the study of
the coherent backscattering and then investigation of the
single and multiple scattering. The backscattered intensity
Ii−j = 〈KijK∗ij〉T,f is calculated by averaging over time
and frequency where the difference i− j is fixed.
The simulations are done for two different intensities

of the disorder and the backscattered wave has different
behaviors. Figure 2(a) is the imaginary part of the matrix
K in early times for a medium with σ= 0.3, and wave
frequency ω= 1.5. In the early times the wave has propa-
gated by few numbers of scatters and it is considered as a
single scattering regime. Its rippled structure is completely
consistent with the experimental results for ultrasounds
[18]. In fig. 2(b) the intensity of the backscattered wave
is shown for the same system as (a) which is averaged
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Fig. 2: (Color online) Single scattering from the medium with σ= 0.3 and wave frequency ω= 1.5. (a) The backscattered matrix
K averaged over early times and whole frequencies. (b) The intensity of backscattered wave as a function of distance between
source and receivers. (c) The imaginary and real part of β in theory and simulation.

for a long time interval. The initial wave is sent from the
antenna i through the medium and the backscattered wave
is detected at the receiver j. It can be seen that the inten-
sity of the backscattered wave at the source is twice the
other receivers at a distance.
Let us start with the single scattering regime. In optics

Fresnel’s diffraction or near-field diffraction occurs when
the waves propagate through the medium in the near field
or earlier times (when the wave has not propagated from
the further scatters). If we know the electric field at the
surface (x′, y′, 0), then the electric field in each point of
the space (x, y, z) is given by

E (x, y, z) =
z

iλ

∫ ∫
E(x′, y′, 0)

eikr

r2
dx′dy′

≈ eikz

iλz

∫ ∫
E(x′, y′, 0)e

ik
2z [(x−x′)2+(y−y′)2]dx′dy′.

(2)

The second term is calculated by Fresnel’s approxima-
tion. In the near-field backscattering the elements kij of
backscattering matrix can be written as [18]

kij

(
T, f =

ck

2π

)
∝

e2ikR

R

Nd∑
d=1

Ad exp

[
ik(xi−Xd)2

4R

]
exp

[
ik(xj −Xd)2

4R

]
,

(3)

where 2R= cT and xi is the coordinate of the i -th
antenna in the array and Xd is the transverse position
of the d -th scatterer which is placed approximately at
distance R from the array or contributes in the backscat-
tered wave at time T. The amplitude Ad depends on the
dielectric constant of the d -th scatterer and shows its
reflectivity. Here the dielectric constant is random and so
the amplitude Ad is also random and kij can be written

as a multiplication of deterministic and random terms:

kij ∝ e2ikR

R
exp

[
ik(xi−xj)2
8R

]

×
Nd∑
d=1

Ad exp

(
ik(xi+xj − 2Xd)2

8R

)
. (4)

We note that the parameter βm is deterministic [18]

βm =
k(i−m)(i+m)

kii
= exp

[
ikm2

2R

]
. (5)

Figure 2(c) shows the real and imaginary part of β for
the same system as in fig. 2(a) and (b) and for early times.
It is in good agreement with the theoretical prediction
in (5).
In fig. 3(a) the backscattered intensity matrix K2 =

〈KijK∗ij〉T,f from the disordered medium is plotted. The
intensity of disorder is σ= 0.9 and the frequency of the
propagated wave is ω= 1.5. The matrix is averaged over
late times and frequencies. Figure 3(b) is the backscat-
tered intensity Ii−j = 〈KijK∗ij〉T,f from the same media
as in fig. 3(a). It has the same information as in fig. 2(a).
Comparing to fig. 2(b), it can be seen that the backscat-
tered intensity has different behavior for different intensity
of disorder. In fig. 3(c) the backscattered intensity is calcu-
lated for different times and for early times it can be seen
that the peak’s width is bigger than for late times. For
short times the wave has just propagated through a few
layers of scatterers and is considered as a single scatter-
ing regime with a wide peak in the backscattered inten-
sity. However for long times the wave has scattered back
by too many rods and is considered as a multiple scat-
tering regime with a narrower peak in the backscattered
intensity.
As mentioned above we have considered two polariza-

tions in which the electric field is parallel to the rods
or is perpendicular to them. One can show that the
backscattered intensity matrix for the magnetic field has
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Fig. 3: (Color online) Multiple scattering from the medium with σ= 0.9 and wave frequency ω= 1.5. (a) The backscattered
intensity matrix K2 averaged over time and frequency. (b) The intensity of backscattered wave for long times as a function of
distance between source and receivers. (c) The backscattered intensity (same as (b)) in different times.

a similar behavior, when we take the magnetic field to be
parallel to the rods. The probability distribution function
of the matrix elements for the multiple scattering regime
is calculated for both real and imaginary parts and over
the whole frequencies and time intervals. The elements of
each scattering matrix at a specific time and frequency
are normalized to the variance of matrix elements. As
is shown in the inset of fig. 4 it is not well fitted by
the Gaussian distribution. There is a deviation from the
Gaussian distribution in the tails of the distribution.
However by considering only the elements that are not
close to the diagonal of the scattering matrix the distri-
bution becomes closer to the Gaussian distribution. The
distribution is almost Gaussian for the single scattering
regime. A Gaussian distribution function with the same
variance is plotted to have a comparison.
In the multiple scattering regime the distribution of

singular values ρ(s) will be a standard parameter to
study. This distribution is different for different regimes
and in multiple scattering it is close to the quarter-circle
law. The N ×N matrix whose complex elements are
zero-mean, independent and identically distributed vari-
ables with variance 1/N has quarter-circle singular value
distribution ρ(s) = 1

π

√
4− s2 [24]. The singular value

decomposition of the N ×N matrix K(T, f) provides N
singular values si for specific time T and frequency f .
In order to compare the results with the random
matrix theory we should normalize all s’s as follows:
s̃i = si[

∑N
j=1 s

2
j/N ]

− 12 , where ρ(s) is the distribution of
different sets of normalized s’s for different times and
frequencies. Figure 4 (main panel) shows the singular
value distribution for high intensity of disorder, σ= 0.9,
high frequency, ω= 1.5, whose backscattered intensity is
shown in fig. 3(b). Also the quarter-circle distribution is
plotted for comparison. The same result is calculated by
the weaker scatterer (σ= 0.3) but for the late times.
To relax the white-noise type randomness we have

repeated the numerical simulations with a Gaussian short-
range–correlated disorder. To generate the short-range
correlations we used the Kernel method [25] with some
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Fig. 4: (Color online) The distribution of singular values of
the backscattered matrix K is plotted for the random medium
with σ= 0.9 (same as fig. 3) and for frequency ω= 1.5. The
bars shows the result of the simulation and the solid line is
the quarter-circle law for the symmetric random matrices. The
inset shows the distribution of the elements of the backscatterd
matrix Kij for the same system which is close to the Gaussian
distribution.

finite width (for instance h= 3d, and h= 6d, where d is
the mesh size and h is correlation length of the disorder)
(see fig. 5). We found that the distribution is not exactly
a quarter-circle law. However, if we consider each second
array element (both in the columns and the rows) in
the scattering matrix (for correlation lengths h= 3d, and
h= 6d), then the distribution follows again the quarter-
circle law. This shows that the effect of correlations is
reflected in the scattering matrix but this effect can be
removed by considering elements with a larger spacing
corresponding to a coarse-graining procedure. By increas-
ing the correlation length the medium becomes almost
transparent, corresponding to the single scattering regime.
In summary, the single and multiple scattering regimes

of electromagnetic waves in media with random permittiv-
ity are studied for two different types of polarization (one
of the electric or magnetic fields is parallel to the rods
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Fig. 5: (Color online) Singular value distribution of (a) the backscattered matrix K (b) the matrix obtained by removing the
neighboring elements ofK to eliminate inter-element correlations. The simulation is for random media with Gaussian distribution
and short-range correlation (variance of the Gaussian disorder is 0.3 and the correlation length is 6d) and the incident wave
frequency is ω= 1.5.

with random dielectric constants). We showed that the
statistical properties of the backscattering matrix from
non-correlated random media are in agreement with the
observations in recent experimental results for ultrasonic
waves and light. The matrix’s elements are correlated for
short-range–correlated disorder and also for short times
(both polarizations) and these correlations are limited to
adjacent elements and by considering only one of the two
elements, the distribution of singular values becomes the
same as quarter-circle law.
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