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Interplay between geometrical structure and electronic properties in rippled free-standing graphene
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It has been argued that the electron-hole puddles formed on graphene are mostly due to substrate-induced
charged impurities [J. Martin et al., Nature Phys. 4, 144 (2008),Y. Zhang et al., Nature Phys. 5, 722 (2009)].
Here, using first-principles ab initio calculations, we show that the existence of ripples and electron-hole puddles
is indeed an intrinsic property of graphene at finite temperatures. We found a relatively large correlation between
the electronic charge density distribution on the surface of graphene and its local geometrical properties, such as
local mean curvature and average bond length. We show that the electron and hole puddles appear in places where
curvatures are large and small, respectively. We also determined the average sizes of the observed electron-hole
puddles and have reported their percolating nature.
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I. INTRODUCTION

Graphene, a transparent single layer of carbon atoms
arranged in a hexagonal, honeycomb structure,1 has attracted
the attention of a great number of researchers. In fact, owing
to graphene’s unique properties, such as its linear energy
dispersion relation and its two-dimensional lattice structure,
various interesting phenomena have been experimentally ob-
served and theoretically studied. Among the salient effects and
characteristics of graphene, one may mention the quantum Hall
effect,2 ultrahigh mobility,3 superior thermal conductivity,4

high mechanical strength,5 observation of plasmarons,6 and
electron-hole puddles.7 These unusual properties have lead
many researchers working in this field to forecast a promising
future use of graphene as the building block of nanoelectronic
devices (for more recent works see Refs. 8–12).

Recently, electron-hole puddles have been observed for
graphene on a Si/SiO2 wafer.7 The observed transport prop-
erties of graphene sheets at zero magnetic field can be
explained by scattering from electron-hole puddles13 (see
also Refs. 14 and 15). It has been recently argued that
the chemical potential variations on graphene are proba-
bly due to charged impurities above and below the layer,
substrate-induced structural distortions, and chemical doping
from residing residues.16 Moreover, some authors, using
modified Hamiltonians for Kohn-Sham-Dirac density func-
tional theory,17 or focusing on the membrane properties
of graphene,18 have provided several pictures regarding
the connection between the charge density distribution on
graphene and its structural properties. However, the authors
in Ref. 17 did not observe an evident correlation between
the spatial distribution of the electron-hole puddles and the
out-of-plane topographic corrugations. As far as we know, the
rippled structure of graphene has been obtained by using
the Monte Carlo method and/or molecular dynamics (MD)
simulations employing a parametric interatomic potential, or
by modeling the rippled structure in the form of a mathematical
function, such as a sinusoidal wave or a Gaussian function.17–21

In this paper, without calling upon any modifications to the

quasiparticle Kohn-Sham Hamiltonian22 or upon the use of
any parametric interatomic potentials, we have employed an
ab initio first-principles scheme based on density functional
theory (DFT) to study the formation of the ripples as well as
the electronic features induced by them. We started from a flat
free-standing graphene sheet with 450 carbon atoms, namely,
a sheet without external stresses and free from interactions
with substrate or impurities, and performed an ab initio MD
simulation. After we obtained the rippled structure, we then
performed the electronic structure calculation. We found a
relatively strong correlation between the electronic charge
density of the states near the Fermi level and the local curvature
of the surface. Furthermore, the charge density related to the
more energetic electronic states, far from the Fermi level, has
been shown to anticorrelate mostly with the average bond
length. Moreover, the induced electron-hole puddles, their
average area, and their percolating nature are also discussed.

This paper is organized as follows: In Sec. II, we outline
the computational method that we use. Results are presented
in Sec. III and the related discussions follow afterward.
Finally, we summarize our results and present our conclusions
in Sec. IV.

II. METHOD OF CALCULATION

Through our first-principles ab initio calculations, we first
performed an ab initio mixed-forces molecular dynamics
simulation23,24 at finite temperature, T = 300 K, by means of
Nosé-Hoover thermostat.25 The time step length, �t , for the
MD simulation was 0.1 fs. In general, this value should be less
than the time scale related to the highest vibrational frequency
of the system (the reported value for the highest vibrational
frequency for graphene is between ≈1570 and ≈1700 cm−1 at
the � point26). The simulation ran for 2 × 105 time steps giving
a total MD time of 20 ps. We have benefited from the order-N
method implemented in the SIESTA density functional code,27

which allowed our computations to be performed efficiently.
We used a Troullier-Martins type pseudopotential28 for carbon
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with a double-ζ , singly polarized orbital for the basis set along
with a 6 × 6 × 1 Monkhorst-Pack grid29 in the reciprocal
lattice. In the MD simulation, only the � point was used
for the Brillouin zone integration, which was found to give a
nearly converged geometry for graphene when compared with
calculations using large k-point integration meshes for smaller
samples. We also employed periodic boundary conditions. It
is well known that the local density approximation (LDA)
for the exchange-correlation energy functional EXC works
well for nearly homogeneous electronic systems, whereas
the generalized gradient approximation (GGA) for the EXC

should work better than the LDA for systems with considerable
electronic density variations. Therefore, for the purpose of
studying the charge inhomogeneity on the surface of graphene
in the form of electron-hole puddles, it is appropriate to
use the GGA. We have also used Perdew-Burke-Ernzerhof
parametrization, which usually gives good results for carbon-
based structures in comparison with experimental data.30 The
ab initio MD phase was used for two systems. The first one
consisted of 1250 atoms. In this case, the electronic structure
calculations were not carried out. The second sample consisted
of 450 atoms for which the electronic structure calculations
were performed.31 In order to find the correlations between the
structural features and the charge density, we first employed
a thermal averaging by using the kernel method to smooth
the height fluctuations. According to the kernel method, one
considers a kernel function K(u,v) that satisfies the condition∫ +∞
−∞ du

∫ +∞
−∞ dvK(u,v) = 1, such that the data [here, the

z component of the coordinates of the atoms: z ≡ z(x,y)] are
smoothed by

z(x,y) = 1

nh

n∑
i=1

z(xi,yi)K

(
x − xi

h
,
y − yi

h

)
, (1)

where h is the window width and n runs through the neighbors
including the atom under consideration. One of the most useful
kernels is K(u,v) = (2π )−1 exp[− 1

2 (u2 + v2)].32 Here, we
have chosen h � 3 Å. Moreover, by considering the projected

density of states (PDOS) of π and σ orbitals, we have been
able to calculate the π and σ charge densities (CDs) using

ρi =
∑
m

∫ EF

−∞
g(i,m)(ε)f (ε) dε, (2)

where f (ε) is the Fermi-Dirac distribution function, g(i,m)(ε)
is the projected density of states for the mth orbital of the ith
atom at energy ε, defined by

g(i,m)(ε) =
∑

n

δ(ε − εn)
∣∣ 〈φi

m

∣∣�n

〉 ∣∣2
, (3)

and the �n’s are the Kohn-Sham orbitals. Afterward, the
smoothing of these densities was carried out by the same kernel
method. In order to obtain the local curvature of the surface,
we calculated the Laplacian of the surface, z ≡ z(x,y), taking
the second nearest neighbors into account. Starting from

z(�r + �a′) =
∞∑

n=0

( �a′ · �∇)nz(�r)

n!
(4)

and expanding the summation up to the second nearest
neighbors33 for the graphene honeycomb lattice, we are led
to the following relation:

∇2z(x0,y0) = 2

3a′2

(
6∑

i=1

z(xi,yi) − 6z(x0,y0)

)
, (5)

where �a′ goes from the atom under consideration to the six
second nearest neighbors.

III. RESULTS AND DISCUSSION

As shown in Fig. 1(a), our graphene sample, consisting
of 1250 carbon atom, obtains a rippled structure during the
MD phase with average wavelength of λ � 55 Å (Ref. 34)
and amplitude of �0.4 nm at temperature T = 300 K, results
which are in agreement with Refs. 19 and 20. The time
scale of the shape variation of the ripples is much longer
than that of the thermal fluctuations of the individual atoms.
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FIG. 1. (Color online) (a) Configuration of a graphene sheet consisting of 1250 carbon atoms at 300 K, obtained by ab initio molecular
dynamics simulation, without carrying out the electronic structure calculation. Colors indicate the height of the atoms. (b) Projected and
averaged total density of states for one of the atoms in a graphene sheet consisting of 450 carbon atoms. Blue diamonds (red triangles)
correspond to π orbitals (σ orbitals). Total density of states divided by the number of atoms is shown with black circles. The presented results
suggest that the contribution of the σ orbitals to the total charge density is much more than that of the π orbitals.
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FIG. 2. (Color online) (a) Twice the absolute value of the mean curvature of the graphene surface, i.e., |∇2Z(x,y)|, and (b) the average
bond length. (c) and (d) The π and the σ orbital charge density distributions subtracted from their average value in each case, respectively.
(e) Color map of the spatial density variations of the π orbital charge density. The green dashed lines show the zero-density contours separating
the electron puddles from their adjacent hole puddles. (f) The histogram of the normalized π orbital charge density, i.e., the charge density
divided by its variance, and the red line is a Gaussian function with variance equal to 1, which is shown for comparison purposes. (g) shows the
distributions of the absolute value of the mean curvature for the hole and the electron puddles. (h) The bond length distribution for the electron
and the hole puddles.

Also, there is small-scale roughness appearing on the ripples,
due to thermal fluctuations. The amplitude of such height
fluctuations, as expected, is very small relative to the ripple
sizes.20

Figure 1(b) shows the PDOSs for π and σ orbitals of one of
the carbon atoms in a graphene sheet consisting of 450 carbon
atom, with blue diamonds and red triangles, respectively. The
total density of states divided by the number of atoms is
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also shown by black circles. In fact, what a nanoprobe, e.g.,
scanning tunneling microscope (STM), scans is mainly the
local density of states of the π band near the Fermi level.
However, on atomic scales, i.e., on length scales of the order
of C-C bond lengths (≈1.4 Å), what affects the CD lying along
a C-C bond is mainly the change in the bond length, affecting
the overlap between σ orbitals, rather than the curvature of
the surface, which changes the overlap between the π orbitals.
This feature hardly shows up in the STM studies.16 So, in
order to simulate the scanning single-electron transistor or
STM results which have been mainly reported in experimental
studies of the CD distribution on corrugated samples,7,16 here
we separate the contributions of π and σ orbitals to the CD,
and study the π contribution mainly.

Figures 2(a) and 2(b) show the absolute value of the mean
curvature and the average C-C bond length at each point on
the smoothed surface. The curvature and bond lengths are
plotted after applying one level of kernel smoothing on the
z components of the atoms. Figures 2(c) and 2(d) show the π

and σ orbital CDs, respectively. The CD values are subtracted
from the corresponding average charge densities, and the
electron- and hole-rich regions (puddles) are shown in different
colors. The CDs are given in units of electrons/Å3.

The correlation between the π orbital CDs and the absolute
value of the mean curvature (AVMC) is about 67%. The
anticorrelation between the σ orbital CDs and the average
bond length is ≈71%, confirming the fact that the σ orbital
CD decreases as the bond length increases.

Figure 2(e) shows the map view of the π orbital CD and
the green dashed lines are the contours of the zero CD. The
contours highlight the border between adjacent electron and
hole puddles. We note that the electron and hole puddles on
free-standing graphene have a percolating nature, similar to
the experimental observation for a graphene sample on a Si
wafer.7 Figure 2(f) shows the histogram of the normalized π

orbital CD, i.e., the charge density divided by its variance. The
red curve in Fig. 2(f) is a Gaussian function with variance
equal to 1 which is shown for comparison purposes. The
histogram shows an asymmetry similar to the experimental
results.7 The skewness of the π orbital CD is about −0.08,
which indicates to what extent the probability distribution
function of the π orbital CD is an asymmetric distribution. The
negative sign of the skewness shows higher probabilities for
higher hole densities. The variance of the π orbital CD is about
0.0084 electrons/Å3. Its average and the variance for electron
puddles are 0.0063 and 0.0047 electrons/Å3, respectively. For
hole puddles we find the mean and variance of the π orbital
CD to be −0.0074 and 0.0050 electrons/Å3, respectively.

As mentioned before, by considering the mean values
of π orbital CDs for electron-hole puddles as well as
total charge neutrality, we conclude that the average size
of the hole puddles is smaller than that of the electron
puddles. Using a triangulation technique, we find the ratio
of 〈Ahole〉 / 〈Aelectron〉 � 0.85, where 〈Aelectron/hole〉 is the mean
area of electron and hole puddles. We note that the longer
bond lengths in electron puddles result in smaller total overlap
of π and σ orbitals at each site. This is confirmed by our
computations yielding smaller kinetic energy per particle in
this region, and giving rise to larger average distance between
the electrons. Finally, this in turn yields lower electron density,

and as a consequence, results in a larger area occupied by
electron puddles. A similar argument holds for the hole
puddles.

Figure 2(g) is a plot of the distributions of the AVMC for the
electron and the hole puddles. We find that the average AVMC
in the electron puddle is about 0.08/Å and the average AVMC
in the hole puddle is about 0.050/Å. The AVMC in the electron
puddle is nearly twice as large as the AVMC in the hole puddle.
Figure 2(h) shows the bond length distribution for the electron
and hole puddles. The total average bond length is �1.438 Å.
For electron and hole puddles we find the mean bond length
to be 1.447 and 1.426 Å, respectively. Therefore, as shown in
these figures, we conclude that the hole puddles on the free-
standing graphene take form in the regions with shorter bond
lengths and smaller curvatures, and electron puddles occur in
the regions with longer bond lengths and larger curvatures. As
we argued earlier, the hopping energies in the hole puddles are,
on the average, larger than the ones in the electron puddles.
This results in slightly wider hole bands and slightly narrower
electron bands.

IV. CONCLUSIONS

In summary, here, we have tried to approach the problem
of the formation of the ripples and the induced charge
inhomogeneity on a free-standing graphene sheet in a more
fundamental way, by using a DFT-level molecular dynamics
simulation and calculating the electronic structure of the
system. We observed that, at finite temperatures, the local
stress caused by the thermal fluctuations of the atoms will
guarantee the formation of ripples on the surface. The time
scale of the shape variation of the ripples has been observed
to be much longer than that of the thermal fluctuations of
the individual atoms. The nonuniform distributions of the
local curvature and the bond length, caused by the ripples,
have been shown to be the sources of the formation of the
electron-hole puddles on the free-standing graphene sheet. In
other words, the formation of the electron-hole puddles is to
an intrinsic property of graphene. These electron-hole puddles
have a percolating nature. Furthermore, the kinetic energy of
the holes in the hole puddles has been observed to be greater
than that of the electrons in the electron puddles. The results
show that by using the topographic information of graphene
sheets (which could be measured relatively more easily than
the local electronic structure) one could more or less locate
the positions of the electron-hole puddles and hence the local
electronic structure.
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