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a b s t r a c t

The level crossing and inverse statistics analysis of DAX and oil price time series are given.
We determine the average frequency of positive-slope crossings, ν+

α , where Tα = 1/ν+
α

is the average waiting time for observing the level α again. We estimate the probability
P(K , α), which provides us the probability of observing K times of the level α with positive
slope, in time scale Tα . For analyzed time series, we found that maximum K is about ≈6.
We show that by using the level crossing analysis one can estimate how the DAX and oil
time series will develop. We carry out the same analysis for the increments of DAX and
oil price log-returns (which is known as inverse statistics), and provide the distribution of
waiting times to observe some level for the increments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic processes occur in many natural and man-made phenomena, ranging from various indicators of economic
activities in the stock market, velocity fluctuations in turbulent flows and heartbeat dynamics, etc. [1]. The level crossing
analysis of stochastic processes has been introduced by (Rice, 1944, 1945) [2–26], and used to describe the turbulence [16],
rough surfaces [27], stock markets [28], Burgers turbulence and Kardar–Parisi–Zhang equation [29,30]. The level crossing
analysis of the data set has the advantage that it gives important global properties of the time series and do not need
the scaling feature. The almost of the methods in time series analysis are using the scaling features of time series, and
their applications are restricted to the time series with scaling properties. Our goal with the level crossing analysis is to
characterize the statistical properties of the data set with the hope to better understand the underlying stochastic dynamics
and provide a possible tool to estimate its dynamics. The level crossing and inverse statistics analysis can be viewed as the
complementary method to the other well-known methods such as, detrended fluctuation analysis (DFA) [31], detrended
moving average (DMA) [32], wavelet transform modulus maxima (WTMM) [33], rescaled range analysis (R/S) [34], scaled
windowed variance (SWV) [35], Langevin dynamics [36], detrended cross-correlation analysis [37], multifactor analysis of
multiscaling [38], etc.

We start with formalism of the level crossing analysis. Consider a time series of length n given by x(t1), x(t2), . . . , x(tn)
(here x(ti) is the log-return of DAX and oil prices). The log-return x(ti) is defined as x(ti) = ln(yi/yi−1), where yi is the price
at time ti. Let N+

α denote the averaged number of positive slope crossing of x(t) = α in time scale T = n∆t with ∆t = 1 (we
set also the average ⟨x⟩ to be zero). The averaged N+

α can be written as N+
α (T ) = ν+

α T , where ν+
α is the average frequency of

positive slope crossing of the level α. The positive level crossing has specific importance that it gives the next average time

∗ Corresponding author.
E-mail address: fshayeganfar@gmail.com (F. Shayeganfar).

0378-4371/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2011.07.037

http://dx.doi.org/10.1016/j.physa.2011.07.037
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:fshayeganfar@gmail.com
http://dx.doi.org/10.1016/j.physa.2011.07.037


210 F. Shayeganfar et al. / Physica A 391 (2012) 209–216

Fig. 1. The level crossing analysis of the DAX log-returns (original, shuffled and surrogated) and uncorrelated Gaussian time series. Inset: the log–log plot
of level crossing frequency versus level α for DAX log-return time series. The Gaussian uncorrelated time series has exponential tails (∼ exp(−4α2)), while
the daily DAX time series has power-law tails with exponent ≃3.5.

scale that the price yi will be greater than the yi−1 again up to specific level. For narrow band processes, it has been shown
that the frequency ν+

α can be deduced from the underlying joint probability distribution function (PDF) for x and dx/dt = ẋ.
Rice proved that [2]

ν+

α =

∫
∞

0
ẋp(x = α, ẋ)dẋ, (1)

where p(x, ẋ) is the joint PDF of x and ẋ. For discrete time series (of course all of real data are discrete), the frequency ν+
α can

be written in terms of joint cumulative probability distribution, P(xi > α, xi−1 < α) as [39],

ν+

α = P(xi > α, xi−1 < α) =

∫ α

−∞

∫
∞

α

p(xi, xi−1)dxidxi−1, (2)

where p(xi, xi−1) is the joint PDF of xi and xi−1. The inverse of frequency ν+
α gives the average time scale Tα that one should

wait to observe the given level α again.
The rest of this paper is organized as follows. Section 2 is devoted to summary of level cross analysis of DAX and daily

oil price log-returns. The inverse statistics of DAX and Oil price time series are given in Section 3. Section 4 closes with a
discussion and conclusion of the present results.

2. Level crossing

Here, at first we provide the results of level crossing analysis for two normalized log-return time series, daily German
stock market index (the DAX) and daily oil price. The daily fluctuations in the oil price and DAX time series were belong to
the period 1998–2009. We also study the asymmetric properties of level crossing analysis for positive and negative level
crossing of the time series. To have a comparison, we provide also level crossing analysis of synthesized uncorrelated noise.
Also we will provide the results of level crossing analysis of high frequency data for DAX with sample rate 4 (1/min), where
we have used 2511,000 data points and belongs to the period 1994–2003.

Fig. 1 shows the frequency ν+
α for daily log-returns of DAX and synthesized uncorrelated noise. The PDF of synthesized

uncorrelated noise is Gaussian and it has white noise nature (i.e. its correlation has delta-function behavior). As shown in
Fig. 1, their level crossing frequencies are almost similar near toα ≃ 0 andhave deviation for levels in the tails. The difference
is related to the non-Gaussian PDF of DAX log-return time series (see below). For the normalized Gaussian uncorrelated
noise, one can show that the frequency ν+

α is given by

ν+

α =
1
4
[1 − erf 2(α/

√
2)], (3)

where erf (U) is the error function. In Fig. 1, a comparison between the analytical and numerical results for uncorrelated
Gaussian time series is given. For Gaussian uncorrelated data, the frequency ν+

α behaves as

ν+

α ≃
1
4
exp(−α2/2π) forα → 0
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Fig. 2. The PDf P(K , α) versus K for different levels α for normalized log-returns time series of the daily German stock market index (DAX) (top), oil daily
price (bottom) and uncorrelated synthesized data.

ν+

α ≃
1
4
exp(−4α2/π) forα → ±∞, (4)

while we have found that ν+
α for daily DAX and oil price time series have power-law tails 1/|α|

β with exponents βDAX =

3.5 ± 0.1 and βoil = 3.8 ± 0.2, respectively (see inset of Fig. 1). It means that the DAX and oil price time series have
non-Gaussian tails for their level crossing. We note that within the error bars, the exponent βDAX ≃ βoil. However, the
exponent β may depend on the sample rate of data acquisition (see below). The exponent β can be estimated using the
method proposed in Refs. [40–42]. If the PDF or ν+

α follows a power law with exponent β = κ + 1, one can estimate the
power-law exponent κ by sorting the normalized returns or levels by their sizes, α1 > α2 > · · · > αN , with the result [41]
κ = (N − 1)[

∑N−1
i=1 ln αi

αN
]
−1, where (N − 1) is the number of tail data points.

In general, there are two reasons to have non-Gaussian tails for level crossing of given time series; (i) due to the fatness
of the probability density function (PDF) of the time series, in comparison with a Gaussian PDF. By definition a fat PDF is
defined via the behavior of its tails. If its tail goes to the zero slower than a Gaussian PDF, thenwe call it as fat tail PDF. In this
case, non-Gaussian tails cannot be changed by shuffling the series, because the correlations in the data set are affected by
the shuffling, while the PDF of the series is invariant, (ii) due to the long-range correlation in time series. In this case, the data
may have a PDF with finite moments, e.g., a Gaussian distribution. The easiest way to distinguish whether the PDF shape or
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Fig. 3. The PDF P(K = 0, α) versus α for DAX, oil daily price and uncorrelated synthesized normalized log-return time series. The inset is the same figure
with a wide range of α’s. The results for uncorrelated synthesized data are plotted to have a comparison.

long-range correlation is responsible for the fastnesses of ν+
α for the DAX and oil log-returns time series, is by analyzing the

corresponding shuffled and surrogate time series. The level crossing analysis will be sensitive to correlation when the time
series is shuffled and to probability density functions (PDF) with fat tails when the time series is surrogated. The long range
correlations are destroyedby the shuffling procedure and in the surrogatemethod thephase of the discrete Fourier transform
coefficients of time series are replaced with a set of pseudo-independent distributed uniform (−π, +π) quantities. The
correlations in the surrogate series do not change, but the probability function changes to Gaussian distribution [43–45].

In Fig. 1, the level crossing frequency of shuffled and surrogated DAX time series are given. The figure shows that the
frequency ν+

α has more difference for original and surrogated time series and means that the non-Gaussian tails for ν+
α due

to the fatness of PDF is dominant [16]. We have found similar results for daily oil price log-returns.
Now let us introduce the PDF, P(K , α), which provides us the probability of observing K times of the level α with positive

slope, in the averaged time scale Tα . By construction the average ⟨K⟩, i.e. ⟨K⟩|α =
∑N

K=0 KP(K , α) will be unity and P(K , α)

satisfies the normalization condition
∑N

K=0 P(K , α) = 1. In principle we can assume that the upper bound, i.e. N to be
infinity. For the processes and levels that satisfy P(0, α) ≪

∑N
K=1 P(K , α), we expect to have a good estimation about the

future of process. This means that one will observe the level α with high probability in time scale Tα at least once. For the
levels that the PDF P(K , α) satisfies

∑N
K=1 P(K , α) ≈ P(0, α), the process will be not predictable. Fig. 2 shows the PDF

P(K , α), for daily DAX and oil price log-return time series for different levels α. We plotted also P(K , α) for some levels of
synthesized Gaussian uncorrelated data to have a comparison. As shown in Fig. 2 the upper boundN is about 6, whichmeans
that it is almost impossible to observe same level α in average time scale Tα more than 6 times, even for the white noise. We
used 107 data points for white noise synthesized data and found that the maximum number of observing is also about 6.

To find the best interval for the estimation of time series future, we consider the variation of the PDF, P(0, α)with respect
to the level α. This will enable us to find the range and intervals of levels that one can estimate the future of these time series
with high accuracy. In Fig. 3 the PDFs P(K = 0, α) for daily DAX, oil and uncorrelated synthesized time series, are given. It
shows that the P(K = 0, α) of daily DAX and oil time series for the interval −0.5 < α < 0.5 has smaller probability with
respect to uncorrelated time series. It means that with high probability (with respect to white noise), one can observe the
level α at least once in time scale Tα for αs belong to this interval. The typical time scale Tα for this interval is about 4 days
for the daily DAX and oil time series, respectively. The corresponding time scales Tα for different αs are shown in Fig. 4. For
the daily DAX and oil price time series (for the interval 2 > α > −2), we found the following empirical curve fittings:

Tα(DAX) = 4.10 − 0.18α + 4.90α2
+ 0.21α3

+ 0.94α4,

Tα(oil) = 3.90 − 0.37α + 5.70α2
+ 0.57α3

+ 1.69α4 (5)

where Tαs have the dimension ‘‘days’’. To check the applicability level crossing for forecast of the time series, in Fig. 5 we
plotted the daily time series of DAX and indicates the points with level α = 0 with red points. The average Tα for this level
indicated by vertical lines. We expect that in this time scale one should observe another red points with high probability.
We also investigated the asymmetry properties of time series with respect to positive and negative slopes.

Finally, we have done similar analysis to the high frequency DAX time series and find that the best interval to estimate
the future is −0.01 < α < 0.01. The typical time scale belong to this level is about 75 s and the obtained exponent β
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Fig. 4. The level dependence of average time Tα for daily DAX and oil price log-return time series.

Fig. 5. The points (red) with level α = 0 for daily DAX time series. We expect that in this time scale one should observe another red points with high
probability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

was 2.4 ± 0.1. For this time series, the averaged time scale Tα depends on the level α as

Tα(DAX) = 72 − 3α + 186α2
+ α3

− 4α4, (6)

where Tα has dimension in seconds.

3. Inverse statistics

To modeling the statistical properties of financial time series, Simonsen et al. [46] asked the ‘‘inverse’’ question: what
is the smallest time interval needed for an asset to cross a fixed return level γ ? or what is the typical time span needed
to generate a fluctuation or a movement in the price of a given size [46–50]? The inverse statistics is the distribution of
waiting times needed to achieve a predefined level of return obtained from every time series. This distribution typically
goes through a maximum at a time the so called optimal investment horizon, which is the most likely waiting time for
obtaining a given return [51]. Let y(t) be the price at time t . The logarithmic return calculated over the interval ∆t is,
r∆t(t) = ln(y(t+∆t))−ln(y(t)). Given a fixed log-returned barrier, γ , of an index, the corresponding time span is estimated
for which the log-return of index for the first time reaches the level γ . This can also be called the first passage time through
the level γ for r∆t . In Fig. 6, we plotted the probability distribution p(τ ) of normalized waiting time τ needed to reach
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Fig. 6. The probability distribution p(τ ) of normalized waiting time τ needed to reach return levels at scale τ , i.e. γ = 0, 1σ and 2σ for two financial
markets including oil and DAX time series. Solid curves are the fitted curve (Weibull distribution) based on Eq. (7).

return levels γ = 0, 1σ , 2σ for daily oil, daily DAX log-returns and integrated white noise data (i.e. fractional Brownian
motion, fBm).

As Fig. 6 show, for the zero level for r∆t , inverse statistics of the two markets does not deviate from fractional Brownian
motion while they are rather different behavior from fBm for γ = 1σ and 2σ . We fit the waiting time distribution functions
p(τ ) for different level γ via the Weibull distribution function [52]:

p(τ , T ) =
δ

T

 τ

T

δ−1
exp

[
−

 τ

T

δ
]

(7)



F. Shayeganfar et al. / Physica A 391 (2012) 209–216 215

Table 1
The stretched exponent δ and characteristic time scale T
fitted by Weibull distribution for various time series.

γ Time series δ T

0 fBm 0.423 1.849
0 Oil 0.347 1.132
0 DAX 0.312 5.791
1 fBm 0.704 13.145
1 Oil 0.496 7.943
1 DAX 0.600 6.836
2 fBm 0.956 34.178
2 Oil 0.878 32.480
2 DAX 0.988 18.631

where δ is the stretched exponent (or shape parameter) and T is the characteristic time scale. We found δ and T for fBm and
Oil and DAX time series and summarized results in Table 1.

4. Conclusion

In summary, we analyzed the DAX and oil daily price log-return time series using the level crossing method and
find the average waiting time Tα for observing the level α again. This is a similar analysis as what has been done in
Refs. [53,54,40]. They have been carried out the level crossing of the volatility time series, instead of the time series itself.
We define and estimate the probability of observing K times of the level α, P(K , α) in time scale Tα . We show that by using
the level crossing analysis one can estimate the future of the daily DAX and oil time series with good precision for the levels
in the interval −0.5 < α < 0.5. Also, using the inverse statistics we estimate the waiting time probability distribution for
two financial markets, i.e. oil and DAX time series.
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