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The existence of the important similarities between gelation and glass transition makes it hard to distinguish
between the two types of nonergodic states experimentally. Here, we report on a stochastic analysis of the
scattered light intensity through a colloidal particles suspension during the gel and glass formation. In this
analysis, we exploit the methods developed for complex hierarchical systems, such as turbulence. Using the
multiplicative log-normal cascade models, we provide a criterion to distinguish gels from glasses.
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I. INTRODUCTION

Understanding the nature of disordered and nonequilib-
rium states of matter is of fundamental significance that has
been an intense subject of research over the past few decades
�1–13�. Gaining an insight into the structure of disordered
states from both dynamic and static point of view has also
direct practical implications. One of the main issues in the
field is the distinction of gel and glassy states, which is still
a matter of debate and demands further clarification despite
the considerable amount of research going on in this area.
The recent progresses in experimental manipulation tech-
niques has promoted colloids as interesting model systems to
elucidate the physics of various equilibrium and nonequilib-
rium physical phenomena including the glass formation and
gelation.

Both gelation and glass formation can be considered as
manifestations of the general Brownian motion in different
regimes. Brownian motion is one of the most well known
and fundamental of stochastic processes that has indeed
come to occupy a central role in the theory and applications
of stochastic processes. The displacement of a Brownian par-
ticle r with respect to its initial position at time t is a random
stochastic variable that in the simplest case, obeys a Gauss-
ian distribution with a zero mean. Colloidal particles having
a size less than one micrometer undergo a random thermal
Brownian motion in the dispersed fluid and their diffusion
can be described by a general random walk. In the simplest
case of dilute noninteracting spherical colloidal suspensions,
the conditional probability distribution function of a single
particle displacement follows the diffusion equation. How-
ever, for interacting colloidal particles, the diffusion of par-
ticles does not obey the simple diffusion equation anymore
but can be described in the general framework of Smolu-
chowski equation �1�. For strongly enough interacting par-
ticles the diffusion of particles is slowed down as a result of
interactions with neighboring particles. Depending on the
strength and nature of interactions �repulsive/attractive� and
volume fraction of particles then different types of disor-
dered arrested states of matter are observed �4�.

In repulsive colloidal systems as the particle volume frac-
tion is increased, the particles become increasingly slower

and for even higher volume fractions the glass transition is
encountered �2�. On the other hand, colloidal gels are known
to form at extremely low volume fractions 10−4–10−2 in the
presence of strong attractions �5� and of course in the inter-
mediate regime where the repulsive and attractive interac-
tions compete with each other a new state known as attrac-
tive glass emerges �4,14�. Gelation and the glass transition
have important similarities. Both are ergodic to nonergodic
transitions that are kinetic, rather than thermodynamic, in
origin and distinguishing between these two types of noner-
godic states experimentally is a long-standing controversy
�7–11�.

Laponite clay suspension modeled as a system of charged
colloidal disks is an interesting system for which for both
glass- and gel-like nonergodic states are reported �12–14�.
The prominent feature of Laponite suspensions is their
strong aging behavior, i.e., the evolution of the physical
properties �diffusion, viscosity� of system with time elapsed
since the sample preparation. Measuring the intensity corre-
lations of scattered light from a large number of aging Lapo-
nite suspensions, one always observes two regimes of aging
in the evolution of the intensity correlation functions. In the
first regime the system is ergodic, whereas the second regime
corresponds to a nonergodic arrested state. Changing the vol-
ume fraction in this system from very low values 10−3 to
higher values 10−2, first gel-like and then a glasslike ergodic
to nonergodic transition is observed. Indeed changing the
volume fraction, not only the number density of clay par-
ticles is changed but also the ionic strength which is a deter-
mining factor in electrostatic interaction is changed dramati-
cally �14� leading to crossover from a gel state to a glass
state.

Studying the aging dynamics of Laponite suspension from
the ergodic regime to non-ergodic regime by light scattering
Jabbari et al. provided direct criteria distinguishing gels from
glasses �12,14�. Furthermore measuring the evolution of
static structure factor of Laponite suspensions by means of
small-angle x-ray scattering Ruzicka et al. provided another
evidence of distinguishing between gel and glasses �13�. To
summarize, the structure factor of glass state �high concen-
trations� is homogenous and changes very little with waiting
time reminiscence of a frozen liquid but that of a gel state
�low concentrations� is inhomogeneous and evolves with
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time dramatically, suggesting formation of networklike struc-
ture or aggregation. From the dynamic point of view the
diffusion of particles in gel and glass measured by dynamic
light scattering behave very differently, although both show a
nonexponential decay of correlation function which is a di-
rect evidence of a non-Gaussian distribution of particles dis-
placement. The short-time diffusion of particles in glass de-
creases only slightly while it drops significantly in a gel
during the ergodic to nonergodic transition. The slow relax-
ation time of a glass grows exponentially with waiting time,
while that of a gel grows faster than exponentially. Further-
more, the distribution of relaxation times is different between
a gel and glass. A gel has a broad distribution, whereas a
glass has a double-peaked broad distribution of relaxation
times �12�.

All these differences suggest that the random motion of
particles in a glass intrinsically is different from that of a gel.
Therefore, finding statistical tools that quantify these differ-
ence can provide us more insights and another direct method
of distinguishing gels and glasses. The aim of this paper is to
distinguish between gels and glasses by means of advanced
stochastic analysis methods to analyze the time series of the
scattered intensity during the gelation and glass formation,
see Fig. 1 for a typical time series of the stochastic light
intensity.

The time-dependent intensity of scattered light intensity
is related to the fluctuating displacements of colloidal par-
ticles �the spatial Fourier transform of particles displace-
ment� and reflects the instantaneous motion of them. There-
fore, stochastic analysis of the time series of the scattered
intensity can provide us with useful information about the
nature of thermal random motion of Brownian particles. In
the simplest case of dilute noninteracting particles, the scat-
tered intensity time-series is a Markovian process with a
Gaussian distribution. In a recent publication, we demon-
strated that the fluctuations in the time series of the scattered
intensity during the glass formation belong to this family of
complex signals �15�. Using the multiplicative cascade
model, Markovian method �16–20�, and volatility correla-

tions we showed that the light scattering intensity fluctua-
tions from an aging glassy sample of Laponite shows a non-
Gaussian character as expected and we provided methods for
quantifying the deviations from the Gaussian process �15�. In
this work, we have extended our previous study and have
investigated the stochastic properties of light intensity fluc-
tuations from different gel and glassy samples of Laponite as
a function of waiting time using a robust method which is a
type of cascade model �21–24�.

Several cascade models have been proposed to model the
experimental observations �22,23,25–27�. Castaing et al.
proposed a multiplier method to model the probability den-
sity function �PDF� of a data set successive increments at
different time scales �28�. This method is known also as log-
normal cascade model and was introduced to study of fully
developed turbulence �28,29�. However, it has been applied
in diverse set of phenomena, such as solar and wind energies
�30�, foreign exchange rate �31�, stock market index �32,33�,
human heartbeat fluctuations �34�, and seismic time series
�35�.

The advantages of the cascade models are twofold. First,
they provide a kernel to change the shape of probability dis-
tribution function from scale s to another scale s�. Second,
they characterize the non-Gaussian shape of PDF with a
so-called non-Gaussian parameter, here denoted as �s

2. We
would like to note the readers that the non-Gaussian param-
eter �s

2 defined here is different from the conventional one
which quantifies the deviations of the ratio of the fourth mo-
ment to 3 times the second moment of a stochastic variable
from unity, sometimes also called flatness. The non-Gaussian
parameter �s

2, captures the information from the whole shape
of PDF, while the flatness only depends on second and fourth
moments and does not include the complete information
from the tails of PDF.

Our analysis of probability distribution function of the
normalized scattered intensity shows that this distribution is
non-Gaussian as expected and evolves with waiting time.
The non-Gaussian parameter �s

2 extracted from the data
grows with waiting time for both gel and glass samples.
However, its rate of growth is different for gel and glass
samples and the value of non-Gaussian parameter is smaller
in gel samples, indicating the different nature of stochastic
motion of colloids in gel and glass phase.

The paper is organized as follows: In Sec. II, we provide
a brief review of the probability distribution function in the
multiplicative cascade model. The sample preparation and
experimental setup to record the intensity of light scattering
are described in Sec. III. Application of the method to ex-
plore the stochastic nature of ergodic to nonergodic transition
in colloidal suspensions is presented in Sec. IV. The last
section is devoted to the discussion and concluding remarks.

II. MULTIPLICATIVE CASCADE MODELS:
NON-GAUSSIAN PARAMETER

It has been shown that a non-Gaussian probability density
function with fat tails can be represented by a stochastic
multiplicative processes �28,36–40�. Suppose that �y�t�� is a
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FIG. 1. �Color online� Intensity of light scattering during the
gelation process. Inset: the time series for the I�t+1�− I�t�. In this
paper, we express intensities in terms of the detector count rate in
kHz.
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time series and consider its increments as Zs�t�=y�t+s�
−y�t�. Let us define zs�t�= �Zs�t�−Zs� /�, where Zs and � are
the mean and variance of increments time series Zs�t�.

In the cascade model one assumes that for a fixed t, the
fluctuations at scales s and �s are related through the cascad-
ing rule,

z�s�t� = W�zs�t�, ∀ s, � � 0, �1�

where ln�W�� is a random variable. Iterating Eq. �1� forces
implicitly the random variable W� to follow a log infinitely
divisible law �41�. One of the simplest candidates for such
processes is:

zs�t� = �s�t�e�s�t� �2�

where �s�t� and �s�t� possess both independent Gaussian
probability density function with zero mean and variance �s

2

and �s
2, respectively. Indeed the Eq. �2� was demonstrated to

describe how the stochastic fluctuations evolve from large to
small scales. The probability density function of increments
zs�t� has been introduced by Castaing et al. �3�, and it has the
following expression,

Ps�zs� = �
0

�

Gs,�s
�ln ��

1

�
F� zs

�
	d�ln �� . �3�

where Gs,�s
is the self-similarity kernel and Ps�zs� converges

to a Gaussian function when �s→0. In practical application
to determine the scale-invariant behavior of probability den-
sity function of multiplicative processes, the non-Gaussian
parameter �s

2 is estimated from common method of Bayesian
statistics �42�. We introduce measurements and model pa-
rameters as �X� : �z� and ��� : ��s ,�s�, respectively. According
to the Bayes theorem one has:

P��s,�s
X� =
L�X
�s,�s�P��s,�s�

� L�X
�s,�s�d�sd�s

. �4�

The first term in the nominator of r.h.s of the Eq. �4� is
Likelihood and the second terms contains every initial infor-
mation concerning model parameters, so-called prior distri-

bution and expresses the degree of belief about the model. In
the absence of every prior constraints, the posterior function,
P��s ,�s 
X� is proportional to the Likelihood function. If
there is no correlation between various measurements, con-
sequently according to the central limit theorem, Likelihood
function is given by a product of Gaussian functions as fol-
lows:

L�X
�s,�s� = exp�− �2��s,�s�
2

� . �5�

where �2 is defined by:

�2��s� =� dzsd�s
�Ps�zs� − Pcastaing�zs,�s,�s��2

��numeric
2 �zs� + �castaing

2 �zs,�s,�s��
. �6�

Here Ps�zs� and Pcastaing�zs ,�s ,�s� are PDFs computed di-
rectly from the data set and determined by Eq. �3�, respec-
tively. Also, �numeric is the mean standard deviation of Ps�zs�
and �castaing is associated to probability density function de-
rived by the left hand side of Eq. �3�. Apparently, this Like-
lihood function to be maximum when for a value of the
non-Gaussian parameter �s, �2 reaches to its global mini-
mum. From computational point of view, marginalizing over
the nuisance parameter, �s, may be taken too long, conse-
quently to avoid this inconvenience, one can rewrite cascade
model as:

Ps�zs� = �
0

� 1


2	�s
2
exp�−

ln2��/�s�
2�s

2 �



1

2	�2

exp�−
zs

2

2�2	d�ln �� . �7�

For a data set, �z�, with zero mean and unit variance, the
left hand side of Eq. �7� has unit variance while the variance
of the right hand side is �1=exp��s

2�. Therefore to have con-
sistent equation one should choose �s=exp�−�s

2� �40�.
We use data set with zero mean and unit variance through

this paper to construct the cascade model. Therefore the Eq.
�6� has just one free parameter and is modified as:
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FIG. 2. �Color online� Continuous deformation of the increments’ PDFs for the data sets �a� just after preparation of sample �tw

=80 min� in the low viscose phase and �b� during the appearance of viscoelastic phase �tw=610 min� �here glass system� for s=5, 10, 20,
and 40 ms �from top to bottom�. Solid curves are the PDFs based on Eq. �3�, while dashed curves are the Gaussian PDF. For clarity, the PDFs
are shifted in the vertical directions.
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�2��s� =� dzs
�Ps�zs� − Pcastaing�zs,�s��2

��numeric
2 �zs� + �castaing

2 �zs,�s��
. �8�

Minimizing this �2 will give us the best Castaing param-
eter, �s

2 �28,43�. Recently it has been shown that the value of
parameter �s

2 can be used as a precursor for extreme events
such as earthquakes and crash of stock markets �32–35�.

In the following, we will report the experimental setup
and data preparation, and focus to explore time evolution of
scattered light intensity from Laponite colloidal suspension.
To detect the gel and glass transitions we use the Castaing
parameter, �s

2 to investigate the temporal evolution of non-
Gaussian parameter.

III. EXPERIMENTAL SETUP AND MEASUREMENTS

The Laponite grade used in this study was the Laponite
XLG. We first dried it in an oven at 100 °C for one week
and subsequently stored it in a desiccator to avoid moist
adsorption from the air. We prepared a number of Laponite
samples with different concentrations raning from 0.2 wt %
to 3.6 wt %. Laponite solutions were prepared in ultra pure
Millipore water �18.2 M� cm−1� and stirred vigorously by a
magnetic stirrer for one hour and a half to make sure that the
Laponite particles are fully dispersed. Subsequently, the dis-
persions were filtered using Millipore Millex AA 0.8 �m
filter units to obtain a reproducible initial state. This instant
defines the zero of waiting time, tw=0. A standard dynamic
light scattering ��=632.8 nm� measured the time-series of
scattered intensity fluctuations at scattering wave vector q
= 4	n

� sin� �
2 �, in which �=90° is the scattering angle. The in-

tensity values were recorded every 406 �s.

IV. STOCHASTIC QUALIFIER OF THE GEL
AND GLASS TRANSITIONS

We devote this section to the stochastic analysis of the
time series of scattered light intensity from aging Laponite

suspensions. When dissolved in water, Laponite spontane-
ously evolves from an initially ergodic liquidlike state to a
nonergodic solidlike state. Therefore, two regimes of aging
are observed: �i� the ergodic regime, where the measured
time series is independent of position measured in the
sample, �ii� the nonergodic regime where the measured time
series depends on the position on the sample measured. In
this regime, we measure an extra time series, in which we
rotate the sample during the measurement and obtain the
ensemble-averaged intensity. The transition from ergodic to
nonergodic regime occurs at a certain time which we call
ergodicity-breaking time and denote it as teb.
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FIG. 3. �Color online� Scale dependence of �s
2 vs log s for ergodic regime, �a� gel samples and �b� glass samples.
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average value of �s

2 for glass samples are higher than its value for
gel samples. It means that the PDF of light intensity increments has
more deviation from Gaussian tails for glass samples.
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We are interested in detecting the differences in the evo-
lution of stochastic parameters during the ergodic to noner-
godic transition in “gel” and “glass” states of Laponite col-
loidal suspension. Below, we describe in detail the method
used for stochastic analysis of the data and the criterion ob-
tained for distinguishing gels from glasses.

Let us consider the increment time series �y�i�� as y�i�
= I�i+1�− I�i�, where, I�t� is the scattered light intensity at
time t �see inset plot of Fig. 1�. We divide our data set into
the semioverlapping subintervals �1+s�k−1� ,s�k+1��, where
s shows the value of scale used to construct data set and k is
the index of the window of length 2s. We use a first order

polynomial function in order to remove the possible trends
which may be presented in the underlying data for each
scale, namely s �32,34�. The deviation from corresponding
fitting function is given by yd�i�. After detrending procedure
a new data set on scale s, as Zs�i�=yd�i+s�−yd�i� is created.
Here i runs from 1+s�k−1� to s
k. As mentioned in the
previous section for convenience, we rewrite time series as
zs�t�= �Zs�t�−Zs� /�, where � and Zs are the standard devia-
tion and mean of data, respectively.

Now, we can obtain the PDF of normalized time series
zs�t� directly from the data. Figure 2 shows PDFs of incre-
ment zs for time scales just after preparation of sample tw
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=80 min in the low-viscose phase and at a later waiting time
tw=610 min, where the some viscoelastic properties are de-
veloped in the system. The sample has glass properties. One
can see a continuous deformation of PDFs in various scales
for the sample just after preparation �Fig. 2�a��. While, after
the ergodic to nonergodic transition PDFs are scale-invariant
functions with respect to changing scale s �see Fig. 2�b��.
Solid curves are the PDFs based on Eq. �3� and the dashed
curves are the Gaussian PDFs. We have found similar behav-
ior for gel samples.

In the ergodic regime of aging, we have used the Eqs. �6�
and �8� based on likelihood method to find �s

2 in terms of
scale s. Figure 3 displays the scale-dependence of �s

2 for both
gel and glass samples in the ergodic regime. We observe that
for a given s, �s

2 increases with waiting time and for glass
samples �s

2 is almost constant in the ergodic regime of aging
for scales s�1 sec. To get a better insight into the evolution
of the non-Gaussian parameter with waiting time, we have
plotted �s

2 at a fixed scale, for instance s=4 ms, as a function
of waiting time scaled with ergodicity-breaking time tw / teb in
Fig. 4.

According to Fig. 3, for s=4 ms, the difference between
the values of �s

2 is large enough for ergodic and nonergodic
regimes. Hence, such a time scale may be used as the char-
acteristic time for the dynamics of the non-Gaussian indica-
tor �s

2. Figures 4 clearly demonstrate a systematic increases
of �s

2 for both gel and glass samples at this scale. From this
figures, we notice that the average value of �s

2 for glass
samples are higher than its value for the gel samples pointing
to the fact that the PDF of light intensity increments shows a
more pronounced deviation from Gaussian behavior for glass
samples. Besides, this figure shows that the evolution of �s

2 is
faster in glasses than gels, reflecting the different nature of
particles diffusion in the two systems.

As we mentioned before, in the nonergodic regime of ag-
ing, we measure two time series. One which is measured at a
specific point of the sample and one which is measured while
rotating the sample to obtain the ensemble averaging for the
nonergodic sample. We obtain the non-Gaussian parameter
for each of these time series which we denote with �s

2 �spe-
cific point� and �s

2�rot� �rotating sample time series� and then
look at the difference of their values, i.e., �s

2−�s
2�rot�. In Fig.

5, we have displayed the scale-dependence of �s
2−�s

2�rot� at
different waiting times larger than ergodicity-breaking time.
We find that the values of �s

2−�s
2�rot� for the gel systems are

systematically smaller than those for the glass systems and
show a much weaker dependence on waiting time. Indeed its
absolute values are almost zero for gel systems.

Also to distinguish the gel and glass phases, we have
plotted the ensemble average of �s

2−�s
2�rot� as a function of

Laponite concentration in Fig. 6. It is defined as:

��s
2 − �s

2�rot�� =
1

N�smax − smin�
�
i=1

N

�
s=smin

smax

�s
2 − �s

2�rot� , �9�

where N is the number of ensembles for each concentration.
As clearly seen in Fig. 6, there are two separate regions
related to gel and glass phases. Again the absolute values of
��s

2−�s
2�rot�� are almost zero for the gel systems.

V. DISCUSSION AND CONCLUSION

We have employed stochastic analysis methods based on
cascade model to analyze the time series of scattered light
intensity from aging Laponite suspensions. In this analysis,
we have characterized the non-Gaussian nature of the light
scattering intensity increments from aging gel and glassy
samples by a non-Gaussian parameter �s

2 and show that this
parameter behaves differently for gel and glass samples.
Therefore, it can be employed as a criterion for distinguish-
ing the gel transition from the glass transition. We find that in
both ergodic and nonergodic regimes of aging, the non-
Gaussian parameter is larger for the glassy samples com-
pared to that of gel samples. Furthermore, we find that the
non-Gaussian parameter grows with waiting time for both
gel and glass samples in the ergodic regime. In the noner-
godic regime, the non-Gaussian parameter remains mainly
constant for the gel samples while it keeps on growing for
glassy samples. This points to the different nature of gel and
glassy samples and different types of mechanisms respon-
sible for the aging of gel and glass. In a glass, the motion of
particles is slowed down because particles are trapped in
cages formed by their neighboring particles whereas in a gel
the slowing down of motion of particle is due to formation of
some sort of structure �network-like or aggregates� within the
system. These findings are also in accord with the previous
observation �12,13� in which the deviation from Gaussian
behavior are quantified by the stretching exponent of
stretched exponential function used to fit the correlation
functions of light intensity. There, also one obtains a larger
stretch exponent for glassy samples. We would like clarify
that in our work the non-Gaussian parameter shows different
behavior for the gel and the glass transitions of Laponite
suspensions which occur at different densities. However, we
believe that our method is also applicable to distinguish the
gel and glass transition happening at the same density, work
in this direction is on the way.

Laponite concentration (wt%)
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s2 (r
ot
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>
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FIG. 6. �Color online� The ensemble average of ��s
2−�s

2�rot�� as
a function of Laponite concentration.
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