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We have used the dynamic method to calculate the frequency dependence
of the localization length in a disordered medium, using the amplitude
change and the redshift of the spectral density of the propagating incident
pulse. The frequency dependence of the localization length in an effectively
one-dimensional disordered medium is computed in terms of the strength of
the disorder. The results obtained with the dynamic method are confirmed
by computing the same results using the transfer-matrix method.

1. Introduction

Heterogeneous materials and media, both natural and man-made, are ubiquitous [1],
and are of tremendous importance and interest. Examples include porous media,
composite materials, and biological systems. Due to their significance, static and
dynamical properties of heterogeneous materials have been studied for decades,
using experimental, theoretical, and computer simulation methods. Among the
dynamical phenomena that occur in disordered materials that have been studied are
transport of charge, stress, and waves. It is the last subject that is of interest to us in
this paper.

Propagation of waves in heterogeneous materials has been studied for several
decades [2]. Many rigorous results have been derived. For example, it has been
shown [3,4] rigorously that in one-dimensional (1D) disordered media with diagonal
disorder and short-range correlations, even infinitesimally small disorder is sufficient
to localize the wavefunction, irrespective of the energy. In that case, the envelope
of the wavefunction  (r) decays exponentially at large distances r from the
domain’s center,  (r) � exp[�r/�(E)], with �(E) being the localization length at
energy level E.

*Corresponding author. Email: mohammed.r.rahimi.tabar@uni-oldenburg.de

ISSN 1745–5030 print/ISSN 1745–5049 online

� 2010 Taylor & Francis

DOI: 10.1080/17455030903506054

http://www.informaworld.com



The known exact results are limited mostly to low-dimensional media. Thus, the
main tool for studying wave propagation in heterogeneous media has been
numerical simulations. Among the various numerical techniques used in the
simulations to estimate the effective properties of disordered media, such as the
localization length, is the transfer-matrix (TM) method [5,6]. In the TM method
one fixes the frequency of the wave, or the energy of the incident particles, and
calculates the Lyapunov exponent, the inverse of �. In the limit of weak disorder,
however, the convergence of the TM method requires intensive computations.

The localization concept has been extended to the propagation of classical waves,
e.g. ultrasound [7] and electromagnetic [8–11] waves. Such studies have been followed
by observation of weak localization and studying the shape of the coherent back-
scattering cone [12–16]. The experimental evidence for localization (of Anderson type)
of light in optical systems was provided by Wiersma et al. [8] in semiconducting
powders that are highly scattering. They reported a diffusive regime for large particle
sizes, and a localized regime, i.e. one in which the transmission coefficients decays
exponentially with the sample thickness, for particles with small diameters.
The transverse localization of light was also observed experimentally in a 2D
disordered photonic lattice [17]. The intensity distribution of the Gaussian beam of
light in the transverse directions was studied by propagation in the longitudinal
direction. The average effective width of the light beam, weff, was found to increase
with the propagation distance Z, and to follow a power-law relation, weff¼Z�. By
increasing the disorder strength the transport mechanism changed from the ballistic
(�¼ 1) type to the diffusive (�¼ 0.5), and eventually the localized (�¼ 0) regime.

Propagation of a light pulse, known as the dynamic method, is another way of
investigating Anderson localization. Various experiments have reported the existence
of a non-exponential long-time tail of the transmitted intensity of the pulse in
strongly disordered media [18–20]. The same has also been investigated numerically
[21,22]. The self-consistent theory of Anderson localization has also been applied to
the study of the dynamics of localized waves in random media [23,24].

In this paper we use the dynamic method in order to compute the localization
length � of electromagnetic fields in a disordered medium, using the amplitude change
and the redshift of the intensity of the spectrum density (SD) of an incident pulse
propagating in the medium. We consider the transmission of a wave pulse that
contains a wide range of frequencies, which allows us to compute �(!). The wave
disperses during its propagation and loses energy by multiple scattering caused by the
fluctuations of the background dielectric constant � that varies spatially.
By calculating the SD of the transmitted pulse at several distances from the source,
we determine the exponential decay of the SD as a function of the distance,
particularly for high frequencies. This would enable us to determine the frequency
dependence of the localization length. The spectrum of the high frequencies decreases
faster than that of the low frequencies, and leads to a change in the maximum value of
the spectrum that indicates a redshift of the SD due to the propagation in random
media. We also utilize the TMmethod to compute the localization length over a range
of frequencies, and compare the results with those obtained with the dynamic method.

The rest of the paper is organized as follows. In Section 2 we describe the model
that we use, which is based on Maxwell’s equations and discuss its details.
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In Section 3 we present and discuss our numerical results. A summary of the paper is
presented in Section 4.

2. Model and methods

To study the propagation of electromagnetic waves in a disordered medium, we use
the dynamic Maxwell equations,

r �H ¼ @D=@t

r � E ¼ �@B=@t
ð1Þ

where D¼ �E, H¼��1B, and E is the electric field, while H represents the magnetic
field. The permittivity �(x) is assumed to be a random variable and is given by �ðxÞ ¼
�þ �ðxÞ ¼ k�0 þ �ðxÞ, where � ¼ h�ðxÞi is its mean value, and �(x) is a Gaussian white
noise with variance W, i.e. h�(x1)�(x2)i¼W2�(x1�x2).

Let us rescale the variables by writing x0 ¼ x/x0, t
0 ¼ ct=ðx0

ffiffiffi
k
p
Þ, E 0 ¼E/E0, B

0 ¼

cB=ðE0

ffiffiffi
k
p
Þ, and �0ðx0Þ ¼ �ðxÞ=�, which yields the following dimensionless equations:

J
0 �B0 ¼ [1þ �0(x0)]@E0/@t0, J0 �E0 ¼�@B0/@t0. The variance of � which is random in

1D is also rescaled as W 02 ¼W2=ð�2x0Þ, so that h�0(x01)�
0(x02)i¼ (W 02/d0)�x0

1
,x0

2
¼

�2�x0
1
, x0

2
, where d 0 is the lattice spacing in the rescaled system. Thus, the noise �0 is

characterized by the width � ¼ ðW 02=d 0Þ1=2 ¼ ðW2=W2
0Þ

1=2, with W2
0 ¼ �

2x0d
0 ¼ �2d.

To carry out the computations, we use finite-difference discretization and the Yee
algorithm [25]. For simplicity we use the indices (i, j, k) to denote (the center of ) one
basic cubic block of the Yee mesh (see Figure 1), and then the discretized rescaled
equations for, for example, the Ex component of the electric field E are given by

Exj
tþ1=2
i, j,k �Exj

t�1=2
i, j,k

¼
dt
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Figure 1. The basic cell of the Yee mesh. The length of the cube is d/2.
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where all the primes have been omitted for simplicity, and dt and d are the time step
and lattice spacing, respectively. To ensure the stability of the algorithm, we set
dt¼ d/8, and monitor the time variation of the total electromagnetic energy of the
system and its fluctuation.

We also used the TM method [5,6] in order to calculate the localization length of
electromagnetic waves. It is well known that to estimate the localization length using
the TM method in higher dimensions, one must utilize the finite-size scaling method
[5,6,26,27]. But, the resulting estimate cannot be compared directly with what is
obtained with the dynamic method. Therefore, to make a proper comparison we
compare the results obtained with both methods in a disordered medium that is
effectively one dimensional. We note that the estimation of the localization length
using the dynamic method does not need a finite-size scaling analysis in higher
dimensions, as it is applicable to any disordered medium of any space
dimensionality.

We begin with deriving the TM of the effective 1D model. The discretized
equations are given by

Bxðkþ 1Þ ¼ BxðkÞ � !d�½1þ �ðkÞ�EyðkÞ

Eyðkþ 1Þ ¼ EyðkÞ þ !dBxðkþ 1Þ:
ð3Þ

Thus, through numerical simulations values of Bx in the slice kþ 1 are computed
using values of Ey and Bx, in the slice k, while values of Ey in the slice kþ 1 are
calculated knowing Ey in the slice k and By in the slice kþ 1, which we compute in the
previous step. In the numerical simulations we set d¼ 1 and distribute the random
variable �, representing the disorder, uniformly in the interval [��, �]. To formulate
the TM computations, the equations for the fields Ey and Bx in 1D are written in the
following form,

Ey

Bx

� �
kþ1

¼ Tk

Ey

Bx

� �
k

, ð4Þ

where Tk is the TM for the slice k:

Tk ¼
1� d 2!2�½1þ �ðkÞ� !d

�!d�½1þ �ðkÞ� 1

� �
: ð5Þ

3. Results

We consider transmission of light through a lossless random medium that cannot
absorb the wave’s energy. The medium is constructed by layers (blocks) of random
dielectric constant �, arranged in series. Instead of studying the transmission of a
plane wave with a given frequency, we investigate propagation of a pulse in the
medium in which the pulse’s amplitude and the frequency content vary. The wave
disperses during its propagation and loses energy by multiple scattering caused by
the fluctuations of the background dielectric constant. Thus, the frequency spectrum
of the pulse changes, such that the amplitude of the higher frequencies decreases
faster than that of the low frequencies. We show below that the spectrum’s amplitude
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decays exponentially and, therefore, we may define a localization length for every
frequency. The inset of Figure 2 presents the initial pulse in time, while the main part
of the figure depicts the transmitted pulse.

We calculated the SD of the electromagnetic field from the Fourier transform of
the field, which is given by Nð!Þ ¼ 1

2 �E
2ð!Þ þ 1

2�B
2ð!Þ. Figure 3 shows the SD of the

electromagnetic wave versus the distance Z from the source, for the disorder strength
�¼ 0.9, where !0 is the peak frequency of the initial spectrum at Z¼ 0. At a given
distance Z there is a receiver and the results represent averages over 500 realizations
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Figure 3. (Color online) The initial spectral density N of the pulse at Z¼ 0 and the measured
ones at locations Z from the source. There is a redshift in the spectral density due to the
localization of various frequencies at different length scales.
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Figure 2. (Color online) The transmitted pulse for �¼ 0.5 at distance Z¼ 500 from the source.
Inset: initial pulse at Z¼ 0.
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of the disorder. For a given frequency, the waves’ amplitudes at the receivers that are
far from the source decay faster than those measured at the receivers that are near
the source. The decay also depends on the frequency, which is due to the scattering of
the different frequency content of the transmitted pulse over different length scales.
As shown in Figure 3, the high-frequency modes in a random medium scatter more
strongly than the low-frequency modes.

The important feature of Figure 3 is the fact that, because the pulse loses its
high-frequency contents much faster than those at low frequency, we obtain a shift in
the SD to the small frequencies that represents a redshift. The redshift enables us to
estimate the localization length for light propagation in disordered media. If the
wave’s amplitude with a given frequency ! decays as  (!, Z) � exp[�Z/�(!)] at large
distances from the source, then its SD will decay as N (Z) � exp[�2Z/�(!)]. Hence,
one obtains the following relation for the localization length:

��1ð!Þ ¼ � lim
Z!1
ð2ZÞ�1 ln

Nð!,ZÞ

N ð!, 0Þ

� �
: ð6Þ

Figure 4 presents the semi-log graph of the SD for a given frequency, as a
function of the receivers’ distance from the source. Its straight-line behavior indicates
an exponential decay of the electromagnetic wave. The localization length is
computed using the slopes of the lines in Figure 4, repeated for many frequencies.

The results for the localization length calculated based on Figure 4 are shown in
the left diagram of Figure 5. The localization length decreases at high frequencies.
We find that for low frequencies the localization length scales as �(!) � !�	, where
the exponent 	 is estimated to be 1.96� 0.15 and 1.90� 0.15 for disorder strength
�¼ 0.5 and 0.9, respectively.

We also checked the above results using the TM method. The results obtained
with the TM are also shown in the right diagram of Figure 5. It is clear that values of
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Figure 4. (Color online) The spectral density as a function of the distance Z from the source
and the frequency.
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the localization length computed with the TM method are the same as those obtained
with the dynamic method. Using the TM method, we also calculated the exponent 	.
The results are 2.04� 0.04 and 2.02� 0.04, for disorder intensities �¼ 0.5 and 0.9,
which are indicated in Figure 5.
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Figure 6. (Color online) The amplitude of the wave in the medium after a long time. The inset
shows the sine wave of the source.
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Figure 5. (Color online) Logarithmic plot of localization length as a function of the frequency
for several intensities of disorder �, calculated by (a) the dynamic method, and (b) the TM
method. The results obtained with both methods are the same, and show that for low
frequencies the localization length is proportional to the inverse of the square of the frequency,
� � !�2.
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To compute the decay of a specific frequency (localized modes), we transmit a
sinus wave in the medium with frequency ! (shown in the inset of Figure 6), instead

of a pulse. Then, a long time after its propagation, we study the energy of the wave in

each layer at a distance Z from the source. The energy of the wave at a distance Z is
defined by 1

2 �ðZÞE
2 þ 1

2�B
2. In the simulations, we took Z¼ 5000 and averaged over

100 realizations of the disorder.
Figure 7 presents the energy versus Z for several frequencies with the disorder

strength �¼ 0.9. The exponential decay of the energy with the distance Z is clearly
seen in Figure 7. Fitting the numerical results to an exponential decay in Z, we again

compute the localization length. For example, the localization lengths computed by

this method are �’ 1303� 15, 946� 10, and 378� 8, for !¼ 0.15, 0.19, and 0.31,

respectively. These are essentially equal to those computed from the decay of the SD
and TM method.

4. Summary

A new method was introduced for calculating the frequency dependence of the

localization length �(!) via measurement of the intensity spectrum of a pulse that
propagates in a disordered medium. The new method was illustrated by computing

�(!) for electromagnetic waves in model disordered media, as a function of the

disorder strength, and in particular in an effective one-dimensional disordered
medium, as functions of the disorder strength and the frequency. The redshift of the
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Figure 7. (Color online) Semi-log plot of the energy at various receiver distances from the
source and frequencies, to demonstrate the exponential decay. The (solid) lines represent
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spectral density of the incident pulse is observed. The proposed method may also be
used in the experimental measurements of the localization length.

To check the results we utilized the transfer-matrix method. The results
were found to be in good agreement with those obtained with the dynamic
method. We note that, numerically, the dynamic method is much more efficient than
the transfer-matrix method. In the dynamic method we can calculate the localization
length for a large interval of frequencies in one run of simulations but in the TM
method the localization length should be calculated separately for each frequency
with a different run of the numerical calculation. The proposed method is general
and can be used in any disordered medium of any space dimensionality.
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