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We provide a simple interpretation of non-Gaussian nature of the light scattering-intensity fluctuations from
an aging colloidal suspension of Laponite using the multiplicative cascade model, Markovian method, and
volatility correlations. The cascade model and Markovian method enable us to reproduce most of recent
empirical findings: long-range volatility correlations and non-Gaussian statistics of intensity fluctuations. We
provide evidence that the intensity increments Ax(7)=1I(z+7)—1(z), upon different delay time scales 7, can be
described as a Markovian process evolving in 7. Thus, the 7 dependence of the probability density function
p(Ax, 7) on the delay time scale 7 can be described by a Fokker-Planck equation. We also demonstrate how
drift and diffusion coefficients in the Fokker-Planck equation can be estimated directly from the data.
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I. INTRODUCTION

As shown by most recent empirical studies on the huge
amount of data set, the light scattering-intensity time series
from higly interacting colloidal systems and inhomogeneous
media are characterized by several “universal” features
[1-3]: volatilities strong correlation and non-Gaussian prob-
ability distribution function (PDF) on the small time scales.
The PDF’s shape changes from almost Gaussian at large time
scales to fat tails at fine scales [3]. Many authors recently
aim at proposing simple, discrete, or continuous time models
that are able to account for similar observations [4,5].
Among all the proposed models, one can distinguish several
streams from the simplest Brownian process, which consti-
tutes the main tool used by practitioners, to the class of “het-
eroskedastic” nonlinear processes as proposed in [6].

Recently, an interesting method has been introduced by
Ghashghaie et al. [7], which is known as Markovian method.
It has turned out that this method can be successfully applied
to fluctuating time series, such as fluid turbulence [8,9], char-
acterization of rough surfaces [10], finance [11], etc. (see
[12] for more details and applications). In the Markovian
method one can derive a Fokker-Planck (FP) equation for
describing the evolution of the probability distribution func-
tion of stochastic properties of given time series. As shown
in [7], the conditional probability density of the increments
of a stochastic field (for example, the increments in the ve-
locity field in turbulent flow) satisfies the Chapman-
Kolmogorov (CK) equation, even though the velocity field
itself contains long-range nondecaying correlations. As is
well known, satisfying the CK equation is a necessary con-
dition for any fluctuating data to be a Markovian process
over the relevant length (or time) scales (Markovian time
scale). Hence, one has a way of analyzing stochastic phe-
nomena in terms of the corresponding FP and CK equations.
Here, we provide two complementary points of view to un-
derstand the “multiscaling” and non-Gaussian nature of scat-
tered light intensity fluctuations from a non-equilibriumm
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aging colloidal system [1,2] and propose a simple multifrac-
tal “stochastic volatility” model that captures very well the
above-mentioned features of the intensity fluctuations.

The paper is organized as follows. In Sec. II we give a
review on multifractal processes and the cascade model. We
introduce the related notions of multiscaling, scale invari-
ance, cascade process, and self-similarity kernel. In Sec. III,
we use the multifractal random walk (MRW) as a stochastic
volatility model and derive multifractal exponents ¢, for gen-
eral case with arbitrary well-known Hurst exponent. Section
IV is devoted to a brief summary of the most important theo-
rems on Markovian processes and their application to the
analysis of empirical data. We estimate a Langevin equation
to describe the fluctuations of light scattering-intensity in
Sec. V. In Sec. VI volatility and magnitude correlation func-
tion were presented. The last section is devoted to summary
and conclusions.

II. MULTIFRACTAL PROCESSES AND CASCADE MODEL

In this section we briefly discuss the related notions of
multifractality and multiplicative cascade model. Most of the
ideas and concepts that we recall below have been intro-
duced in the field of fully developed turbulence [4].

A. Multifractal process and extended self-similarity

Let {I(t)=x(r)} be the intensity fluctuations time series
and consider its statistics over a certain time scale 7, which is
defined as

Ax(7) =x(t+ 7) = x(1). (1)

Let us denote M(q, 7) the order g absolute moment of inten-
sity fluctuations,

M(g,7) = |Ax(7)[%). 2)

We will say that the process is scale invariant if the scale
behavior of the absolute moment M(q,7) has a power-law
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FIG. 1. (Color online) Typical light scattering-intensity fluctua-
tions measured from an interacting colloidal suspension of Laponite
with concentration 3.2 wt % as a function of time. In this paper we
express intensities in terms of the detector count rate in kHz.

behavior. Let us call §q the exponent of power law, i.e.,
M(q,7) = N, 7%, (3)

where N, is a prefactor. The process is called monofractal if
&, is a linear function versus g and multifractal if &, is a
nonlinear function of g. To check the estimated scaling ex-
ponent &, [Eq. (3)] with original time series, we use the
extended self-similarity (ESS) method [13,14].

In the ESS method, we rely on the scaling behavior of
Sq( 7) with respect to the specific order of structure function,
namely, S3(7) as

S, (1) ~ S3(7)%. (4)

For any Gaussian process, the exponent in the above equa-
tion is given by {,=q/3 [13,14]. Any deviation from this
relation can be interpreted as a deviation from Gaussianity.

Multifractality has been introduced in the context of fully
developed turbulence in order to describe the spatial fluctua-
tion of the fluid velocity at very high Reynolds number [15].
As suggested by recent studies [7,16-19], multifractality is
likely to be a pertinent concept to account for the fluctuation
in complex systems. We use this concept here for analyzing
the fluctuation of time series of light scattering intensity from
an aging colloidal suspension of Laponite clay with a con-
centration of 3.2 wt % measured at a certain aging time. Here
we only focus on the general stochastic behavior of light
intensity fluctuations. The evolution of the statistical proper-
ties on aging time will be presented in a following work. The
typical intensity fluctuation is plotted in Fig. 1. The details of
experimental setup are given in [2].

B. Multiplicative cascade model

Multifractality is a notion that is often related to an un-
derlying multiplicative cascading process. In the context of
deterministic function the situation is rather clear since the
analyticity of the §, spectrum is deeply connected to the
self-similarity properties of the function [20,21]. A process
x(¢t) is called self-similar with exponent H if VA
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>0,N"Ax(\7) is the same process as Ax(7). Define P (Ax)
to be the PDF of Ax(7). The process x(¢) is self-similar with
an exponent H if its PDF satisfies [22,23]

P(Ax) =\P, (\"Ax). (5)

Then, the moments at scale 7 and T=\7 are related by
7\
M(g,7)=N, P (6)

with N,=M(q,T). Therefore one has a monofractal process
with §,=¢qH. In order to account for multifractality, one has
to generalize this classical definition of self-similarity. This
can be done by introducing a weaker notion, as originally
proposed in the field of fully developed turbulence by Casta-
ing et al. [24]. According to Castaing’s definition of self-
similarity, a process is self-similar if the increment’s prob-
ability density functions at scales 7and T=A7 are related by
the relationship [24]

PT(Ax)=fG,.,T(u)e_”PT(e_”Ax)du, (7)

where the self-similarity kernel G, depends only on 7/T.
We note that this definition generalizes the Eq. (6) that cor-
responds to the “trivial” case G, 7(u)=&(u—H In(7/T)). This
equation basically states that the probability density function
P can be obtained through a “geometrical convolution” be-
tween the kernel G, and P7. A simple argument shows that
the logarithm of the Fourier transform of the kernel G can
be written as F,_p(k)=In G, z(k)=F(k)In(7/T). Thus, from
Eq. (7), one can easily show that the ¢ order absolute mo-
ments at scales 7 and T are related by [24,25]

pe F(-iq)
M(q,7) =G, (- ig)M(q,T) =M(q,T)<;> . (8)

so that N,=M(q,T) and &,=F(~ig). A nonlinear &, spectrum
implies that F is nonlinear and thus that G is different from a
Dirac delta function. For example, the simplest nonlinear
case is the so-called logarithmic-normal model that corre-
sponds to a parabolic ¢, function and thus to a function G
that is Gaussian [24].

Let us now make a link between the multiplicative cas-
cade model and Castaing equation. This can be easily done if
one consider discrete scales 7,=27"T. Let us suppose the lo-
cal variation of the process A,nx at scale ¢, is obtained from
the variation at scale 7T as

A, x(0) = (H Wi)ATxm, )
i=1

where W; are random positive factors. This is the cascade
paradigm. Realizations of such processes can be constructed
using orthonormal wavelet bases as discussed in [26]. Using
Eq. (9) one can prove immediately the Castaing equation,
i.e., Eq. (7).

III. SIMPLE SOLVABLE MULTIFRACTAL MODEL

In this section our aim is to build a simple solvable model
based on multiplicative cascade model and employ it to fit
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the experimental data of light scattering fluctuations. Multi-
plicative cascading processes [26] consist of writing Eq. (9),
starting from some “coarse” scale 7=T7, and then iterating it
toward finer scales using an arbitrary fixed scale ratio, e.g.,
A=1/2. Such processes can be constructed rigorously using,
for instance, orthonormal wavelet bases [26]. However, these
processes have fundamental drawbacks: they do not lead to
stationary increments and they do not have continuous dila-
tion invariance properties. Indeed, they involve a particular
arbitrary scale ratio, i.e., Eq. (3) holds only for the discrete
scales t,=NyT. We first build a discretized version x(¢
=kAt) of this process. Let us note that the limit process
x(t)=limy,_,q x4, is well defined [4]. It is shown that different
quantities (¢ order moments, increment correlation, etc.)
converge when At— 0 [4]. We rewrite Eq. (6) at the smallest
scale so Axy,(kAr)=ep(k)Wy,(k), where €y, and Wy, (k)
=e“a®) are Gaussian and logarithmic-normal variables, re-
spectively, i.e.,

t/At
fo(t) = 2 EAr(k)ewA’(k)’ (10)
k=1

where w,,(k) is the logarithm of the stochastic variance.
More specifically, we will choose €, to be a Gaussian white
noise independent of w and of variance o>At. This choice for
the process wy, is introduced in [4] and dictated by the cas-
cade picture. It corresponds to a Gaussian stationary process
where its covariance can be written as

(k) waiky)) = N§ In pa,(Jky = ko). (11)

Here, p,, is chosen in order to mimic the correlation struc-
ture observed in cascade models with an integral time scale
T’

—— for |k|=T/At-1
padk) =1 [k + 1 (12)

1 otherwise.

wy,’s are correlated up to the time scale 7' and their vari-
ance )\é In(T/At) goes to infinity when Az approaches zero.
Direct computation shows that we need to choose the follow-
ing relations [4]:

(wp(k))=—r Var(wy, (k) =— r)\(z) In(77/Ar) (13)

with r=1 and Var(x(f))=c’t. This computation builds
“MRW” process x(f) [4]. We can build MRWSs with corre-
lated increments by just replacing the white noise €5, with a
fractional Gaussian noise

e = Byy([k + 1]A1) - By(kAr), (14)

where By() is a fractional Brownian motion with the so-
called Hurst exponent H and of variance o>/ [choosing r
=1/2 in Eq. (13)].

The gth moment of light scattering-intensity time series
can be computed directly from experimental data and the
cascade model. In cascade model, we construct the incre-
ments of the model as x,(t+ 7)—xa,(f), which does not de-
pend on ¢ and is the same law as x,,(7). It has been proven
that the moments of x(7) =x,,_o+(7) can be expressed as [4]
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i 1
<X(T)2p> — @J (ul)ZH—ldul e f (up)2H—1dup
2,Dp| 0 0
XH p(ul-—uj)}‘é. (15)
i<j

Using this expression, Eq. (6) becomes
- PH-2p(p-\}
, (16)

M(Zpa T) = KZP(}

where K, is given by

1 1
Kyp=T0(2p-1)! ! J up™duy - - f wdu,
0 0

XH|ui_uj|)\(2)- (17)

i<j

It is worth to note that K5, is nothing else but the moment of
order 2p of the random variable x(r). From the above expres-
sion, we thus obtain

)\2
&,=2pH-2p(2p - 1)30. (18)

The corresponding &, spectrum is thus the parabola

Ao
§q=qH—q(q—1)? (19)

Let us suppose the MRWs with variance Var(x,,,)=0t, then
the spectrum of the MRW x(z) is [4]

q \o

§q=5—q(q—1);- (20)
To find the relation between §q and )\(2), we illustrated the
scaling behavior of the moments M(g, 7) and corresponding
extended self-similarity exponents in Fig. 2. The upper panel
of Fig. 2 indicates the log-log plot of structure function, Eq.
(3) versus 7. In the lower left panel, we show the scaling
exponent £, as a function of ¢. Filled circle symbols have
been directly computed by the experimental light intensity
time series. The solid line in this panel corresponds to a
monofractal process with the same Hurst exponent as our
data set. The value of the Hurst exponent of underlying data
set has been determined by detrended fluctuation analysis
and is equal to H=0.92*0.02 [27]. The long-dashed curve
corresponds to Eq. (19) with the value of \;=0.077 = 0.054,

which is determined by multiplicative cascade model [28].
The lower right panel shows {, versus g for light scatter-
ing data set (filled circle symbols) and a Gaussian process
(solid line). It appears that light scattering-intensity data rep-
resented by I(r) are a multifractal process with continuous
dilation invariance properties. As shown in the lower panel
of Fig. 2, the fitting formula for &, (solid line) derived by
multifractal analysis is in agreement with experimental data
in an acceptable confidence level. We note that due to the
smallness of \,, deviation from monofractality will appear
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FIG. 2. (Color online) Upper panel shows the scaling behavior
of structure function M(q,7) for various values of ¢. Lower left
panel corresponds to the scaling exponent &, of light scattering-
intensity data (filled circle symbol) as a function of moment order
q. In this panel, solid lines are given for a monofractal process with
Hurst exponent equal to H=0.92. Long-dashed line is given by Eq.
(19). Lower right panel indicates ¢, versus g (the exponents derived
using the extended self-similarity method). Solid line shows the
exponents for a Gaussian process, {,=¢q/3.

for large ¢’s. We confirm this observation with direct estima-
tion of PDF of increments and show that they have deviation
from Gaussian distribution (see below).

In the cascade picture, the total number of data points is
2™ (i=1,...,2m), where m is the total number of cascade
steps. Also, the time series Ax(7) can be described by the

P (Ax)

FIG. 3. (Color online) Continuous deformation of the intensity
increments’ PDFs across scales (from bottom to top) 7
=2000, 1000,500,250, 150,25 (406 ws). Solid lines for each 7’s
are given by Eq. (7) and symbols are directly computed by data set.
Long-dashed curve corresponds to the Gaussian probability density
function. Curves are shifted in vertical direction for clarity of
presentation.
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form of logarithmic-normal cascade-type multiplicative pro-
cess which has been introduced in Ref. [29] and with the
probability density function given by Eq. (7), with A2=m\}.
As illustrated in Fig. 3, Eq. (7) accounts very well for the
evolution of the probability density function of the incre-
ments. This shows that the smaller the scale 7, the fatter the
tails of the probability density function of Ax(z). These find-
ings are also in agreement with the previous results [3].

IV. MARKOVIAN NATURE OF DATA SET

In Ref. [12], it has been demonstrated that the mathemat-
ics of stochastic processes is a useful tool for empirical in-
vestigations of the time-scale dependence of the PDF
p(Ax, 7) of a given time series, namely, the intensity fluctua-
tions on time scale 7. It was shown how the equations gov-
erning the underlying stochastic process can be extracted di-
rectly from the empirical data, provided that several
experimental data obey the Markovian process. In particular,
it is possible to derive a partial differential equation, the
Fokker-Planck equation, which describes the evolution of the
probability density function p(Ax,7) in the scale variable 7.
Hence, the mathematics of Markovian processes yields a
complete description of the stochastic process underlying the
evolution of the PDFs from Gaussian distributions at large
scales 7 to the leptokurtic (fat) PDFs at small scales. Here,
we show how the existence of a Markovian process can be
checked empirically and how the Fokker-Planck equation
can be calculated directly from the data set.

In what follows we summarize the notions and theorems
which will be important for the statistical analysis of light
intensity fluctuations measured in our experiment by Mar-
kovian method. For further details on the Markovian pro-
cesses we refer the reader to Refs. [12,30]. Fundamental
quantities related to the Markovian processes are conditional
probability density functions. Given the joint probability
density p(x,,t,;x,,t;) for finding the intensity x,=x(z,) at
time scale 7, and x; at time scale #; with ¢, <t,, the condi-
tional PDF p(x,,t,|x,,t,) is defined as

PXg.ta3x1,1y)

p(xl’tl) ' (21)

Pl tylxy,ty) =

where p(x,,t,|x;,t;) denotes the conditional probability den-
sity for the intensity x, at time scale 7, given x; at time scale
t.

Higher-order conditional probability densities can be de-
fined in an analogous way as follows:

PO Iy X1ty s -+ 53X 1)
JJCTVIN IO Y 3Y)
(22)

POy NN o5 e sy, Ey) =

The smaller scales #; are nested inside the larger scales #;+ 1
(with the common reference point ¢).

The stochastic process in 7=ty—1fy_; is a Markovian pro-
cess if the conditional probability densities fulfill the follow-
ing relations:
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POy NN o5 <Xt = Py ey, tyog) - (23)

with #<t,<t3<---<ty. As a consequence of
Eq. (22), each  N-point  probability  density
P(XnstNXN_1>EN_15 -+ 3X1,11) can be determined as a product
of conditional probability density functions,

p(xN,tN;xN_l,tN_l; . ;xl,tl)

= p(xn, infenorstyog) - pOag, by, 1) p(xgr) . (24)

As Egs. (23) and (24) indicate, knowledge of p(x,f|xq,%)
(for arbitrary scales ¢ and ¢, with 7,<t) is sufficient to gen-
erate the entire statistics of the underlying fluctuations en-
coded in the N-point probability density, namely,
PO NS XN Iy e 5 X s ).

To investigate whether the underlying signal (or its incre-
ments) is a Markovian process, one should test Eq. (24). But
in practice, it is beyond the current computational capability
for large values of N. For N=3 (three points or events), how-
ever, the condition will be

PO, 30, 15:x1,11) = (s, 3]0, 1) (25)

which should hold for any value of 7, in the interval #; <t,
<t5. A process is then Markovian if Eq. (25) is satisfied for
a certain time separation #3—1,, in which case, we define the
Markovian time scale as #y;,,,, =f3—1,. For simplicity, we let
t,—t;=13—t,. Thus, to compute y;,,4,,» We use a fundamental
theory of probability according to which we write any three-
point PDF in terms of the conditional probability functions
as

Pxs, 13300, 193X, 14) = pos, B3l 1251, 1) (X, 13X 1)
(26)

Using the properties of Markovian processes, Eq. (26) can be
written as follows:

PMar(X3, 1350, 125x1,11) = p(o3, 13]50, 1) p (0, 1531, 1)
(27)

In order to check the condition for the data being a Markov-
ian process, we must compute the three-point joint PDF
through Eq. (26) and compare the result with Eq. (27). One
can write Eq. (27) as an integral equation, which is well
known as the CK equation

p(x3,t3|x1,t1)=fdx2 p(xs, 1330, 1) p (g, 1ol xy,17) . (28)
The simplest way to determine f,.,, 1S using
the well-known Chapman-Kolmogorov equation,
which can be written as K(t3—t))=|p(x;.t3]x;.))
—Jdx, p(x5,t5]%2,1,)p(x5,15|x;,1,)|, for given x; and x3, in
terms of, for example, t;—¢, and considering the possible
errors in estimating K. It is obvious that, for the value of
IMarkov=13—1=1,—1;, the quantity K vanishes or at least is
nearly zero (achieves a minimum) [12,31].

Up to now we only showed how one can estimate the
Markovian time scale for data set over which time series
behaves as a Markovian process. In the next section we will
turn to deriving master and stochastic equations governing
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the evolution of probability density function of intensity
fluctuations.

V. LANGEVIAN EQUATION: EVOLUTION EQUATION TO
DESCRIBE THE INTENSITY OF LIGHT SCATTERING
FLUCTUATIONS

The Markovian nature of the intensity of light scattering
fluctuations enables us to derive a master equation, a Fokker-
Planck equation, for the evolution of the PDF p(x,7) in terms
of time ¢. The Chapman-Kolmogorov equation, formulated in
differential form, yields the following Kramers-Moyal ex-
pansion [30]:

Zpn=3 (— %)"[Dnu,r)p(x,r)], (29)

n=1

where D, (x,r) are called the Kramers-Moyal coefficients.
For Markovian processes the conditional probability density
fulfills a master equation which can be put into the form of a
Kramers-Moyal expansion as follows:

gp(x,tx(),to) =2 <— i) [Dn(x,0)p(x,txo,10)]. (30)
t =1\ Ox

The Kramers-Moyal coefficients D, (x,f) are defined as

D,(x,t) = lim M, (x,t,Ar), (31)
At—0

where

x,0)dx’ .

1 N ’ n !
M,I(X,Z,At) = mf_w (x —x) p(x = At

(32)

For a general stochastic process, all Kramers-Moyal coeffi-
cients are different from zero. According to the Pawula theo-
rem, however, the Kramers-Moyal expansion stops after the
second term, provided that the fourth-order coefficient
D,(x,1) vanishes. In that case, the Kramers-Moyal expansion
reduces to a Fokker-Planck equation (also known as the
backward or second Kolmogorov equation) [30],

d d &+
—p(x,tlxg,t9) =1 — —D(x,1) + —D5(x,t X,tX0,10) .
atP( 0-10) { ox 1(x,1) o B )}P( 0-10)

(33)

The coefficients D, and D, are known as drift and diffusion
coefficients, respectively. We note that the probability den-
sity p(x,t) has to obey the same equation with a different
initial condition [12]. The Fokker-Planck equation describes
the probability density function of a stochastic process gen-
erated by the Langevin equation (we use the Ito definition)
[30],

%x(r) =D, (x,1) + VDy(x,0) (1), (34)

where f(¢) is a Langevin force, i.e., 5-correlated white noise
with a Gaussian distribution (f(r)f(¢"))=26(t—1").
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To check the multifractal nature of time series, we check
the Markovian nature of the increments, which is defined by
Ax(7)=x(t+ 7)—x(r), for intensity fluctuations. According to
the mentioned procedure, we determine the Markovian time
scales for the increments and calculate the Kramers-Moyal
coefficients. The Fokker-Planck equation for probability
function of the increment is given by [12]

d d &
- Ta—Tp(Ax, 7) = {— EDI(Ax, 7+ sz(x, T)}p(Ax, 7,

(35)

where the negative sign of the left-hand side of Eq. (35) is
due to the direction of the cascade toward smaller time scales
7. The corresponding Langevin equation can be read as

- r&iTAxw) =D/(Ax ) + Dy An DA, (36)

where f(7) is the same as random function in Eq. (34). Drift
and diffusion coefficients of increment are formulated as
[32-34]

D,(Ax,7) = — HAx,

D,(Ax,7) = bAx*. (37)

Using Eq. (35) we obtain the evolution of structure function
as follows:

- (A% = () 'D (5, )

+q(q - 1){|Ax(7)]2D,(Ax, ). (38)
Substituting Eq. (37) into Eq. (38) we find

- - (Ax(Df) = [gH + balq - DIAXRI).  (39)

The above equation implies scaling behavior for the structure
function, so that

M(q,7) = {(|Ax(D|) = (|x(t + 1) = x(£)|%) ~ 5. (40)

According to Egs. (39) and (40), the corresponding scal-
ing exponent can be read as

§&,=Hq—-bq(g-1). (41)

As mentioned before, for monofractal and multifractal pro-
cesses the exponent §, has linear and nonlinear behaviors
with respect to ¢, respectively. We must point out that the
exponent H is nothing except the Hurst exponent of time
series [35].

Satisfying the Chapman-Kolmogorov (CK) equation con-
firms that the signal of light scattering-intensity fluctuations
is Markovian process. The coefficients D;(Ax,7) and
D,(Ax,7) are estimated as

D,(Ax,7)=-(0.86 = 0.19)Ax, (42)
D,(Ax,7) =—(0.034 + 0.027)Ax’. (43)

Consequently, using Eqs. (41)—(43), the scaling exponents
will be
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£,=(0.86 = 0.19)g - (0.034 = 0.027)g(g — 1).  (44)

The scaling exponents &, (for small values of ¢) derived by
the Markovian approach [Eq. (44)] are in agreement with
those given by Eq. (19) and as well as with direct computa-
tional from time series.

VI. VOLATILITY AND MAGNITUDE CORRELATION
FUNCTIONS

As recalled in the Introduction, the scattered light inten-
sity time series are correlated and their amplitude (“local
volatilities”) possesses power-law correlations. Let us show
that our model satisfies these two properties. The increment
correlation function is defined by

C,(Lt,7)= (Jxa (L + 1) = x0, (D)9 (2 + 7) = xp,(0)]D),

(45)
where, for (V|l—t|> 7), the correlation is zero. Let us study
the correlation function of the squared increments. Since the
increments are stationary, we can choose #=0. Thus, we need
to compute, in the limit Ar—0, the following correlation

function that corresponds to a lag [ between increments of
size T

C (1, 7) ={|xa L+ 1) = x0(D]]xa () = x5,(0)[).  (46)
From the results of Ref. [4] and for 0=[/<T,0=7+I<T, we

find
I+7 T 22
C,l,7)= a'4f duf dvp(u—v)i™. (47)
I 0

A direct computation shows that

I+ T
2,2 1 2,2
duf dvp(u—v)i o= [(1+ 7)™
fz 0 (1-g"\)(2 - g*\)

+ (1= DN 22N, (48)

and consequently
Cyllom) = AL+ 72N 4 (1= N = 227%), (49)

where A=c*/[(1-¢\2)(2—g"\2)].
For 0=[/<, one gets

2, -\
(L7 ~A2<§> (;) o (50)

The correlation function for fixed values of [ and T behaves
as

C,(l,7) ~ 4, (51)
where the exponent is given by [26,36]
v, =~ ¢°\. (52)

In the upper panel of Fig. 4, we plotted the correlation
function of light intensity fluctuations. The lower panel of
Fig. 4 indicates the exponent of correlation function for
small value of 7 for various values of g accompanying with
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FIG. 4. (Color online) Upper panel corresponds to the correlation function of light intensity increments, C,(I,7) for /=1 versus 7 for g=1
(filled circle), g=2 (filled square), and g=3 (filled diamond). Lower panel shows the estimation of the power-law exponent C,(l,7) ~ 7"
derived by direct calculation for small value of 7 (filled circle symbol) and theoretical prediction using A\y=0.077 £ 0.054 and given by Eq.

(52).

the theoretical prediction given by Eq. (52). This figure is
also another confirmation of the reliability of A determined
by multiplicative cascade model mentioned in Sec. III.

VII. CONCLUSION

In this paper we checked the multifractal nature of the
light scattering-intensity time series. We showed how the
mathematical framework of cascade modeling and Markov-
ian processes can be applied to develop a successful statisti-

cal description of the intensity fluctuations. We characterized
the non-Gaussian nature of the light scattering-intensity time
series, using a multiplicative model. Also noting to the Mar-
kovian nature of fluctuations, we demonstrated that the prob-
ability density function of increment fluctuations satisfies a
Fokker-Planck equation, which encodes the Markovian prop-
erty of light intensity fluctuations in a necessary way. We
computed the Kramers-Moyal coefficients for the field
I(t+7)—1I(r) and determined their corresponding Langevin
equations.
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