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We study the conductance of disordered graphene superlattices with short-range structural correlations. The
system consists of electron- and hole-doped graphenes of various thicknesses, which fluctuate randomly around
their mean value. The effect of the randomness on the probability of transmission through the system of various
sizes is studied. We show that in a disordered superlattice the quasiparticle that approaches the barrier interface
almost perpendicularly transmits through the system. The conductivity of the finite-size system is computed
and shown that the conductance vanishes when the sample size becomes very large, whereas for some specific
structures the conductance tends to a nonzero value in the thermodynamic limit.
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I. INTRODUCTION

Graphene, a single atomic layer of graphite, has been suc-
cessfully produced in experiment,1 which has resulted in in-
tensive investigations on graphene-based structures, due to
the fundamental physics interests that is involved and the
promising applications.2 There are significant current efforts
devoted to growing graphene epitaxially3 by thermal decom-
position of silicon carbide �SiC� or by vapor deposition of
hydrocarbons on catalytic metallic surfaces, which could
later be etched away, leaving graphene on an insulating sub-
strate. The low-energy quasiparticle excitations in graphene
are linearly dispersing and are described by Dirac cones at
the edges of the first Brillouin zone. The linear energy-
momentum dispersion has been confirmed by recent
observations.4 The slope of the linear relation corresponds
the Fermi velocity of chiral Dirac electrons in graphene,
which plays an essential role in the Landau-Fermi liquid
theory5 and has a direct connection to the experimental mea-
surement.

There are some unusual features of graphene, such as the
effects of electron-electron interactions on the ground-state
properties,6 anomalous tunneling effect described by the
Klein tunneling, the tunneling through a p-n junction7,8 that
follows from chiral band states, and the energy-momentum
linear dispersion relation. The Klein tunneling predicts that
the chiral massless carrier can pass through a high electro-
static potential barrier with probability one, regardless of the
height and width of the barrier at normal incidence, which is
in contrast with the conventional nonrelativistic massive car-
rier tunneling where the transmission probability decays ex-
ponentially with the increasing of the barrier height and
would depend on the profile of the barrier.9–12

An exciting experimental development is the ability to
apply an electric field effect or submicron gate voltage, in
order to illustrate graphene p-n junctions.13 By applying an
external gate voltage, the system can be switched from the
n-type to the p-type carriers, thereby controlling the elec-
tronic properties that give rise to graphene-based nanode-
vices. Recently, strong evidence for Klein tunneling across

potential steps which is steep enough in graphene has been
experimentally observed.14

Clean graphene junctions were predicted to display a
number of fascinating physical phenomena even in the ab-
sence of electron-electron interactions.15 Interestingly, the
Veselago lensing of electric current by a single p-n junction
in clean graphene16 and the Andreev reflection and the elec-
tron to hole conversion at the interface at normal incidence17

have all been predicted theoretically. Such phenomena are
predicted to change both quantitatively and qualitatively
when disorder is included in the model. For instance, inho-
mogeneous graphene p-n junction systems were studied us-
ing the Thomas-Fermi approximation, including disorder ef-
fects, by Fogler et al.18 They showed that junction resistance
is dominated by either ballistic or diffusive contributions de-
pending on the density of charged impurity and gradient of
the carrier density.

In the semiconductor context there are basically a large
number of works on the tunneling, which have resulted in the
“obvious” declaration that the electronic properties of semi-
conductor superlattice are different from those calculated in a
single-barrier junction. Moreover, the electronic properties of
semiconductor superlattices in the presence of disorder have
been studied by several groups.19–23 Importantly, all the elec-
tronic states are localized in the thermodynamic limit for a
semiconductor superlattice in the presence of white-noise
disorder.21

Graphene superlattices, on the other hand, may be fabri-
cated by adsorbing adatoms on graphene surface through
similar techniques, by positioning and aligning impurities
with scanning tunneling microscopy,24 or by applying a local
top gate voltage to graphene.25 Recently, a periodic pattern in
the scanning tunneling microscope image has been demon-
strated on a graphene on top of a metallic substrate.26 The
transition of hitting massless particles in graphene-based su-
perlattice structure �GSLs� was first studied by Bai and
Zhang.27 They showed that the conductivity of the GSLs
depends on the superlattice structural parameters. Further-
more, the superlattice structure of graphene nanoribbons has
been recently studied by using first-principles density-
functional theory calculations.28 These calculations showed
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that the magnetic ground state of the constituent ribbons, the
symmetry of the junction, and their functionalization by ada-
toms represent structural parameters to the electronic and
magnetic properties of such structures. Recently, physical
properties of GSLs with one-dimensional Kronig-Penney-
type and two-dimensional muffin-tin-type potentials were
also studied.29 The results showed that a periodic potential
applied by suitably patterned modifications leads to further
charge-carrier behavior. The propagation of charge carriers
through such a superlattice is highly anisotropic and in ex-
treme cases results in group velocities that are reduced to
zero in one direction but are unchanged in the other direc-
tion. Moreover, they showed that the density and type of
carrier are extremely sensitive to the applied potential.

It would, therefore, be worthwhile to investigate how the
conductance of graphene superlattice junctions are affected
by structural white noise and compare the conductances with
those calculated for disordered semiconductor superlattice.
Due to the conservation of pseudospins in graphene, back-
scattering process is suppressed at normal incidence, which
makes the disordered regions transparent.17

The purpose of this paper is to study the electronic behav-
ior of graphene superlattices p-n junctions by using the
transfer-matrix method. The system that we study consists of
a sequence of electron-doped graphene as wells and hole-
doped graphene as barriers. We study the effect of the disor-
der imposed on the size of the barriers in the transmission
probability, T, through the system as a function of the system
size �number of the barriers�, together with various incident
angles. The dc conductance of the finite-size system takes on
a nonzero value of the transmission in some special configu-
rations. Using the finite-size scaling of transmission, we
show that the conductance, in the thermodynamic limit,
tends to a finite constant for spacial cases.

The rest of this paper is organized as follows. In Sec. II
we introduce the models and derive the related transfer ma-
trix. We also explain how we calculate the transmission
probability and the dc conductivity. Section III contains our
numerical calculations. We conclude in Sec. IV with a brief
summary.

II. MODEL AND THEORY

Consider a system of superlattice p-n junctions in the in-
dependent carrier model at zero temperature and in the ab-
sence of carrier-phonon and spin-orbit interactions. The low-
energy massless Dirac-band Hamiltonian of graphene in the
continuum model can be written as30,31

H0 = �v���1k1 + �2k2� ,

where �= �1 for the inequivalent K and K� valleys at which
� and �� bands touch, ki is an envelope function momentum
operator, v is the Fermi velocity, and �i is a Pauli matrix that
acts on the sublattice pseudospin degree of freedom. The
total Hamiltonian of a massless carrier in a special geometry
is written as H=H0+V�x�, where V�x� is the graphene-based
superlattice potential which is modeled as described below.

A. Superlattice model

We consider superlattice p-n junctions in a graphene-
based structure. The system consists of two kinds of
graphene with different potentials, the first being an electron-
doped graphene with thickness dW, while the second is a
hole-doped part with thickness dB, standing alternately. The
potential for the electron- and hole-doped graphene are V0
and zero, respectively. The energy of the incident particle is
E0=2��v /� with the wavelength � across the barriers in
such a way that the Fermi level lies in the conduction band
outside the barrier and the valence band inside it, i.e., �0
�E0�V0�, as shown in Fig. 1. The growth direction is taken
to be the x axis which is designed as the superlattice axis. In
order to neglect the strip edges, we assume that the width of
the graphene strip is much larger than dB. We set disorder
situations in which the value of dB fluctuates around its mean
value, given by �dB�=b. In the model the fluctuations are
given by dB �i=b�1+	
i�, where �
i� is a set of uncorrelated
random variables or white noise with the box distribution,
−1�
i�1, and i is the site index. Here, the 	 is the disorder
strength.

We consider graphene-based superlattice potential in a
simple model as

V�x� = �V0 if �x − x2i� �
dB�i
2

0 otherwise,
	 �1�

where x2i is the position of barriers’ center. The model is
similar to the potential of semiconductor superlattices that
has been used by other groups.23

B. dc conductivity

Let us now consider the case in which the incident mass-
less electron in the GSLs propagates at angle � along the x
axis �see Fig. 1�, and therefore, the Dirac spinor components,

1 and 
2, which are the solutions to the Dirac Hamiltonian,
can be expressed27 as


1�x,y� = �aie
iKix + bie

−iKix�eikyy ,


2�x,y� = si�aie
iKix+i�i − bie

−iKix−i�i�eikyy , �2�

where

FIG. 1. �Color online� Model of graphene superlattice p-n
junctions.
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si = sgn
E0 − V�x��, ky =
E0

�v
sin��� , �3�

and

Ki = �kx = E0 cos���/�v for well

qx = 
�E0 − V0�2/�2v2 − ky
2 for barrier.� �4�

In order to calculate the transmission coefficients, we use the
transfer-matrix method.32 To this end, we apply the continu-
ity of the wave function at the boundaries and construct the
transfer matrices as follows:

�1

r
� =

1

2 cos �
�e−i� − ei� e−i� + e−i�

ei� + ei� ei� − e−i� �P�2N�

� �eikxln�e−i� − ei��/
2eiqxln cos ��
eikxln�ei� + ei��/
2e−iqxln cos ��

�t2N, �5�

where r and t2N are the reflection and transmission coeffi-
cients of the system that consists of N barriers and p�2N� is
the transfer matrix given by

P�2N� = �
i=3

2N

Pi,i−1,

Pi,i−1 = �M11 M12

M21 M22
� , �6�

where also Pi,i−1 is a transfer matrix from site i to i−1 and
Mij are given by

M11 = eiKil�i−1�e−iK�i−1�l�i−1�
e−i��i−1� − ei�i�/2 cos���i−1�� ,

M12 = e−iKil�i−1�e−iK�i−1�l�i−1�
e−i��i−1� + e−i�i�/2 cos���i−1�� ,

M21 = eiKil�i−1�eiK�i−1�l�i−1�
ei��i−1� + ei�i�/2 cos���i−1�� ,

M22 = e−iKil�i−1�eiK�i−1�l�i−1�
ei��i−1� − e−i�i�/2 cos���i−1�� , �7�

where li=� j=1
j=int
i/2�dB � j +int
�i−1� /2�dW is the length of sys-

tem at ith boundary and moreover,

�i = �� for well

� = tan−1�ky/qx� for barrier.
� �8�

It is evident that T�E0 ,��= �t2N�2 and that it can be calcu-
lated from Eq. �5� for a given N. When the transmission
coefficients are calculated, the conductivity of system is
computed by means of the Büttiker formula,33 taking the
integral of T�E0 ,�� over the angle,
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FIG. 2. �Color online� Transmission probability T of electrons through the system as a function of the incident angle for several disorder
strengths. �a� 	=0 and 0.1, and �b� 	=0.0, 0.05, 0.1, 0.15, and 0.2 for N=100 and dW=10 nm.

CONDUCTANCE OF A DISORDERED GRAPHENE… PHYSICAL REVIEW B 79, 165412 �2009�

165412-3



G = G0�
−�/2

�/2

T�E,��cos���d� , �9�

where G0=e2mvw /�2 with w being the width of the
graphene strip along the y direction.

III. RESULTS AND DISCUSSION

Let us first calculate the transmission probability and
study the electronic properties of disordered GSLs as a func-
tion of the strength of disorder introduced in the system. We
consider the width of barriers as a random variable so that
the length of system in the numerical calculations will be
L=N�b+dW�. In all the numerical calculations, we assumed
b= �dB�=50 nm, while the wavelength of the incident par-
ticle is set by �=50 nm or, equivalently, the energy of the
carrier, E0=83 meV. In all of the calculations we used, V0
=200 meV, unless otherwise specified. The number of real-
ization of the random configurations is about 1000.

Figure 2 shows the transmission probability, T, of the in-
cident electrons hitting a GSLs as a function of the angle �

for several values of the disorder strength, 	. The number of
the barriers in the figure is N=100, with dW=10 nm. It is
clear that the transmission decreases by increasing the disor-
der for all the angles apart from the strictly normal-incidence
case, �=0. This is physically understandable due to the
Klein tunneling process in graphene, where the backscatter-
ing process is suppressed. Moreover, the massless carriers
with incident angle close to normal incidence can survive in
the presence of disorder, while the width of the angles
around the normal incidence decreases with increasing
strength of the disorder as well.

In order to understand the finite-size effect and the effect
of the width of the wells, the transmissions probability of a
massless particle through the system were calculated as a
function of the incident angle. The results are shown in Fig.
3 for several sizes at 	=0.1. In Fig. 3�a� we set dW=10 nm.
The transmission decreases with increasing system size for
all the angles, except again at �=0. This behavior is in con-
trast with a clean GSLs result, where the number of the peaks
increases by increasing the number of the barriers.27 In Fig.
3�b� the width of the wells is set to dw=30 nm. Two sharp
peaks in the transmission are obtained that disappear in Fig.
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FIG. 3. �Color online� Transmission probability T of the massless carriers through the system as a function of the incident angle, the
system size, and 	=0.1 for �a� dW=10 nm, �b� dW=30 nm, and �c� dW=50 nm.
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3�a�. Furthermore, in the case with dW=50 nm there is only
one angle, ��60°, that the transmission survives in the
presence of the disorder, whereas under other angles the
transmissions are suppressed. Meanwhile, there is clearly a
wide domain around �=0 for which the transmission sur-
vives and is larger than the one shown in Fig. 3�b�. The
width of the domain decreases with increasing strength of the
disorder. It is worthwhile to note qualitatively that for 	=0
when we have the condition that �qx+kx�� �b+dW�=2m� �m
is an integer�, the transmission has finite values at angles
different from �=0. This is due to the resonance process in a
system with N barriers.

We also studied how disorder, introduced in the GSLs,
affects the conductivity of the system. Hence, we also calcu-
lated numerically the dc conductivity by using Eq. �9�, with
the white-noise structural disorder imposed on the system.
Figure 4 shows the dc conductance of the GSLs as a function
of V0 for various strengths of the disorder, 	. As shown in the
figure, the conductivity of the GSLs decreases by increasing
the strength of the disorder. However, the conductivity ap-
proaches a finite value, i.e., the existence of a finite conduc-
tivity in finite-size disordered GSLs should be expected. In
general, the resonance condition is given by a function that
yields f�qx ,dW ,dB�=m�. For instance, for the case N=1, the
condition yields qxdB=m� as a result of which T��� would
be an oscillating function of qx. Note that qx is determined by
V0. Consequently, this leads to a finite dc conductivity which
is an oscillating function of V0. The observation of conduc-
tance oscillations in extremely narrow graphene heterostruc-
tures has been observed experimentally.34

In Fig. 5 the conductivity of the system is plotted as a
function of V0, where the width of the wells is dw=10 nm
with 	=0.1. The conductivity decreases with increasing the
size of system. The inset in the figure shows the conductivity
of a clean GSLs as a function of V0 for several system sizes.
It indicates that the dc conductance of clean superlattice be-
haves uniquely for different sizes, but in a disordered GSLs
it decreases by increasing the size of system, as shown in

Fig. 5. At a constant strength of the disorder, changing dW
may also change the conductivity, as depicted in Fig. 6. It
demonstrates that the conductivity varies periodically with
increasing dW. As a result, in the disordered GSLs, the dc
conductance of finite-size systems depends on the structural
parameters, especially dW.

To compute all results that have been presented so far, we
considered a system of finite size. Next, we wish to calculate
the finite-size scaling of G /G0. For this purpose, we calcu-
lated the conductivity as a function of the system size. The
results are summarized in Fig. 7. Importantly, the conductiv-
ity vanishes by a simple power law, except for the case for
which, �=dW=50 nm. In general, for �=mdW the conduc-
tivity approaches a finite value as N becomes large.

In order to examine such results better, we also calculated
the G /G0 for a case for which �=dW=45 nm. We found that
the conductance tends to a constant in the thermodynamic
limit. The numerical data are fitted by using
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G

G0
= g� +

�

L� , �10�

where g�, �, and � are constants and g� is the asymptotic
value of G /G0 in the thermodynamic limit, N→�. As a re-
sult, for the case dW=5 nm we obtain g�=0, ��1.0, and
��0.46; for dW=10 nm we obtained, g�=0, ��0.9, and
��0.42; and for dW=50 nm we obtained g��0.14, �
�0.6, and ��0.2. In all the case the regression was with
r2=0.99, indicating very accurate fits. Note that g� is zero
for small dW but tends to a nonzero constant for dW
=50 nm.

IV. CONCLUSION

We studied numerically the dc conductance of a discorded
graphene superlattice p-n junctions for various values of the

strength of structural disorder imposed on the material. It
was shown that there exists a width around the normal-
incidence angle for which the transmission becomes finite in
the presence of structural white-noise disorder. That is, the
white-noise disorder gives rise to the largest number of the
peaks in the transmission, suppressed in the thermodynamic
limit but quasiparticles which approach almost perpendicu-
larly to the barriers transmit through the material. We also
calculated the conductivity of a finite-size disordered system
and showed that the conductivity decreases by increasing the
system size but that there are cases for which the conduc-
tance approaches a nonzero value. This result is in contrast
with the case of a clean �ordered� GSLs.27 Furthermore, the
results of the finite-size scaling computations predict a zero
conductance for all the GSLs, except for some special dW
values for which �=mdW, where m is an integer, in which
case the conductance tends to a nonzero constant in the ther-
modynamic limit.

Apparently, such a feature is independent of the value of
b= �dB�. Consequently, we predict a finite conductivity for a
disordered GSLs when the wavelength of incident particle is
equal to mdW. These results are in complete contrast with
those calculated for disordered semiconductor superlattice
which becomes an insulator.19,21,22 Our finding for the dc
conductance of the GSLs should be important to the design
of electronic nanodevices based on graphene superlattices. It
would probably worthwhile to extend the present work to the
case in which a correlated noise is used. In this case one
must replace the white noise with a proper short- or long-
range correlated noise.
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