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Propagation of acoustic waves in the one-dimensional �1D� random-dimer �RD� medium is studied by three
distinct methods. First, using the transfer-matrix method, we calculate numerically the localization length � of
acoustic waves in a binary chain �one in which the elastic constants take on one of two values�. We show that
when there exists short-range correlation in the medium—which corresponds to the RD model—the
localization-delocalization transition occurs at a resonance frequency �c. The divergence of � near �c is
studied, and the critical exponents that characterize the power-law behavior of � near �c are estimated for the
regimes ���c and ���c. Second, an exact analytical analysis is carried out for the delocalization properties
of the waves in the RD media. In particular, we predict the resonance frequency at which the waves can
propagate in the entire chain. Finally, we develop a dynamical method, based on the direct numerical simula-
tion of the governing equation for propagation of the waves, and study the nature of the waves that propagate
in the chain. It is shown that only the resonance frequency can propagate through the 1D media. The results
obtained with all the three methods are in agreement with each other.
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I. INTRODUCTION

The scaling theory of localization1 predicts that, for any
space dimensionality d�2, all the electronic states are local-
ized for any degree of disorder, whereas a transition to ex-
tended states occurs for d�2, depending on the strength of
the disorder W. The transition between the two states—the
metal-insulator transition—is characterized by the diver-
gence of the localization length � according to �� �W
−Wc�−�, where Wc is the critical value of the disorder inten-
sity. A considerable number of accurate numerical simula-
tions support this prediction; see, for example, Kramer and
Mackinnon2 for a review.

There have been several theoretical3–8 and
experimental9,10 studies of localization of acoustic waves that
have shown that such waves may be localized in disordered
media. The same type of phenomena is observed in disor-
dered optical materials. For example, experimental and nu-
merical evidence for light localization was obtained in a ran-
dom optical medium,11 finite slabs,12 and two-dimensional
�2D� random dielectric systems.13 Such observations have
been the impetus for the study of localization properties of
acoustic, electronic, and optical waves.

But as it happens quite often, there are always exceptions
to the rule. It was shown by Dunlap et al.14 that extended
states may exist in a medium with correlated disorder, even
in the one-dimensional �1D� tight-binding Anderson model.
This was shown using the so-called random-dimer �RD�
model �see below�. More recently, a number of
tight-binding15,16 and continuous17,18 models predicted the
existence of the extended states in disordered 1D media with
long- or short-range correlations. The discovery was sup-

ported by analytical, experimental, and numerical
investigations.19

The delocalization phenomena have also been studied
during propagation of acoustic waves, which are produced
when long-range intersite couplings are considered,20 or
when long-range correlations are introduced in the hopping
term of the Hamiltonian. For example, our group4,21 pre-
sented the results of extensive numerical simulation of
acoustic wave propagation in disordered media in one, two,
and three dimensions, and showed that there can be a
disorder-induced transition from delocalized to localized
states of acoustic waves in any spatial dimension. At the
same time, the existence of the extended states and, there-
fore, phonon transport in a 1D random mass n-mer model �a
generalization of the RD model� was studied by Cao et al.22

The short-range correlated disorder in such models can force
the localization length to be comparable with the length of
the system at the resonance frequency.15 The n-mer model
may also explain the high conductivity in some
polymers.23,24

In this paper, we study, using three distinct methods,
acoustic wave propagation in the 1D RD model in which
disorder is incorporated by varying the local elastic con-
stants. First, using the transfer-matrix �TM� method, we cal-
culate the localization length of acoustic waves propagating
in the medium, and show that when short-range correlation is
imposed between the local elastic constants, phonon delocal-
ization takes place in the model, which induces resonant
transmission of the acoustic waves. Next, we derive, using
an exact analytical method, the resonance frequency of the
RD model. The dynamic method, based on the direct numeri-
cal simulation of the equation that govern propagation of
acoustic waves, is then utilized to investigate propagation of
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wave packets through the RD medium, and to calculate their
intensity spectrum after their propagation. As explained be-
low, we find that the medium can filter out all the frequencies
of the wave packets, except the resonance frequency.

The rest of the paper is organized as follows. In Sec. II we
describe the model that we use which is based on the scalar
wave equation, and discuss its details. In Sec. III we present
and discuss our numerical and theoretical results. Section IV
describes the dynamical method for the study of the delocal-
ization effect. A summary of the paper is presented in Sec. V.

II. MODEL

To study acoustic wave propagation in a medium with a
random distribution of elastic constants, we analyze the sca-
lar wave equation introduced earlier.4,21 Its 1D version is
given by,

�2

�t2	�x,t� −
�

�x
�
�x�

�

�x
	�x,t�� = 0, �1�

where 	�x , t� is the wave amplitude, t is the time, and,

�x�=e�x� /m is the ratio of the stiffness e�x� and the medi-
um’s mean density m �in this paper we set m=1�. In order to
calculate the localization length �, we use the TM method.23

By discretizing Eq. �1� �we set the nearest-neighbor spacing,
�x=a=1�, and writing down the result for site i of a linear
chain, we obtain


i+1/2�	i+1 − 	i� − 
i−1/2�	i − 	i−1� + �2	i = 0. �2�

Setting 
i+1/2=�i, and 
i−1/2=�i−1, Eq. �2� is expressed in
terms of the conventional TM method by the following re-
cursive matrix form:

�	i+1

	i
� = Mi,i−1� 	i

	i−1
� , �3�

where

Mi,i−1 = �− �2 + �i−1 + �i

�i
−

�i−1

�i

1 0
	 . �4�

The wave functions of the two ends of the chain are re-
lated together by the product of matrices, MN,1���
=
i=1

N Mi,i−1, where N is the sample length �in number of the
sites�, and Mi,i−1 is the TM that connects the wave function
of site i+1 to those of sites i and i−1. Then, the Lyapunov
exponent 
��� is defined by


��� = lim
N→�

1

N
�ln�MN,1����
 . �5�

The localization length � is simply the inverse of the
Lyapunov exponent, �=1 /
.

We now introduce a binary and correlated distribution of
the disorder, i.e., one in which the elastic constants �i take on
only two values, kA �A� and kB �B�, with the additional
constraint that the kB values appear only in pairs of neigh-
boring sites of the chain �dimers�, but distributed at random
locations throughout the chain. An example is,

A ,A ,A ,A ,A ,B ,B ,A ,A ,A ,B ,B ,A , . . . . It should then be
clear that there is correlation in the probability distribution of
the nearest-neighbor site potentials.

The range of the allowed frequencies for the prefect lat-
tice �without disorder� is determined using Tr�MN,1�, where
Tr denotes the trace of global transfer matrix2 MN,1. To de-
termine the maximum and minimum allowed frequencies in
the RD model, we use direct diagonalization of the system’s
Hamiltonian. The results are presented in Figs. 1 and 2. For
each PBB, the fraction of the elastic constant pairs kB, the
averaging was taken over 20 000 realizations of the disorder.
Figure 1 displays �min as a function of the probability PBB.
The inset of the figure presents the scaling behavior of �min
in terms of the lattice size N. Similarly, the maximum value
�max of � as a function of PBB is presented in Fig. 2 which
indicates that for large system sizes �N→�� �max does not
change when PBB is small and tends to 6.325.
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FIG. 1. �Color online� Plot of the minimum allowed frequency
�min in the RD chain, as a function of the percent PBB of the paired
elastic constants, distributed randomly in a chain of various sizes N.
The inset shows the rescaled value of the minimum frequency. The
averaging was taken over 20 000 realizations.
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FIG. 2. �Color online� Same as in Fig. 1 but for the maximum
allowed frequency �max.
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III. RESULTS

We computed the localization length of the 1D model for
both the nonpaired and RD models. In addition, we carried
out exact theoretical analysis of the problem, as described
below.

A. Numerical results

The TM method was utilized to calculate the localization
length of acoustic waves in a RD chain. First, the elastic
constants kA=10 and kB=8 were distributed randomly in the
chain. The percent of the sites having the elastic constant kB
is PBB. The inset of Fig. 3 shows the localization length � of
the waves as a function of the wave’s frequency �. The
dashed line shows the localization length which is equal to
the system size, N=5�105, and the results were calculated
by averaging over 5000 realizations of the disorder. The lo-
calization length diverges only when �→0. These results
agree with those presented previously.4,21

We now consider the RD model when the kB’s are distrib-
uted randomly in pairs. Figure 3 presents the frequency de-
pendence of the localization length ���� for the lattice size,
N=5�105, kA=10, and for two values, kB=4.5 and 8.0, with
PBB=0.1. The results were obtained by averaging over 104

realizations of the lattice. In this case the localization length
diverges, not only in the limit �→0, but also at a second
frequency which is known as the resonance frequency �c.
Comparison of two figures, presented in Fig. 3, makes it
clear that a phononic band for the conductivity appears in the
frequency spectrum of the RD chain. The value of the reso-
nance frequency for kB=8.0 and kB=4.5 are, respectively,
�c=4.0 and 3.0. We will shortly present an exact analysis
that predicts these resonance frequencies.

In the RD model the localization length diverges as the
frequency approaches �c, i.e., �� ��−�c�−�. When �=�c, the

localization length of the propagating wave for a finite-size
chain is larger than the chain’s length, i.e., ���c��N. There-
fore, such a mode represents a delocalized state. Using the
logarithmic plot of ���� vs �, shown in Fig. 4, we estimated
the localization critical exponent � that characterizes the
power-law behavior of � near �c. Figure 4 presents such a
plots for ���c and ���c. The exponent �− for ���c is
estimated to be �−=1.9�0.2. For the ���c regime, we es-
timate that, �+=2.1�0.2. Moreover, we also estimated �0 for
the regime �→0+, with the result being �0=2.0�0.1.

B. Exact analysis

To predict the resonance frequency �c, we improve upon
a nonperturbative method that yields the frequency �c in
terms of kB. As indicated by Eq. �4�, there are four different
kinds of the TM in the RD chain, namely, MAA, MAB, MBA,
and MBB, two of which are given by

MAA = �− �2 + 2kA

kA
− 1

1 0
	 ,

MAB = �− �2 + kA + kB

kB
−

kA

kB

1 0
	 ,

while the other two are obtained by the transformations, A
→B and B→A. For the RD model we have such configura-
tions as, A�1B2�1A�2 . . .A�mB2�mA�m+1 . . . . Thus, we can write
MN,1 as follows:

MN,1 = �MAA��1−1MAB�MBB�2�1−1MBA�MAA��2−1. . .
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FIG. 3. �Color online� Localization length of the RD chain as a
function of allowed frequencies for kA=10 and two values of kB.
Dashed line indicates the localization length equal to the system
size, N=5�105. Inset: localization length of the random nonpaired
binary chain as a function of allowed frequencies for two values of
the elastic constant kA=10 and kB=8.
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FIG. 4. �Color online� Localization length of the RD chain with
kA=10 and kB=8 as a function of ��−�c�, in the regimes ���c and
���c, where �c=4.
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�MAA��m−1MAB�MBB�2�m−1MBA�MAA��m+1−1 . . . , �6�

where �m is the number of sites with elastic constant kA and
�m is the number of kB dimers in their mth cluster in the
binary model. According to theory of matrices,25,26 the nth
power of a 2�2 matrix with unit determinant satisfies the
characteristic equation as follows:

MBB
n = pn−1���MBB − pn−2���I , �7�

where pn���=sin�n+1�� /sin � is the order n Chebyshev
polynomials of second kind with ����1, �=arccos �, I is the
unit matrix, and � is given by

� =
1

2
Tr�MBB� =

1

2

2kB − �2

kB
. �8�

For a particular value of the frequency � for which
pn−1���=0, we have MBB

n =−pn−2���I. If we set n=2 �for the
dimers�, we obtain, pn−1���=0, if �2=2kB. For this particular
frequency one finds, pn−2���=1. Therefore, Eq. �8� reduces
to, MBB

2 =−I, which implies that for the RD model we have,
�MBB�2�m−1= �−1��m−1MBB. Moreover, we can also prove, us-
ing a similar analysis, relation MABMBBMBA=−MAA, for
�2=2kB. Thus, for this frequency MN,1 of the chain in Eq. �7�
contains only the matrices MAA, which effectively describes
an ordered chain. As a result, if the condition, � 1

2Tr�MBB��
�1, is satisfied for �2=2kB, then, its eigenstate is allowed to
be an extended state in the chain. The wave with this fre-
quency, which is what we refer to as the resonance frequency
�c,

�c
2 = 2kB , �9�

can propagate through the entire RD chain. Thus, our theo-
retical analysis confirms the numerical results for the RD
chain presented above. As a result, if we create a 1D model
with two types of dimers of elastic constants kA and kB, we
obtain two resonant frequencies,

�c1 = �2kA, �c2 = �2kB. �10�

This is confirmed by the numerical results presented in Fig.
5.

IV. DYNAMICS OF THE MODEL

To study the dynamics of the model, Eq. �1� was solved
directly in a 1D lattice, using the finite-difference �FD�
method with second-order discretization for both the time
and spatial variables. Thus, in discretized form, 	�x , t� is
written as 	i

n, where n denotes the time step number and i is
the grid point number. The second-order FD approximation
accurate to O��t2� to the time-dependent term of Eq. �1� is
the standard form,

�2	

�t2 �
	i

n+1 − 2	i
n + 	i

n−1

�t2 , �11�

where �t is the size of the time step. As for the spatial
derivatives, we first expand the right side of Eq. �1� in 1D by
using the second-order FD approximation,

�

�x
�
�x�

�

�x
	�x,t�� �

1

�x2�
i+ 1
2
	i+1

n

− 
i− 1
2
	i

n − 
i+ 1
2
	i

n + 
i− 1
2
	i−1

n � ,

�12�

where, clearly, values of 	i are attributed to the grid points i,
whereas the 
 variables are assigned to the links between the
grid points and take on values kA and kB. �x is the spacing
between two neighboring grid points. In the simulations we
set, �x=1, and to ensure the stability of the discretized equa-
tions we set, �t=�x /4.

To investigate the propagation of the waves and its dy-
namics in the RD chain, we sent a wave from a source on
one side of the chain, and recorded the transmitted wave at
various distances L from the source. The source wave was
chosen as a sine wave with frequency �0, and after some
time we collected the numerical values of 	i

n at different
locations of the medium. The length of the medium was L
=40 000�x, and we used kA=10 and kB=8.

Figure 6 presents values of 	 at time t=160 000�t in the
medium, for several initial frequencies �0. It indicates that
wave transmission is weaker for �0=3.7 and 4.3 than for
�0=4, and that the resonance frequency �0=�c=4.0 has an
extended nature. Moreover, to demonstrate the “filter” nature
of the medium, one may use a source to generate a wave
packet �in time� with mean frequency �0 and width �t. We
use the following form of the wave source to generate the
incident pulse:

S0�t� = exp�− �t − t0�2/2�t
2�sin��0t� , �13�

the shape of which is shown in Fig. 7 �inset�. The spectrum
of the pulse in the frequency space has the width, ��=1 /�t,
and the maximum amplitude is at frequency �0. To calculate
the frequency content of the wave pulse during its propaga-
tion, we study the transmitted pulse and calculate the inten-
sity spectrum which is defined as
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FIG. 5. �Color online� Localization length of the double RD
chain �i.e., values of the k on the sites A and B appear in pairs� with
kA=12.5 and kB=8, as a function of frequency. The localization
length � diverges at the resonant frequencies �c=4 and �c=5.
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N��� =
1

2
�	����2. �14�

Here, 	��� is the Fourier transform of 	�t� at distance L
from the source. In the simulation we recorded the wave
pulse at many receivers at various distances L from the
source, and calculated the intensity spectrum of received
wave pulse.

Figure 7 presents the resulting frequency dependence of
the wave pulse amplitudes collected at several receivers.
Here, we used kA=10, kB=8, �t=3.5, and �0=4. The inten-
sity spectrum was computed for the averages of 20 realiza-
tions of the disorder. The results did not change when we
used a larger number of realizations. As shown in the figure,
all the modes with ���c and ���c decay, and the medium
behaves as a filter to transmit only the frequency �c. With
the value of kB that we used, the resonance frequency is �c
=4. These results confirm those obtained by the exact ana-
lytical analysis and the TM method described earlier.

V. SUMMARY

We studied the localized and delocalized states of acoustic
waves in the random-dimer chain using the transfer-matrix
method, exact analytical analysis, and direct numerical simu-
lation of the scalar wave equation. The minimum and maxi-
mum values of the allowed frequencies were first computed
and, then, the localization length � of the acoustic waves in

the random-dimer chain was computed. We showed that
there exists a resonance frequency �c at which the localiza-
tion length of the acoustic waves diverges, when the fre-
quency of the waves approaches �c. The resonance fre-
quency �c depends on the value of paired elastic constant.
The critical exponent � that characterizes the power-law be-
havior of � near �c was also estimated.

We also carried out an exact analysis in order to predict
the dependence of resonance frequency �c on the value of
the paired elastic constant. It was shown that, at �c, the
random-dimer chain behaves as an ordered chain. Using the
dynamical method, based on directly solving the scalar wave
equation for propagation of a wave packet with a wide spec-
tral density, we showed that the chain localizes all the fre-
quency content of the wave pulse, except that for the reso-
nance frequency.

As discovered recently, symmetry of a random potential
�for example, the mirror symmetry, v�x�=v�−x�, in the 1D
Anderson model� gives rise to a nontrivial mechanism of
tunneling at macroscopic scales for a localized wave
packet.27 Unlike quantum tunneling through a regular poten-
tial barrier, which occurs only at the energies lower than the
barrier’s height, the proposed mechanism of tunneling exists
even for weak white-noise-like scattering potentials. The
connection between the resonance frequency of acoustic
waves in the disordered random dimmer, calculated and de-
termined exactly in the present paper, and the symmetry of
the random elastic stiffness is an open question, to be studied
in the future.
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