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Localization of elastic waves in two-dimensional �2D� and three-dimensional �3D� media with random
distributions of the Lamé coefficients �the shear and bulk moduli� is studied, using extensive numerical
simulations. We compute the frequency dependence of the minimum positive Lyapunov exponent � �the
inverse of the localization length� using the transfer-matrix method, the density of states utilizing the force
oscillator method, and the energy-level statistics of the media. The results indicate that all the states may be
localized in the 2D media, up to the disorder width and the smallest frequencies considered, although the
numerical results also hint at the possibility that there might be a small range of the allowed frequencies over
which a mobility edge might exist. In the 3D media, however, most of the states are extended �with only a
small part of the spectrum in the upper band tail that contains localized states� even if the Lamé coefficients are
randomly distributed. Thus, the 3D heterogeneous media still possess a mobility edge. If both the Lamé
coefficients vary spatially in the 3D medium, the localization length � follows a power law near the mobility
edge, ����−�c�−�, where �c is the critical frequency. The numerical estimate, ��1.89�0.17, is signifi-
cantly larger than the numerical estimate, ��1.57�0.01, and �=3 /2 �which was recently derived by a
semiclassical theory for the 3D Anderson model of electron localization�. If the shear modulus is constant but
the bulk modulus varies spatially, the plane waves with transverse polarization propagate without any
scattering—leading to a band of completely extended states, even in the 2D media. At the mobility edge of
such media the localization length follows the same type of power law as � but with an exponent �T�1 /2 for
both 2D and 3D media.
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I. INTRODUCTION

Propagation of elastic waves in random media has been a
subject of much interest for several decades. The reason for
the interest is at least twofold. One is that propagation of
elastic waves in rock provides much information on its struc-
ture and content.1,2 For example, seismic wave propagation
and reflection are used not only for estimating the hydrocar-
bon contents of an oil or natural gas reservoir but also for
obtaining information on the spatial distributions of the res-
ervoirs fractures, faults, and strata, as well as its porosity.
They are also the main tool for imaging rock structure over a
wide area, ranging from the Earth’s near surface to the
deeper crust and upper mantle. How the inhomogeneities
within the Earth’s crust affect the propagation of elastic
waves has also been, for a long time, a subject of much
interest.3 Other rock related phenomena and problems, in
which propagation of elastic waves plays a significant and
often fundamental role, include the analysis of seismic
records for earthquakes in order to develop a theory for pre-
dicting when and where an earthquake may occur,4 and for
detecting underground nuclear explosions.

The second reason for the interest in understanding elastic
wave propagation is related to the characterization of mate-
rials, the effect of heterogeneities on their macroscopic prop-
erties, and the development of a link between their static and
dynamical properties.5 This problem has also been studied
for several decades.6 In particular, propagation of elastic

waves has been a major tool for nondestructive evaluation of
composite materials and for gauging the effect that the de-
fects have on their properties.5,7

As elastic waves propagate in a disordered material, the
heterogeneities cause multiple scattering of �and interference
in� the waves. The scattering process modifies both the travel
time and amplitudes of the propagating waves. An important
question, then, is whether the heterogeneities and the associ-
ated scattering and interference phenomena can give rise to
localization of the elastic waves. By localization, we mean a
phenomenon in which, over finite lengths scales �which
could, however, be quite large�, a wave’s amplitude decays
and eventually vanishes. It was recently reported,8 through
elegant experiments, that seismic waves propagating in rock
samples exhibit weak localization. The fundamental mecha-
nism for weak localization is the constructive interference of
an incident beam, traveling in a given scattering path, and
the waves that move along the same path in the backscatter-
ing direction. Constructive interference exists only in a nar-
row range of the angles around the backscattering direction.
The typical width of the cone is of the order of � /�, where �
is the wavelength and � is the mean-free path of the waves.
Thus, for a medium with a high density of the scatterers, the
backscattering cone is wider. Indeed, the criterion for the
existence of the weak localization regime is � /��1. Weak
localization is also important due to it being a precursor to
the strong localization, which is also the result of multiple
scattering by a spatial distribution of scatterers. As is well
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known, the main consequence of strong localization is the
absence of diffusion of waves over length scales that are
larger than the localization length.9

Localization of elastic waves in disordered media have
important practical implications. Consider, as an example,
propagation of elastic waves in rock. If the waves do local-
ize, then, their scattering and reflection by the rock can pro-
vide useful information on its structure only over length
scales that are on the order of the localization length of the
waves or smaller. Thus, if, for example, a station that records
information on the seismic waves �which emanate from an
earthquake epicenter� is farther from the center than the lo-
calization length of the waves, the records cannot provide
much useful information on the phenomena that led to the
earthquake and its aftermath.

A very useful quantity for determining whether a state is
delocalized or localized is the minimum positive Lyapunov
exponent �, which is simply the inverse of the localization
length 	. If �
0 for all the energies or frequencies �, then,
all the states are localized; that is, the wave function ��r�
decays at large distances r from the center of the material’s
domain as ��r��exp�−����r�. Another useful property is
the vibrational density of states of disordered elastic materi-
als, which depends strongly on the strength of the disorder in
the materials.

In the present paper we carry out extensive numerical
simulations in order to study the frequency dependence of
several properties of disordered elastic media in both two-
dimensional �2D� and three-dimensional �3D� media, and we
investigate the conditions under which elastic waves in such
media may become localized. We compute the localization
properties of disordered elastic media as a function of the
frequency using the transfer-matrix method. In particular we
compute the frequency dependence of the minimum positive
Lyapunov exponent near the localization-delocalization tran-
sition. The frequency dependent properties that we study also
include the statistics of the energy levels and the distribution
of the spacings �gaps� between the nearest-neighbor levels.
The distribution of the level spacings for certain matrices has
been studied through the theory of random matrices.10,11 It
has been shown that the statistics of the energy levels in the
metallic regime of the Anderson localization9 follows the
well-known Wigner-Dyson statistics.10 The symmetries of
the Hamiltonian that describe a phenomenon in a disordered
medium affect the universality class of the transition and the
distribution function of the level spacings. Therefore, it
should be interesting �as well as important� to study whether
the statistics that we compute for elastic waves in disordered
media fall in any known universality class, such as that of
the Anderson model, or that they give rise to a new class.

To carry out the numerical simulations, we consider a
medium with a constant density and continuous spatial dis-
tributions of the Lamé coefficients. The governing equations
for the propagation of elastic waves in such a medium are
then discretized and solved. The discretization does, of
course, introduce a cut-off length scale into the problem,
namely, the lattice spacing or the linear size of the blocks in
the computational grid. Thus, the results are valid for the
wavelengths that are larger than the basic linear size of the
blocks. At the same time though, the model that we study is

the one that has been used extensively in the geophysics
literature for representing the propagation of seismic waves.
Thus, our results are directly relevant to seismic wave propa-
gation in heterogeneous rock.

In addition to the above considerations, the present study
is also motivated by, and represents a continuation of, our
recent study12 of propagation of elastic waves in 2D disor-
dered media. In that study the Martin-Siggia-Rose method13

was used and the one-loop dynamic renormalization group
�RG� equations were derived for the coupling constants, in
the limit of low frequencies �long wavelengths�. The RG
analysis made it possible to identify those regions in the
coupling constants space, in which the elastic waves are lo-
calized or extended. Thus, using extensive numerical simu-
lations, we aim in the present paper to check the predictions
of the RG analysis carried out previously.12 In addition, our
work is relevant to phonon localization in disordered solids
that has been studied extensively in the past. Such a phenom-
enon has been studied classically, using both the scalar and
vector models of vibrations in disordered materials,14–16 al-
though the vector models used previously are different from
what we consider in the present paper.

The rest of this paper is organized as follows: In the next
section we describe the model of the heterogeneous elastic
media and the governing equations for elastic wave propaga-
tion in such media that we study in this paper. Section III
describes the transfer-matrix computation of the Lyapunov
exponents, while the calculation of the density of states is
described in Sec. IV. The results are presented and discussed
in Sec. V, while Sec. VI summarizes the paper.

II. MODEL AND GOVERNING EQUATIONS

Many of the theoretical studies of wave propagation in
heterogeneous media �such as rock� are based on the elastic
wave equation

m
�2ui

�t2 = � j
ij , �1�

which represents the equation of motion for an elastic me-
dium with mean density m. Here, ui is the displacement in
the ith direction, 
ij is the ijth component of the stress tensor
�, and t is the time. As usual, 
ij is written in terms of the
strain tensor,


ij = 2��x�uij + ��x�ukk�ij , �2�

where uij is ij component of the strain tensor, and ��x� and
��x� are the spatially varying Lamé coefficients. For small
deformations of the medium the strain tensor has the follow-
ing linear form in terms of the displacement components ui
and uj:

uij =
1

2
��iuj + � jui� . �3�

In the computer simulations that are described below we take
the Lamé coefficients, � and �, to be uniformly distributed in
the intervals ��0−W� ,�0+W�� and ��0−W� ,�0+W��, where
�0 and �0 are the mean values of the coefficients.
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Accurate numerical simulation of Eq. �1� �together with
Eqs. �2� and �3�� is difficult, particularly if one solves it for a
heterogeneous medium in which the Lamé coefficients vary
spatially. There have been many attempts in the geophysics
literature to solve Eq. �1� numerically in the time
domain,17–20 using a variety of schemes and computational
grids. Typically, in these works,17–20 Eq. �1� was discretized
by the finite difference �FD� technique. However, the use of
the central difference FD method �together with cubic com-
putational grids� can give rise to certain instabilities in the
solution. It has been shown21 that stable numerical solutions
are obtained if one uses a staggered computational grid �in
order to define the variables and to discretize Eq. �1�� unless
the medium contains singularities �such as cracks� or free
surfaces, in which case a rotated staggered grid may be more
appropriate.

In the present study we used the staggered computational
grids, shown in Fig. 1, in the numerical simulations of Eq.
�1�. Discretizing Eq. �1� on such a grid leads to a symmetric
Hamiltonian, as expected. We then seek monochromatic so-
lutions of Eq. �1� for a given frequency in the form, ui�x , t�
=ui�x�exp�i�t�. Writing u= �u ,w� in 2D and u= �u ,w ,v� in
3D, and discretizing Eq. �1� by the FD method on the stag-
gered grid shown in Fig. 1, we obtain a set of discretized
equations for the determination of the monochromatic solu-
tions. The resulting discretized equations are given in the
Appendix.

The problem of solving the set of the discretized equa-
tions, Eqs. �A1�, �A2�, and �A5�–�A7� of the Appendix, is
then formulated as one of the eigenvalue problem. If we
define a vector Z, the components of which represent all the
field variables �displacements� at the grid points, then the set
of the discretized equations is written as

�
�

H��Z� = �Z�, �4�

where �=�2 with the matrix of the coefficients H being
symmetric. As mentioned above, discretizing the governing
equations introduces a cut-off length scale and, hence, a cut-
off frequency in the simulations, which do not exist in the
continuum Eq. �1�. We neglect such difference between the
discrete and continuous system �which can be reduced by
decreasing the size of the blocks in the computational grid�.

III. TRANSFER-MATRIX CALCULATIONS

To determine whether an eigenstate is localized or ex-
tended in the thermodynamic �large system size� limit, we

calculate the minimum positive Lyapunov exponent �m,
which is simply the inverse of the localization length. The
most suitable numerical method for directly computing the
localization properties of noninteracting disordered media is,
perhaps, the transfer-matrix �TM� technique, using a strip
�bar� in two �three� dimensions, with periodic boundary con-
ditions in the transverse direction�s�. To formulate the TM
computations, we rewrite the difference equations, Eqs.
�A1�, �A2�, and �A5�–�A7�, in the following form:

�Zn+1

Zn
	 = Tn� Zn

Zn−1
	 , �5�

where Zn is the vector that contains the values of �the dis-
cretized� displacements u�x� in slice number n in the 2D
strip or the 3D bar. For 2D media, for example, Zn contains
2M components because every grid point is characterized by
two displacements �u ,w� �see Fig. 1�. Thus, the vectors on
both sides of Eq. �5� contain 4M components and, as a result,
Tn is a 4M �4M matrix, resulting in 4M Lyapunov expo-
nents, half �2M� of which are independent as they appear in
pairs, �� ,−��.

Because the discretized equations are defined on a stag-
gered grid �Fig. 1� and we have a set of coupled equations
for each grid points instead of a single equation �because we
solve a vector equation�, the slices for the TM steps should
be defined carefully. In 2D we impose the boundary condi-
tion on one side of the strip and then move forward in the
�longitudinal� x direction by multiplication of the TM matri-
ces. To do this, we define the set of two lines, x= i and x= i
+ 1

2 , as a single slice. All the variables in the slice �i+1, i
+1+ 1

2 � are then computed if one knows the values in the
slices �i , i+ 1

2 � and �i−1, i−1+ 1
2 �. In the same way, a bound-

ary condition is imposed on one end plane of the bar, and a
3D slice is defined as being composed of two planes, z=k
and z=k+ 1

2 .
We used M �L strips and M �M �L bars, where M is the

transverse dimension and L the length. If N=dMd−1, where
d=2 and 3, then, the dimensions of the TM in Eq. �5� and the
number of the Lypunov exponents are 2N. Therefore, the
simulations start with 2N initial orthonormal vectors, corre-
sponding to the dimension of the TM, taken to be v
= �1,0 , ¯ ,0�T , �0,1 ,0 , ¯ ,0�T, and so on, where T denotes
the transpose operation. Because of being multiplied by the
successive TMs, the directions of the initial vectors change.
The Lyapunov exponents are then the logarithm of the trace
of the matrix, V= �T�T�T�1/2n, where T=TnTn−1¯T1. Then,
the direction that corresponds to the largest Lyapunov is the
direction of the eigenvector that corresponds to the largest
eigenvalue of the matrix V.

However, after a few steps, the information about all the
Lyapunov exponents but the largest one will be lost in the
numerical noise. To avoid this difficulty, we implemented the
Gram-Schmidt �GS� orthogonalization after every two steps
of the TM iterations. The number of steps after which the GS
orthogonalization should be applied depends on the model
and it may actually be estimated.22,23 For example, in the
computations for the Anderson model the GS orthogonaliza-
tion is applied after every ten steps.
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FIG. 1. �a� Two- and �b� three-dimensional staggered grids used
in the simulations. Symbols on the grid blocks indicate the grid
points at which the associated quantities are evaluated.
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IV. DENSITY OF STATES

As mentioned above, a useful quantity for characterizing
propagation of elastic waves in a disordered solid is the vi-
brational density of states �DOS� N���. The usefulness of
N��� is due to its dependence on the strength of the disorder
and, therefore, it is an important characteristics of heteroge-
neous media. To compute the DOS, we used the forced os-
cillator �FO� method,5,24,25 which made it possible to use
computational grids of size 103�103 in 2D and 102�102

�102 in 3D. The FO method is based on the principle that a
complex mechanical system driven by a periodic external
force of frequency � responds with large amplitude in those
eigenmodes that are close to �.

Let us point out that although computing the DOS is not
directly crucial for the search for a mobility edge, it is, nev-
ertheless, a very useful quantity to calculate. For example,
the DOS helps one to identify the allowed range of the fre-
quencies �see Figs. 2 and 3 below�, with the help of which
the computations are carried out more efficiently for the mo-
bility edge search in the frequency range.

V. RESULTS AND DISCUSSIONS

In what follows, we describe the results of the numerical
simulations and discuss their implications.

A. Density of states

For an elastic medium in which wave propagation is de-
scribed by Eq. �1�, all the eigenvalues of the matrix H are
positive. As a result, the system undergoes an asymmetric
broadening of the band of the allowed frequencies �energies�.
In Fig. 2 we present the DOS N��� for the 2D ordered, as
well as random, media. There are two peaks corresponding
to two branches of the characteristic equation, i.e., the trans-
verse and longitudinal modes. The two modes propagate in-
dependently in 2D and, therefore, each branch has the same
DOS as that of the 2D Anderson model. As is well known
without disorder, the DOS has cusps in 2D containing some
special points that are usually called the von Hove
singularities—at which the DOS is nondifferentiable. As
shown in Fig. 2, by adding randomness to the Lamé coeffi-
cients of the medium, the von Hove singularities disappear
and a band tail appears in the upper band edge.

Figure 3 presents the DOS N��� for the corresponding
3D media. The results seem similar to those for the 2D media
although the cusps do not appear as sharp. Once again, dis-
order in the form of the spatial distributions of the Lamé
coefficients make the DOS smooth. We show in the next
section, however, that the propagation of elastic waves in the
2D and 3D media is different if we study its localization
properties.

B. Lyapunov exponent and localization length

The computed Lyapunov exponents �m are presented in
Table I for �=1. They occur in pairs �� ,−��, which indicate
the symplectic symmetry of the TMs. We found that after
every two steps the GS orthogonalization must be imple-
mented. The estimated errors shown were computed as fol-
lows: After each GS orthogonalization the length d� is com-
puted for normalizing the evolving vector Zn in Eq. �5�,
which then results in a sequence 
d��. The average of the
logarithm of such lengths yields the Lyapunov exponent,

� =
1

mp
�
�=1

N

ln�d�� , �6�

after normalizing the vectors p times, with m being the steps
of GS orthogonalization �here m=2�. Moreover, the error in
estimating � �see Table I� is given by26

��

�
=

1
�p

�
�ln d��2� − 
ln d��2


ln d��
, �7�

where the brackets indicate averaging over the sequence of

d��. � is a self-averaged quantity26 and the error of its esti-
mates approaches zero as p increases. Note that not all the
Lyapunov exponents are independent; we only need to com-
pute the first N of them. The smallest positive Lyapunov
exponent, �m, corresponds to the localization length that we
wish to determine and study.

Figure 4 presents the inverse of the scaled localization
length, �= �M�m�−1, in the 2D media as a function of �
=�2 for the disorder parameters, W�=W�=0.99 and �0=�0
=1.0, and several M, the width of the strips used in the TM
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FIG. 2. Density of states N��� of the 2D model calculated with
a computational grid of size 1000�1000.
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FIG. 3. Density of states N��� of the 3D model calculated with
a computational grid of size 100�100�100. The curves are guide
to the eye.
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computations. The calculations were carried out with an ac-
curacy of 0.1%. At first glance, it appears that � decreases
by increasing the width, implying that it vanishes in the ther-
modynamic limit and, therefore, all the states are localized in
the 2D disordered media that we studied up to the frequen-
cies that were considered.

However, a closer inspection of Fig. 4 indicates an in-
triguing possibility. It appears that for �
10, �−1 exhibits
an M dependence, whereas for ��10 the dependence on M
is weak, if it exists at all. The difference indicates that the
possibility of the existence of a mobility edge cannot be
completely ruled out in such 2D media.27 If mobility edge
does exist, it would then be consistent with the prediction of
the RG calculations12 for the 2D media, which did predict
the existence of such a mobility edge in 2D. We shall come
back to this point shortly.27,28

Next, we consider a special case in which the shear modu-
lus � is constant, but the bulk modulus � is distributed ran-
domly. Such a limiting case is of interest because a 2D me-
dium of this type does have a band of extended states. It is

straightforward to show that, for a constant �, Eqs. �A1� and
�A2� have a solution that propagates without any scattering,
which, in fact, represents plane waves with transverse polar-
ization, for which the dispersion relation is given by

� = 4 − 2 cos�kx� − 2 cos�ky� , �8�

where k= �kx ,ky� is the wave vector. The dispersion relation
�6� has a frequency band in the range 0���8, in which we
find a zero Lyapunov exponent implying infinite localization
length and, therefore, extended states. Moreover, there is a
mobility edge at �c=8. Moreover as �→�c

+, one has

�m � �� − �c��T. �9�

Figure 5 presents the frequency dependence of the rescaled
Lyapunov exponent, M�m, near �c=8 for several strip
widths M. The data are well fitted by the power law �Eq.

TABLE I. The rescaled Lyapunov exponents M�m �inverse of the rescaled localization length� of the 2D
model and the corresponding errors. n is the index number of �m. The results are for M =6, L=105, �=1,
W�=W�=0.99, and �0=�0=1.0. The Gram-Schmidt orthogonalization was implemented after every two
steps.

n M�m Error n M�m Error

1 15.421216 0.018 13 −0.146944 0.007

2 13.044478 0.015 14 −0.384629 0.007

3 10.675876 0.012 15 −0.769397 0.008

4 8.019660 0.010 16 −1.404398 0.009

5 6.411892 0.009 17 −2.559604 0.010

6 5.138542 0.008 18 −3.831230 0.010

7 3.831297 0.008 19 −5.138530 0.009

8 2.559524 0.008 20 −6.411741 0.010

9 1.404456 0.007 21 −8.019935 0.012

10 0.769496 0.006 22 −10.675919 0.014

11 0.384616 0.006 23 −13.044517 0.016

12 0.146903 0.006 24 −15.421134 0.018

Λ
-1

0 5 10 15 20 25 30 35

100

101

M = 10
M = 16
M = 22
M = 28

W λ = Wµ = 0.99

Ω

FIG. 4. Inverse of the scaled localization length � of the 2D
model obtained with an accuracy of 0.1%.
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842 6 ×10-510
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FIG. 5. Inverse of the scaled localization length � of the M
�L strips with W�=0 and W�=0.99. The results were obtained
with an accuracy of 0.1%.
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�7��, yielding the estimate, �T�0.496�0.003, independent
of the width M.

In 3D media, however, the Lyapunov exponent behaves
differently. Figure 6 displays the results for the inverse of the
�rescaled� localization length �−1 for the same disorder pa-
rameters as those in the 2D media. The results for all values
of the width M of the 3D bars �used in the TM computations�
intersect one another at a particular critical frequency �c.
For ���c the rescaled Lyapunov exponent decreases with
increasing M, i.e., one has extended states.

To obtain better understanding of the localization proper-
ties, we analyze the numerical data for the localization
length. The inverse of the �rescaled� localization length, �−1

is a function of a single scaling variable and is expressed as

�−1 = F��M1/�� = �
i=0

n

ai�
iMi/�, �10�

where � is the localization length exponent, ����−�c�−�,
and � is the scaling variable. a0 represents the critical value
of �c

−1. The absolute scale of the argument in Eq. �10� is
arbitrary; we fix the coefficients by setting a1=1. The scaling
variable � is then expanded as a function of the reduced
frequency �r,

� = �
i=1

m

bi�r
i , �11�

�r = �� − �c�/�c. �12�

For a large enough system, it is not necessary to keep the
higher-order terms of Eqs. �10� and �11� in the critical region
near �c. Here, however, due to the relatively small sizes of
the 3D bars that we used in the TM simulations, we need
some of the leading order terms in order to obtain accurate fit
of the data. If the number of terms in the expansions Eqs.
�10� and �11� are, respectively, selected to be n=3 and m
=2, we obtain an accurate fit of the data with

� � 1.89 � 0.17, �c
−1 � 1.84 � 0.06, �13�

�c � 38.82 � 0.06,

where the estimated errors are with 95% confidence.
The above estimate of the critical exponent � is different

from the estimate29 of the corresponding exponent for the
Anderson model of electron localization, ��1.57�0.01. It
is also much larger than �=3 /2, which was recently
derived30 based on a semiclassical theory for the 3D Ander-
son model of electron localization. The important implication
of the difference is that the localization-delocalization tran-
sition for elastic waves in the 3D disordered media that we
study belongs to a universality class different from that of the
Anderson model. The difference is presumably related to the
different symmetries of the underlying Hamiltonians for the
two phenomena. We note, however, that due to the relatively
large estimated errors of � for the elastic waves, we cannot
completely rule out the possibility that the two models be-
long to the same universality class.

Similar to the 2D media, the special limit in which the
shear modulus � is constant, but the bulk modulus � varies
spatially, may also be studied in 3D media. In this case the
transverse plane waves have a dispersion relation given by

� = 6 − 2 cos�kx� − 2 cos�ky� − 2 cos�kz� . �14�

Therefore, the frequency band of such waves is the interval
0���12. Figure 7 presents frequency dependence of the
rescaled minimum Lyapunov exponent, �m. The results indi-
cate that near the mobility edge �c=12, �m follows the same
type of power law as in the 2D media, with an exponent
�T�0.481�0.004, very close to that estimated for the 2D
media and roughly equal to 1/2.

C. Statistics of energy levels

An important aspect of the symmetry of any Hamiltonian
is its level spacing statistics, which have been studied exten-
sively by the theory of random matrices. The statistics of the
level spacings s for the elastic waves indicate that, in the
localized regime where the localization length is small com-
pared to the medium’s linear size, the levels are uncorrelated
and, therefore, they follow a Poisson distribution. Figure 8
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Ω

FIG. 6. Inverse of the scaled localization length � of the 3D
model for W�=W�=0.99, obtained with an accuracy of 2%. Solid
curves represent the fit of the data to Eq. �10�.
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FIG. 7. Inverse of the scaled localization length � of the M
�M �L bars withW�=0 and W�=0.99. The results were obtained
with an accuracy of 0.1%.
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presents such energy-level statistics for the 2D media for two
frequency ranges. The parameter s is defined by

s =
�n+1 − �n


�n+1 − �n�
.

The results, shown in Fig. 8, were obtained by exact diago-
nalization of 1000 realizations of the disorder using 50�50
computational grids. In the interval 28���32 the statistics
do follow the Poisson distribution. For low frequencies in the
interval 0���1, however, the data are well fitted by the
Wigner-Dyson distribution. Indeed, the Wigner-Dyson and
Poisson distributions represent the statistics for certain limits
that are attained in the thermodynamic limit. In fact, the
Wigner-Dyson distribution, which describes the statistics of
the level spacings in the low-frequency limit, will approach
the Poisson distribution by increasing the system size31 if
there is no true mobility edge in two dimensions.

At the localization-delocalization transition point in 3D,
the distribution function of the level spacings is independent
of the system size and is represented by the semi-Poisson
distribution,32 P�s�=4s exp�−2s�. Figure 9 presents the dis-
tribution function of the level spacings in the 3D model for
the frequencies near the critical frequency �c, obtained by
using 120 realizations of the disorder in 30�30�30 com-
putational grids. The results indicate clearly that the distribu-
tion is essentially semi-Poisson.

D. Comparison with the predictions of the dynamic
renormalization

In a previous paper12 we studied localization of elastic
waves in 2D heterogeneous solids with randomly distributed
Lamé coefficients, as well as those with long-range correla-
tions with a power-law correlation function, characterized by
an exponent �. The Martin-Siggia-Rose method13 was used
and the one-loop RG equations for the coupling constants
were derived in the limit of low frequencies �long wave-
lengths�. We found, in particular, that for ��1 there is a
region of the coupling constants space in which the RG flows

are toward the Gaussian fixed point, implying that the disor-
der is irrelevant and, therefore, the waves are delocalized. In
the rest of the disorder space the elastic waves were found to
be localized.

The numerical results for the 2D media presented in the
present paper, when the two Lamé coefficients are spatially
distributed, do not seem to indicate the existence of any ex-
tended states. If this is true, then the discrepancy between the
numerical simulations and the RG predictions may be due to
the fact that the RG results are valid only in the low-
frequency limit and the smallest frequencies that we consid-
ered in the present paper may be larger than those for which
the RG results are valid.

At the same time, as discussed above, the M dependence
of the inverse �rescaled� localization length �−1 for a range
of frequencies �
10, and its absence for ��10, open up
the possibility that, consistent with the RG predictions, a
mobility edge does exist in the 2D media that we study. In
that case, we would have further evidence that the question
of localization of elastic waves in heterogeneous media is
fundamentally different from that of Anderson localization of
electrons. This is clearly an issue that deserves further study.
Work in this direction is in progress.

VI. SUMMARY

We studied the localization properties of elastic waves in
a disordered elastic medium in both two and three dimen-
sions. We found that if the disorder, in the form of spatially
varying Lamé coefficients, is broadly distributed, it may lead
to the localization of all the states in the 2D media although
there is some evidence that a mobility edge might exist in
such media. The same disorder strength cannot, however,
localize all the states in the 3D media. There is a mobility
edge in 3D, near which the �rescaled� localization length
follows a power law ����−�c�−�. Using extensive nu-
merical simulations and a scaling analysis, the estimated �
was found to be different from that of the Anderson model of
electron localization. The statistics of the energy levels indi-
cated, however, that in the extended regime it is generally the
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FIG. 8. Distribution of the level spacings for 103 realizations of
2D media of size 502 for two frequency intervals. The results for the
high-frequency interval follows the Poisson statistics, while the re-
sults for the low-frequency interval follows the statistics of the
Gaussian orthonormal ensemble.
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FIG. 9. Distribution P�s� of the level spacings for 120 realiza-
tions of the 3D media of size 303 for the frequency interval 36
���40 near the critical frequency �c. P�s� is nearly
semi-Poisson.
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Gaussian orthogonal ensemble statistics11 that govern the en-
ergy levels. In the limit in which the shear modulus is con-
stant but the bulk modulus varies spatially, there is a mobility
edge even in 2D, for which the associated critical exponent
�T for the power-law behavior of the localization length near
the edge was also computed. We found for both the 2D and
3D media that �T�1 /2.

APPENDIX: THE FINITE DIFFERENCE EQUATIONS

We list the discretized equations that govern the displace-
ments of the grid points during propagation of elastic waves
in the 2D and 3D computational grids.

1. Two-dimensional media

− m�2u = Dx��� + 2��Dxu� + Dy��Dyu� + Dy��Dxw�

+ Dx���Dyw��i,j , �A1�

− m�2w = Dy��� + 2��Dyw� + Dx��Dxw� + Dx��Dyu�

+ Dy���Dxu��i+1/2,j+1/2. �A2�

where

Dxf�i, j� =
1

h
� f�i +

1

2
, j	 − f�i −

1

2
, j	� , �A3�

Dyf�i, j� =
1

h
� f�i, j +

1

2
	 − f�i, j −

1

2
	� . �A4�

2. Three-dimensional media

− m�2u = Dx��� + 2��Dxu� + Dy��Dyu� + Dz��Dzu�

+ Dy��Dxw� + Dx��Dyw� + Dx��Dzv�

+ Dz���Dxv��i,j,k, �A5�

− m�2w = Dy��� + 2��Dyw� + Dx��Dxw� + Dy��Dyw�

+ Dx��Dyu� + Dy��Dxu� + Dy��Dzv�

+ Dz���Dyv��i+1/2,j+1/2,k, �A6�

− m�2v = Dz��� + 2��Dzv� + Dx��Dxv� + Dy��Dyv�

+ Dz��Dxu� + Dx��Dzu� + Dz��Dyw�

+ Dy���Dzw��i+1/2,j,k+1/2. �A7�

where

Dxf�i, j,k� =
1

h
� f�i +

1

2
, j,k	 − f�i −

1

2
, j,k	� , �A8�

Dyf�i, j,k� =
1

h
� f�i, j +

1

2
,k	 − f�i, j −

1

2
,k	� , �A9�

Dzf�i, j,k� =
1

h
� f�i, j,k +

1

2
	 − f�i, j,k −

1

2
	� . �A10�

We took h=1.
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