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Abstract. The propagation of acoustic waves in strongly heterogeneous media
is studied using direct numerical simulations. Two types of heterogeneous
media are considered. In one type, the spatial distribution of the local
elastic constants contain long-range correlations with a power law, nondecaying
correlation function. The correlation length is, therefore, as large as the
linear size of the system. In the second type of heterogeneous media the
correlation length is decreased, up to the linear size of the blocks in the
computational grid and, therefore, the distribution of the elastic constants is
uncorrelated or white noise, but with the same mean and variance as that of
the correlated media. We find that there are fundamental differences between
wave propagation in the two types of heterogeneous media. In particular, the
evolution of four distinct characteristics of the waves, namely, the amplitude
of the coherent wavefront (CWF), its width, the spectral densities and the
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Propagation of acoustic waves

scalogram (wavelet transformation of the waves’ amplitudes at different scales
and times), and the dispersion relations are completely different for uncorrelated
and correlated media. Such differences point to wave propagation experiments
that can detect important characteristics of the heterogeneities that a medium
may contain, and help distinguish correlated disordered media from uncorrelated
ones.

Keywords: heterogeneous materials (theory)
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1. Introduction

The link between the static and dynamical properties of heterogeneous materials, ranging
from composite solids to porous media, has been a problem of fundamental interest
for decades. In a disordered solid material, for example, one is interested [1,2] in
the relation between the morphology—the shape, size, and the spatial distribution
of the material’s microscopic elements—and the dynamics of any process that takes
place in the material at the macroscale, such as transport of electrical current or
stress. Likewise, the relation between the morphology of a porous material and its flow,
transport, and other dynamical properties have been studied for decades [3,4]. Such
relations are important in view of the fact that it is usually much easier to measure
the macroscopic properties of disordered materials than characterizing with precision
the spatial distribution of their microscopic heterogeneities. Thus, any macroscopic
measurement that can shed light on the morphology of a material is valuable and
important.

An important tool for obtaining information on the morphology and contents of
inhomogeneous media has been the study of how waves—both acoustic and elastic—
propagate in such media. For example, seismic wave propagation and reflection are
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utilized [5] to not only estimate the hydrocarbon content of a potential oil field, but also
the spatial distribution of its porosity, fractures, and faults. In addition, understanding
wave propagation in heterogeneous media is fundamental to such important problems as
predicting when earthquakes may occur, detecting underground nuclear explosions, and
what happens on the seafloor. The same basic techniques are used in such diverse fields
as materials science and medicine [5].

In this paper we study how acoustic waves propagate in an inhomogeneous medium.
In particular, we study the relation between several characteristics of the waves, such
as the decay of their amplitude, and the morphology of the inhomogeneous medium in
which the waves propagate. The rate of the decay of the amplitude of a wave that
undergoes multiple scattering strongly influences how far the wave propagates in the
medium. The amplitude decay itself is a strong function of the heterogeneities and, in
particular, the distribution of the medium’s local elastic constants. In many heterogeneous
media, such as rock, the elastic constants are not only broadly distributed—varying over
many orders of magnitude—but also contain extended correlations. The problem that
we study, in addition to its general importance, has been motivated by three recent
developments.

(1) Recent analysis of extensive data for the speed of wave propagation in large-scale
porous media (oil and gas reservoirs) provided evidence [6] that the distribution of
the elastic moduli of such porous formations may follow a fractional Brownian motion,
a self-affine stochastic distribution with long-range correlations that are characterized
by a nondecaying power law correlation function (see below). Interpretation of the
data for a wave propagation experiment in a large-scale heterogeneous medium, such
as an oil reservoir, has traditionally been based either on representing the medium by
a uniform system, or by a disordered one with weak heterogeneities [5]. Therefore, it
is important to study how long-range correlations affect wave propagation, as it is well
known that such correlations have a deep effect on other phenomena in heterogeneous
media [1]-[4].

(2) Depending on the spatial distribution of the elastic moduli and the strength of the
disorder, one may have localized acoustic waves in any dimensions, [7]-[9] including
three-dimensional (3D) disordered media.

(3) There is a direct link between the static morphology of an inhomogeneous medium,
characterized by a spatial distribution of the local elastic constants with long-range,
nondecaying correlations, and the shape and roughness of a wavefront that propagates
in the medium [10].

A major goal of this paper is to study the effect of the heterogeneities, represented by
a spatial distribution of the local elastic constants, and their correlations on acoustic
wave propagation. Another goal of the paper is to explore the possibility of the
existence of a relation between the amplitude decay and the evolution of frequency
attributes of acoustic waves that propagate in an inhomogeneous medium, and the spatial
distribution of the medium’s local elastic constants. In particular, we search for an
indicator that distinguishes unambiguously acoustic wave propagation in a disordered
medium from one in which there are long-range correlations between the local elastic
constants, of the type that was recently revealed by the analysis of the experimental
data [6].
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Thus, two distinct classes of disorder are considered. In one, the spatial distribution
of the local elastic constants is white noise or uncorrelated. In practice, there are at
least short-range correlations (if not long-range ones) between the local properties of a
heterogeneous medium. The limiting resolution of the model that we use to represent a
heterogeneous medium is the linear size of the blocks in the computational grid. Thus, a
medium in which the correlation length is the same as the linear size of the blocks in the
computational grid may be considered as one without any correlations, and the medium
can be considered as completely uncorrelated.

In the second class of disorder that we consider, the spatial distribution of the
local elastic constants contains long-range correlations, characterized by a power law,
nondecaying correlation function, similar to what was revealed by the recent analysis of
the experimental data [6] for large-scale porous media. In this case, the correlation length
is as large as the linear size of the system. We then decrease the correlation length (see
below), up to the linear size of the blocks in the computational grid, in order to study
its effect on wave propagation. The variance of the white noise distribution and that
of the one with power law, nondecaying correlations are taken to be equal, so that any
difference between the results obtained with the two types of media may be attributed to
the correlation properties of the distributions.

While the theory of elasticity of materials has provided deep understanding of the
propagation of acoustic and elastic waves in a homogeneous and continuous medium,
the same is not true about heterogeneous materials and media of the type that we
consider in this paper. For example, as mentioned above, the heterogeneities may give
rise to localization of the waves [7]-[9]—much like localization of electrons in disordered
materials [11]. They also affect the average speed of the waves’ propagation and
the way their amplitude decays. They may also strongly influence the instantaneous
frequencies that seismic receivers record and, hence, may have important implications for
the interpretation of seismic data.

The literature on wave propagation in heterogeneous media, and in particular in
rock and other types of porous media, is very extensive [5,12,13]. The propagation of
acoustic waves, as it relates to condensed matter physics, has previously been studied by
several groups [14]-[16]. For example, Baluni and Willemsen [16] studied the problem in
a one-dimensional (1D) stratified medium (see also below) that consisted of an array
of alternating layers with random thicknesses. The characterization of laboratory-
scale porous materials using acoustic waves was investigated by several groups [17].
Attention has also been focused on propagation of acoustic waves in fluid-saturated porous
media [18]-[21]. However, the aforementioned studies [14]-[21] neither considered the type
of heterogeneous media that we model in the present paper, nor studied the issues that
we investigate (see also below).

The rest of this paper is organized as follows. We begin in section 2 by describing in
detail the model of wave propagation that we use in this paper. Section 3 is devoted to
the description of the numerical technique that we utilize to solve the governing equation
for acoustic wave propagation. How the numerical results are analyzed and the wave
propagation is characterized is described in section 4. The results are presented and
analyzed in section 5, where we consider a variety of models of heterogeneous media, and
show how the amplitude decay, frequency attributes, and the width of the main part of
the wavefront are affected by the types of heterogeneities that we consider.
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2. The model

To study the propagation of acoustic waves in a disordered medium, we solve the following
scalar wave equation [22],

2

p@Qﬁ(X, t) - V. [K(X)V¢(X7 t)] =0, (1)
where K (x) and p(x) are, respectively, the (analog of the) bulk modulus and the density
of the medium at point x. In sufficiently heterogeneous media, both K (x) and p(x) vary
spatially. In this paper, we assume that the density is constant. Equation (1) represents
the propagation of the waves in a system with off-diagonal disorder. In general, 1)(x,t)
represents the wave field. We restrict our attention to two-dimensional (2D) media,
in which case equation (1) describes the transverse displacement in the system with
varying tension K and constant mass density, or anti-plane shear in a 2D heterogeneous
solid [22]. In the numerical simulations described below K (x) is distributed according to
a probability density function f[K].

As mentioned in section 1, we consider two types correlation for spatial distribution
fIK(x)]. In one, the correlation is taken to be a fractional Browning motion (FBM),
consistent with the results of recent analysis of the data for large-scale porous media that
indicated [6] that the FBM-type distributions describe, at least approximately, the spatial
distribution of K (x). The correlation function C(r) = ([K(x) — K(x + r)]*), of an FBM
is given by C(r) ~ r?| a nondecaying power law for all physically acceptable (positive)
values of H. A convenient representation of an FBM is through its power spectrum—the
Fourier transform of C'(r) of the spatial distribution of K (x)—which, for a d-dimensional
FBM, is given by [23]

aqd
) = {5y )
where a4 is a d-dependent constant, and w = (wy,...,wy), with w; being the Fourier

component in the ¢th direction. Here, 0 < H < 1 is the Hurst exponent such that
H > 1/2(< 1/2) implies positive (negative) correlations among the increments of the
values generated by an FBM, while H = 1/2 is the usual Brownian case.

It has been suggested in the past [24] that reasonable models of rock can be obtained
with a Hurst exponent —1/2 < H < 0, implying a heterogeneous medium in which the
variation of K(x) decreases with increasing scales. However, recent examination of the
data [6] for large-scale porous media (oil reservoirs) indicates that 0 < H < 1, i.e., the
variance of K(x) increases with increasing scales. This is the model that we utilize in
this paper.

Very recently (after completion of our work), Pride and Masson [25] studied
numerically the acoustic attenuation in fluid-saturated porous materials with an FBM
distribution of the local elastic constants with —2 < H < 2. They showed that the
waves’ quality factor @, where Q! is proportional to the acoustic attenuation, is given
by @ x wX (w is the frequency), with x = tanh H. However, aside from utilizing an FBM
distribution, the quantities that Pride and Masson [25] studied are unrelated to what we
investigate in the present paper and previous ones (7,8, 10].

doi:10.1088,/1742-5468 /2008 /03 /P03016 5


http://dx.doi.org/10.1088/1742-5468/2008/03/P03016

Propagation of acoustic waves

Also studied is acoustic wave propagation in heterogeneous media in which the
correlations are lost beyond a cutoff length scale /. At the same time, almost all large-
scale natural porous media that are of interest in geophysics are anisotropic, with the
anisotropy being due to stratification (different layers of contrasting properties). To study
acoustic wave propagation in both types of heterogeneous media, we modify the spectral
representation of the FBM by introducing a cutoff length scale, ¢ = 1/w,, such that

ba
S(w) = (wg + ZZ mwi?)H-i-d/Q’ (3)

where b, is another d-dependent constant. The cutoff scale ¢ is such that for length
scales L < ¢ values of K(x) preserve their correlations (H > 1/2) or anticorrelations
(H < 1/2), but for L > ¢ they become uncorrelated. Here, 7); is a parameter that generates
stratification (layering) along the ith direction (for 7; = 1 we recover the isotropic
distribution). Increasing n; also increases the anisotropy in the sense of generating a larger
number of layers. To distribute K (x) according to an FBM we used the successive random
addition method [26] for isotropic media, and the fast Fourier transform method [27] for
anisotropic media.

If the cutoff scale ¢ is equal to the linear size of the blocks in the computational
grid that we utilize in the numerical simulations, then we obtain the second type of
heterogeneous media—one in which the spatial distribution of K is uncorrelated and
white noise, but has the same mean and variance as those of the FBM distributions. We
have set several distinct values to the mean (variance) of K, such as 0.7 (0.04), in our
simulations.

3. Numerical simulation

Equation (1) is solved in two dimensions with up to 80000 time steps, using the finite-

difference (FD) method with second- and fourth-order discretization in the time and
spatial domains, respectively. Thus, in discretized form, 1 (x,t) is written as 1[)1 j» where
n denotes the time step number. The second-order FD approximation (accurate to At?)

to the time-dependent term of equation (1) is the standard form,

n+1 n—1
P t) w5~y + "
oz At2 ’
where At is the time step’s size. The time step for all cases was At = 1073. As for the
spatial derivatives, we first expand the right-hand side of equation (1) as

V. [K(x)VY(x,t)] = VK(x) - Vi(x,t) + K(x)V3(x,t)
= 0, K (x)0,¥(x,t) + 0, K (x)0,9(x, t)
+ K (x) [(ﬁw(x, t) + 3§w(x, t)} )

Then, using the fourth-order FD discretization, we obtain, for example, for the derivatives
in the z-direction,

— i+ 1690, — 300 + 160" — v

2

(5)
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and

—yith, 48U, — sui + vl (©)
12Az ’

where Az is the spacing between two neighboring grid points in the z direction. Similar
expressions are written down for the partial derivatives with respect to the y direction.
Such approximations proved to be accurate enough and provided the required stability to
the numerical results, as we work in the limit of low frequencies, or wavelengths that are
much larger than the linear size of the blocks of the computational grid.

Preliminary simulations were carried out using L, X L, grids to determine a large-
enough size for the grid. Based on such simulations we used L, = 400 and L, =
4000 and 8000 (L, and L, are in units of the individual blocks in the computational
grid). The main direction of wave propagation was taken to be the y direction (see
figure 1(b)), while periodic boundary conditions were imposed in the z direction which,
due to the large sizes of the computational grid, did not distort the nature of the wave
propagation. The solution’s accuracy was checked by considering its stability and the
source’s wavelength [28].

To investigate the wave propagation and its evolution in large grids, we insert a wave
source at every node of the grid’s first row at y = 0, which ensures the generation of
a smooth initial wavefront. Using a point source will not change the results that we
present below, although it would require a larger number of realizations to obtain reliable
statistics. As the source function Sy(t), we used the following to generate the pulse waves
(any other source may also be used),

So(t) = —A(t — to) exp[—C(t — to)°], (7)

where A is a constant and ( controls the waves’ wavelength, which controls their width.
To compute the amplitude decay and the frequency dependence of the waves during
their propagation, we collect the numerical results at receivers (grid points) that are
distributed evenly throughout the grid (see figure 1(b)), along the main direction of
the wave propagation. Our simulations indicated that averaging the results over 85
realizations of the system suffices for obtaining results that will not change if we use
a larger number of realizations. Figure 2 compares the averages for two different number
of realizations, indicating their convergence to the true representative values.

Ot (x,t) ~

4. Analysis of the numerical results and characterization of propagating waves

Figure 1(a) shows the shape and cycle of the wave at the source (at y = 0) that
propagates throughout the heterogeneous medium. As the waves propagate in the
medium, their multiple scattering generates many cycles of seemingly irregular oscillations.
Such irregularities disappear for the averaged wave, i.e., one that represents an average
over all the realizations. This is shown in figure 3, which compares the results for some
of the realizations with those for the averaged wave. The first one of such cycles of
the oscillations, or the first few of them—often called the coherent wavefront [29]—is an
important characteristic of a propagating wave. An alternative definition of the coherent
wavefront is that it is that part of the wave that remains intact after averaging over all
the realizations. The value of . for the first peak (in the coherent front) and the time
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Figure 1. (a) The shape of the wave at the source. Triangles, circles, and squares
denote, respectively, the time at which the amplitude is 10% of its peak value
(shown by the circle), the peak position, and the first zero-crossing. o is the width
of the coherent wavefront. (b) The distribution of the receivers. The source is
at the bottom of the system at y = 0. The arrow indicates the main direction of
wave propagation.

(location) at which it occurs are also important characteristics of the propagation process.
During the waves’ propagation, the numerical value of 1. for the coherent wavefront
decreases, while the front’s width o increases. Thus, we also focus on the decay of 1. and
the shape of the coherent front, as characterized by o. We show below that they generate
distinct ‘signatures’ that contain information on the spatial distribution of K (x). To do
so, we measure the time dependence of 1. at a fixed distance from the source. Then, as
we show below, from a sequence of measurements (collection of the numerical data) at
every receiver, a qualitative picture of the evolution of the coherent wavefront versus the
receivers’ distance from the source emerges.
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Figure 2. Comparison of the averaged v for 40 (dashed curve) and 60 (continuous
curve) realizations.
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Figure 3. Comparison of the averaged v (dark continuous curves) with individual
realizations.

Thus, to study quantitatively the evolution of the coherent wavefront, we characterize
it by three properties: its peak value v.; the time at which 1 attains 10% of the
peak value 1. (the 10% is rather arbitrary, and only represents a rough measure
of where the wave field becomes relatively significant); and its first zero-crossing—
the time at which 1 (x,t) vanishes for the first time after the first peak. Then,
the width o of the coherent wavefront is defined as the time between the first zero-
crossing and when the coherent wave’s ¥(x,t) is 10% of the peak value .. These
are all shown in figure 1(a). We show below that the manner by which these
properties evolve depends strongly on the spatial distribution of K(x). As they can
be measured in practice, they provide important information on the spatial distribution
of K(x).

To characterize more precisely the propagation of acoustic waves, we need a tool
that enables us to obtain the frequency content of the time series 1(x,t)—a process
often referred to as the time—frequency analysis. The goal of such analysis is to expand
the time series into the sum of wavelike forms, the time—frequency properties of which
are adapted to the time series’ local structure. The continuous wavelet transform
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(CWT) of a time series s(u) is one such tool, which is defined by the following integral
transform [30],

SO0 E) = / o) T () du (8)

where

Uy, (1) = %xy (“T_t) (9)

represents a family of functions, referred to as the wavelets [30]. Here, A is a scale
parameter, ¢ is a time (location) parameter representing the translation of the wavelet
at different times, and W is the complex conjugate of W. W(u) is often referred to as
the mother wavelet. Clearly, changing A has the effect of dilating (A > 1) or contracting
(A < 1) the function s(u). On the other hand, varying t has the effect of analyzing the
function s(u) around different points at times . When A increases, the wavelet becomes
more spread out and takes only the long-time behavior of s(u) into account, and vice versa.
Therefore, the WT provides a flexible timescale window that narrows when focusing on
small-scale features, and widens on large-scale features. Note that W, ,(u) has the same
shape for all values of \.

The WT, as defined by equation (8), is a continuous transformation because the
scale and time parameters, A and ¢, assume continuous values. In our analysis we
use the continuous complex Morlet wavelet [31], which is well known in geophysical
applications [32], in order to obtain information about the instantaneous frequency
attributes of the propagating waves, and to determine which part of the waves is scattered
more during the propagation. The Morlet wavelet is given by

U(t) = m~ Y exp[—(iwot — t2/2)],  wy > 5. (10)

Since the Morlet wavelet is a complex function, it enables one to extract information
about both the amplitude and phase of the process being analyzed. As an example,
we show in figure 4 the CWT of Sy(t) (using the Morlet wavelet), the source function
given by equation (7). The vertical axis represents the scale A\, which is set to A = 2T},
where T, = 1/v,, with Ty and v, being the mean period and frequency, respectively. The
horizontal axis is the dimensionless time, while the colors show the intensity of |Sy|2(), t)
at different times and scales. Using such plots—usually called the scalogram [32]—we
determine the positions of the frequency modes on the time axis (i.e., the time at which
they arrive at a given receiver) and, hence, determine which frequency attributes move
faster than the others, and how the heterogeneities in the medium affect them.

We also compute the dispersion relations for the propagation of the waves in both
correlated and uncorrelated media, [33], i.e., the relation between the angular frequency
w and the wavevector k (k = 27/x, where y is the wavelength). w(k) characterizes the
wave attenuation in a system, which we shall show to be very different for uncorrelated
media (or those with short-range correlations) and those with long-range correlations,
hence providing another signature of such correlations in a heterogeneous medium.
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Figure 4. Scalogram (wavelet transform) of the source function Sy(¢), given by
equation (8).

5. Results and discussion

One may characterize the propagation of waves in disordered media by the evolution
of five key properties: (i) the decay in the value of 1.(x,t) of the coherent wavefront;
(ii) the corresponding increase in the width o of the coherent wavefront; (iii) the
frequency attributes of the propagating waves, quantified by the power spectrum and
the scalogram; (iv) the dispersion relation [34] for the propagation of the waves, a
quantity that has been used extensively in the past for characterizing the phenomenon;
and (v) the shape and roughness of the wavefront. Our focus in this paper is on
the first four properties; the shape and roughness of wavefronts have been studied
elsewhere [10, 35].

As pointed out above, as the acoustic waves propagate through a heterogeneous
medium, the magnitude . of the first peak in the coherent front decreases with t,
while the width o of the front (as defined above) increases. The waves undergo multiple
scattering, caused by the medium’s heterogeneities, and strongly influence the evolution
of such characteristics. In addition, the waves’ passage through different zones of a
heterogeneous medium with widely varying elastic constants, and the fact that the waves
may be pinned [10,35] in certain locations in the medium, also cause roughening of
the wavefront, amplitude decay, and strong changes in the waves’ frequency contents.
The dispersion relation is also strongly affected by the correlation of K(x). We have
carried out direct numerical simulations, using several distinct models of heterogeneous
media, to study acoustic wave propagation and, in particular, the evolution of the
four key properties described above. In what follows we present and discuss the
results.
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Figure 5. Dependence of the coherent wave amplitude 1. (the first peak in the
plot of ¥(x, t) versus time) on the distance d between the source and the receivers.
The local elastic constants are distributed according to an FBM with the Hurst
exponent H. The medium is isotropic.

5.1. Isotropic media: long-range versus short-range correlations

As the first example, we consider acoustic wave propagation in a medium in which K(x)
has FBM correlation, and compare the results with those for an uncorrelated medium,
but with the same mean and variance of the local elastic constants as those of the FBM.
In an uncorrelated medium (one with short-range correlations, such that the correlation
length is the same as the linear size of the blocks in the computational grid), the quantity
1. of the coherent wavefront decays as a power law in the distance d between the
source and the receiver [36], at least if the distribution of K (x) is not extremely broad.
The same is true [29] about wave propagation in granular materials which represent
unconsolidated porous media. However, the decay of ¢, in a heterogeneous medium
with long-range correlations is much faster, and takes on an exponential form—similar to
electron localization. Thus, the exponential decay of 1. of the coherent wavefront is the
first ‘signature’ of the existence of long-range correlations in a disordered medium, and in
particular the nondecaying correlations that are generated by the FBM. Figure 5 confirms
the exponential decay of the amplitude 1), in three heterogeneous media, and compares
them with that in an uncorrelated medium but with the same mean and variance as in
the FBM media.

Another feature of wave propagation is the broadening of the width ¢ of the coherent
wavefront during the propagation. In uncorrelated media, the width of the coherent
part increases with d as a power law [29], where d is the distance between the source
and the receivers. However, in correlated media in which K(x) is distributed according
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Figure 6. Dependence of the width o of the coherent wavefront on the distance d
between the source and the receivers, in an uncorrelated medium, as well as in an
isotropic medium in which the local elastic constants are distributed according
to an FBM with a Hurst exponent H.

to an FBM, the dependence of the width o of the coherent wavefront on the source—
receiver distance d is exponential, fundamentally different from that of uncorrelated media.
This distinguishing feature between uncorrelated and correlated media is demonstrated
in figure 6, where we present the width of the coherent wavefront for both types of
heterogeneous media. Thus, the exponential dependence of the width o of the coherent
wavefront may be considered as the second signature of long-range correlations in
heterogeneous media.

The third important feature of the waves is the frequency dependence of their power
spectrum during the propagation. It is well known that in an uncorrelated medium
the high-frequency modes scatter more efficiently than the low-frequency ones. Figure 7
presents the (normalized) spectral density of the waves that were received by four different
sets of receivers located along the propagation direction (receivers Rj—Ry; shown in
figure 1(b)). The results, computed for the first few cycles of the amplitudes, represent
averages over many realizations. As figure 7 indicates, the shape of the power spectrum
changes when one computes or measures it at various receivers (various distances)
throughout the medium in which the waves are propagating. As shown clearly, the ratio
of low-frequency and high-frequency modes increases as the source-receiver distance d
increases, hence indicating that, in uncorrelated media, the waves lose their high-frequency
modes faster than the low-frequency ones.

In the correlated media that we consider, the evolution of the power spectrum is,
however, different. Figure 8 presents the (normalized) spectral densities for H = 0.3 and
0.75 for the same receivers. The changes in all the spectral densities for each frequency is
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Figure 7. Normalized spectral density of the wavefront at the source, and at
three different receivers located along the y direction (the main direction of wave
propagation), in an uncorrelated medium.

approximately the same as for all other frequencies. Thus, when long-range correlations
are present in the distribution of the local elastic constants, the low-frequency modes
can be scattered just as efficiently and quickly as the high-frequency ones. This difference
between the two types of spectral density may also be considered as evidence of long-range
correlations in a disordered medium.

To make the distinction between the uncorrelated and correlated media clearer, we
have computed the scalogram (the CWT of the first few cycles of the amplitude) of the
waves arriving at various receivers, in order to determine their instantaneous frequency
distribution during the propagation. Figure 4 presented the scalogram of the source wave
used in the simulations. Figure 9 presents the scalogram of the wavefront received by
four distinct receivers along the y direction (the main direction for wave propagation),
namely, Ris, Roz, Rz, and Ry, from top to bottom, respectively. The different colors
show the intensity of [¢)|?(), ). In the top scalogram, the intensity in most of the diagram
for 3 <t < 10 is essentially zero (no wave has arrived there yet). But, in the scalogram at
the bottom, which is for the waves that have arrived at the farthermost receiver, nonzero
intensities appear in the same region. As seen clearly, especially for receivers R3y and
R4o for times t > 1, after the main part there are some zones with nonzero intensity.
Such zones indicate that the main parts of the waves lose some of their high-frequency
attributes and, therefore, the lost frequencies arrive at the receiver(s) after a delay. This
is consistent with what is presented in figure 7 for the spectral density of the same waves.

However, the scalogram for the case of an FBM distribution of the local elastic
constants is completely different. Figures 10 and 11 show, respectively, the scalogram
for the same receivers with the Hurst exponent H = 0.3 and 0.75. The features of the

doi:10.1088/1742-5468/2008,/03 /P03016 14


http://dx.doi.org/10.1088/1742-5468/2008/03/P03016

Propagation of acoustic waves

0.12 T T
—@— Source
—l— Receivert
VW Receiver2
1.0F - - Receiver3 7|
H =0.75

Spectral Density

3

Frequency
0.12 T T
—@— Source
—l— Receiver1
VW Receiver2
1.0F -9 - Receiver3 |
H =0.3
=
(7]
<
[}
Q
IS
S
&
8
(%))

3
Frequency

Figure 8. Same as in figure 7, but in isotropic correlated media with a Hurst
exponent H.

evolution of these scalograms are in sharp contrast with those shown in figure 9. All
the receivers receive all the frequencies after the main part of the wave, hence indicating
that essentially simultaneous scattering of all the frequency modes is one major feature
of wave propagation in heterogeneous media in which the spatial distribution of the local
elastic constants contains long-range correlations. This important difference between
the scalograms of uncorrelated and correlated media, which can be computed rather
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the receivers closest to, and farthermost from, the source.
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Figure 10. Same as in figure 9, but for an isotropic correlated medium with an
FBM distribution of the local elastic constants with the Hurst exponent H = 0.3.
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Figure 12. The decay of the amplitude . of the coherent part of the wave
with the distance d between the source and the receivers. The results are for
an isotropic medium with an FBM correlation of the local elastic constants and
a Hurst exponent H = 0.3. £ is the cutoff length for the correlations in the
distribution of the local elastic constants.

straightforwardly in practical applications of wave propagation (for example, for seismic
exploration data, or for seismic data emanated from an earthquake hypocenter), may also
be considered as another ‘signature’ of the existence of such correlations in the local elastic
moduli. Note also the differences between the scalograms in figures 10 and 11 for positive
(persistent, H > 0.5) and negative (antipersistent, H < 0.5) correlations.

5.2. The effect of a cutoff in the correlations

The distinction between uncorrelated and correlated media can perhaps be demonstrated
more clearly by introducing a cutoff length scale ¢ for the correlations in K (x), as described
in section 2. The correlations are preserved over length scales I < ¢, but are lost for L > /.
Naturally, the cutoff length scale ¢ must be larger than the linear size of the blocks in the
computational grid. Fixing all the parameters and varying only ¢ should indicate better
the effect of the correlations and their extent.

Thus, we carried out numerical simulation of acoustic wave propagation in a
heterogeneous medium in which K(x) was distributed according to an FBM with the
Hurst exponent H = 0.3, using four cutoff lengths, ¢ = 100, 400, 1000, and 2000 (¢ is
measured in units of Ax = Ay, the linear size of the blocks in the computational grid).
Figure 12 presents the decay of 1. for the coherent wavefront. In all the cases, the 1.—d
relation is a power law if d < ¢, but crosses over to an exponential function for d > ¢, in
agreement with our discussions above.

Figure 13 presents the power spectrum of the waves for the four cutoff lengths. The
results were computed for receivers R;ji, Rjs, R;3, and Rj4, and then were averaged over
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Figure 13. The normalized spectral density of the wavefront at three different
receivers, as described in the text. The results are for an anisotropic medium
with an FBM distribution of the local elastic constants with a Hurst exponent
H = 0.3, and a cutoff length ¢.

j in each case, with j = 1, 2, and 3. The top figure shows the spectral density for
¢ = 400, a relatively short cutoff length. Thus, for this cutoff the medium looks like an
uncorrelated one at large scales and, therefore, the spectral density is also similar to that
of an uncorrelated medium shown in figure 7. By increasing ¢, the shapes of the power
spectra at different times (receivers) become increasingly similar to that of a medium with
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Figure 14. Dependence of the width o of the coherent wavefront on the distance
d between the source and the receivers. The medium is the same as in figure 12.

long-range correlations in the spatial distribution of its local elastic constants. Thus, there
seems to be a transition from an uncorrelated to a correlated medium with long-range
correlations.

Similar effects can be seen in the behavior of the width o of the coherent wavefront.
Shown in figure 14 is the dependence of o on the source-receiver distance d for the four
cases described above. For d < ¢ the o—d relation is a power law, but the dependence
crosses over to an exponential form for d > /.

These results also point to an important consideration in the practical applications
of seismic wave propagation in heterogeneous rock, and the geophysical interpretation
of the results. As shown above, the cutoff length scale /—which is just the correlation
length £ for the local elastic constants—plays an important role in the transition from
an uncorrelated medium to a correlated one (or between disordered media with short-
and long-range correlations). At the same time, there is a relation between ¢ and the
range of the wavelengths that can be used in a seismic exploration of heterogeneous
porous media. If ¢ is smaller than the wavelength used in the exploration, the frequency
dependence of the coherent wave’ spectral density will be similar to that of uncorrelated
media shown in figure 7. But, if the wavelength is smaller &, one should find a transition
in the spectral density, similar to what we presented above with the various cutoff
lengths ¢. Thus, in any seismic exploration one should use a range of frequencies
(wavelengths), in order to be able to discern the effect of the correlations in the seismic
traces, and possibly detect a signature of the spatial distribution of the medium’s local
elastic constants. We believe that one should be able to test this proposal by careful
experiments.

doi:10.1088/1742-5468/2008,/03 /P03016 21


http://dx.doi.org/10.1088/1742-5468/2008/03/P03016

Propagation of acoustic waves

_18l o—  _ |
1.8 - o _
I T e -
~ T e
A T - e
~
AN ‘n
N o
. ~
=221 AN ~ . -
- N "\_
AN ~
= A ~.
'9‘ \_ \.\ -
bo‘o \‘ T~
— 26} N ~m i
\,
A.
AN
N
- — — H=0.3, Isotropic \-\
3t 4. _ H=0.3, T]X=30 A\\ i
_A _ H=03 ny=30 T~ ~A
500 1000 1500 2000 2500
d

Figure 15. Dependence of the amplitude . of the coherent wavefront on the
distance d between the source and the receivers, for both isotropic and anisotropic
media with layers normal to the propagation direction (1, = 30) and along the
propagation direction (1, = 30). H is the Hurst exponent.

5.3. Anisotropic media

Natural porous media, such as rock, are almost always anisotropic, with the anisotropy
caused by stratification (layering). Therefore, it is important to consider the effect of
anisotropy on wave propagation. We have compared acoustic wave propagation in two
anisotropic media. In one case the layers are more or less parallel to the main direction y
of wave propagation, indicated by 7, # 1 (see below), while in the second case the strata
are along the z axis and normal to the main direction of the propagating waves, indicated
by 1. # 1 (see figure 1(b)). As described in section 2, to generate the layers in a given
direction, we set 7; # 1 (i = x or y) in equation (3).

In figure 15 the decay of the quantity 1. of the coherent wavefront during propagation
is compared for three different heterogeneous media. As the results indicate, the layers
along the propagation direction have a strong effect on the amplitude decay. They
essentially channelize the waves, hence leading to the sharp decay in 1. which is shown
in the figure. In contrast, when the layers are perpendicular to the main direction of
wave propagation, the amplitude decay is much slower. The behavior of 1. in an isotropic
medium is in between.

Consistent with what we presented above in section 5.1, such distinction between the
different types of heterogeneous media is also seen in the dependence of the width o of the
coherent wavefront on the source-receiver distance d; see figure 16. When the layers are
parallel to the main direction of wave propagation, o grows exponentially with d, whereas
when they are perpendicular to the main direction of wave propagation, the growth of o

doi:10.1088/1742-5468/2008,/03 /P03016 22


http://dx.doi.org/10.1088/1742-5468/2008/03/P03016

Propagation of acoustic waves

- — — H=0.3, Isotropic A
3.5 @ _ H=0.3,1 =30 P ]
— - Ve
_A - H=03, ny—30 P
S
341 '/A E
‘/
/'/ .
~—~ 3.3} a - -
O y e
o d -
P A -
L - 4
—~ 3.2 - .
7 —
A/' i 2 _/'/.
3.1F - = |
- o
-~ _ -
-/ B ’././
3l o - _ .9 |
500 1000 1500 2000 2500
d

Figure 16. Same as in figure 15, but for the width o of the coherent wavefront.

with d is much slower, similar to a linear increase. Similar to figure 15, the behavior of o
in an isotropic medium is in between.

In figure 17 the effect of the layers on the spectral density of the waves, both along
the main direction of wave propagation (top figure) and perpendicular to it, is shown. In
this case, however, the layers along both directions do not seem to have a strong effect
on the power spectrum of the waves. In this sense, therefore, the long-range correlations
(or their absence) are the most important contributing factor to the shape of the spectral
density of the waves.

5.4. Dispersion relation

We have computed the dispersion relations (DRs) w(k), by exact diagonalization of
discrete wave equation for three types of 1D media: (a) a uniform system (one in which
K(x) is the same everywhere), (b) uncorrelated media, and (¢) media with long-range
correlations. Small and large values of k correspond, respectively, to long and short
wavelengths. At each point of the DRs, we can compute the phase velocity, V, = w/k,
while the slope dw/dk at each point yields the group velocity V. The computations were
carried out using the exact diagonalization method [33]—[35].

We show in figure 18 the results for an uncorrelated medium, and compare them
with those for a completely uniform one. For the uncorrelated medium, only for large
values (short wavelengths), k o~ 25, do we see deviations of the DR from that of a uniform
medium (i.e., where the system starts to have dispersive behavior). This is due to the fact
that, in uncorrelated media, there is much more scattering at short wavelengths than at
long ones.

For the correlated media, however, the DRs are much more complex. Shown in
figures 19 and 20 are the results for the Hurst exponent H = 0.3 and 0.8. In both cases,
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Figure 17. Normalized spectral density for the waves in anisotropic (layered)
media with a Hurst exponent H = 0.3, when the layers are perpendicular to the

main direction of wave propagation (top, 7, = 30), or are parallel to it (bottom,
ny = 30).

the deviations of the DRs for the correlated media from that of a uniform medium takes
place around k = 4x 1072 or lower, which should be compared with that of an uncorrelated
medium which happens only at short wavelengths or large k. Thus, distinct deviation of
the DRs for uncorrelated and correlated media from that of a uniform medium may also be

taken as another ‘signature’ of the existence of long-range correlations in a heterogeneous
medium.
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Figure 19. Same as in figure 18, but for a correlated medium with the Hurst
exponent H = 0.3.

These results are also in agreement with what we presented above, and more
specifically with those shown in figures 7 and 8. Figure 7 indicates that the ratio of
low-frequency and high-frequency modes increases as the source-receiver distance d does.
This indicates that, in uncorrelated media, the waves lose their high-frequency modes
faster than the low-frequency modes, in agreement with figure 18.

On the other hand, in the correlated media, we have many phase velocities V}, and
group velocities V, for a fixed value of k. This is in agreement with the results shown in
figure 8, namely, that in correlated media the low-frequency modes can be scattered just
as efficiently and quickly as the high-frequency ones.
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6. Summary

The propagation of acoustic waves in two-dimensional heterogeneous media was studied
by large-scale numerical simulations. Two types of heterogeneous media were considered.
One was uncorrelated media in which the local elastic constants were distributed uniformly
without any correlations. Such media may also be viewed as those that contain short-
range correlations, with the correlation length the limit of the resolution of the model.
The second type of disordered media was characterized by spatial distributions of the
local elastic constants that contained long-range correlations with power law, nondecaying
correlation functions. We presented strong numerical evidence that crucial characteristics
of the waves, including their amplitude decay, width, spectral density, scalogram, and the
dispersion relations, are fundamentally different for uncorrelated and correlated disordered
media. These aspects of wave propagation can help in the interpretation of seismic data.
They can also help one to detect signatures of specific types of disorder in heterogeneous
media of the type that we studied in this paper, that are abundant in nature.
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