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Abstract

It is shown explicitly that the correlation functions of Conformal Field Theories

(CFT) with the logarithmic operators are invariant under the differential realization

of Borel subalgebra of W∞-algebra. This algebra is constructed by tensor-operator

algebra of differential representation of ordinary sl(2, IC). This method allows us to

write differential equations which can be used to find general expression for three

and four-point correlation functions possessing logarithmic operators. The operator

product expansion (OPE) coefficients of general logarithmic CFT are given up to third

level.
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1 Introduction

It has been shown by Gurarie [1], that in the OPE of two given local fields which has at least

two fields with the same conformal dimension, one can find some operators with a special

property, known as logarithmic operators. As discussed in [1], these operators together

with the ordinary operators form the basis of the Jordan cell for the operator L0. In some

interesting physical theories, for example dynamics of polymers [2], WZW model on the

GL(1, 1) super-group [3], percolation [4], edge excitation in fractional quantum Hall effect

[5], one can find naturally such operators. Recently the role of such operators has been

considered in the study of some physical problems, for instance: 2D-magnetohydrodynamic

turbulence [6, 7, 8], 2D-turbulence [9, 10], cp,1 models [19, 11], gravitationally dressed CFT‘s

[12, 13] and in some critical disordered models [15, 16]. They also play an important role

in so called unifying W algebra [17] and in the description of normalizable zero modes for

string backgrounds [14, 18].

The basic properties of logarithmic operators are, that they form part of the basis of

the Jordan cell for L0 whose in the correlators posses logarithmic singularity. It has been

shown that in rational minimal models such a situation, i.e. two fields with the same con-

formal dimensions, does not occur [7]. The modular invariant partition functions for such

theories with ceff = 1 and the fusion rules of logarithmic conformal field theories (LCFT)

are considered in [19, 20].

In this paper, we consider the symmetry algebra of the correlation functions with log-

arithmic factor. We take the modified operator L0 according to ref. [1] and show that if

certain conditions on the two point function of ordinary fileds with logarthmic partner is sat-

isfied, such correlation functions remain invariant under sl(2, IC) algebra. Here, we introduce

another method for calculating logarithmic operators. This method is obtained by finding

differential equations from some combinations of ordinary ln‘s differential realization. We

show that this combination is related to the Borel subalgebra of the W∧-algebra, which is

the wedge subalgebra of W∞.

The structure of this paper is as follows: In section 2, we give a summary of LCFT and

its relation to W∞-algebra. In section 3, we calculate the general behavior of three and
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four-point correlation functions of such theories. In section 4, we give the OPE coefficients

up to third level of such CFT’s.

2 The Logarithmic Operators and W∞-algebra

According to [1], the OPE of two fields A and B, which their fusion rule [21] contains

two fields Φ and Ψ of equal dimension, has a logarithmic term,

A(z, z̄)B(0, 0) =| z |2(∆Φ−∆A−∆B) {Ψ(0, 0) + · · ·+ log | z |[Φ(0, 0) + · · ·]} , (1)

where dots denote the descendants of fields Ψ and Φ. To see this, it is sufficient to look at

the four-point function [21]:

< A(z1)B(z2)A(z3)B(z4) >∼
1

(z1 − z3)2∆A

1

(z2 − z4)2∆B

1

[x(1 − x)]∆A+∆B−∆Φ
F (x) (2)

where the cross ratio x is given by:

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (3)

In degenerate models F (x) satisfies a second order linear differential equation [21].

It should be noted that since logarithmic fields are not chiral, we can not separate holo-

morphic and anti-holomorphic parts. In this paper (zi − zj) is set to |zi − zj |2, for simplicity.

According to [7], the hypergeometric equation governing the correlator of the two fields

in whose OPE, two other fields Ψ and Φ with conformal dimension ∆Ψ and ∆Ψ + ǫ appear,

admits two solutions

2F1(a, b, c, x) (4)

xǫ
2F1(a+ ǫ, b+ ǫ, c+ 2ǫ, x) (5)

where a, b and c are sums of conformal dimension. Clearly in the limit of ǫ → 0 these

two solutions coincide. However, it can be shown that [22] another independent solution

exists which involves logarithms and can be generated by standard methods. Therefore, the

following two independent solutions can be constructed according to [1,10].

∑

bnx
n + log x

∑

anx
n. (6)
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Next, consistency of equation (1) and (2) requires that

< A(z1)B(z2)Ψ(z3) >=< A(z1)B(z2)Φ(z3) >

{

log
(z1 − z2)

(z1 − z3)(z2 − z3)
+ λ

}

, (7)

< Ψ(z)Ψ(0) >= −
2

z2∆Ψ
[log z + λ′], (8)

< Ψ(z)Φ(0) >=
1

z2∆Φ
, (9)

where λ and λ′ are constants. In this notation Ψ is the logarithmic operator and Φ is the

ordinary one. Let us now consider the action of sl(2, IC) on the above correlators. In the

absence of logarithmic operators (e.g., in the rational minimal models [21, 7]) the correlation

function is invariant under the action of sl(2, IC),

N
∑

i=1

∂zi
< Φ1(z1) · · ·ΦN(zN ) >= 0 (10)

N
∑

i=1

(zi∂zi
+ ∆i) < Φ1(z1) · · ·ΦN (zN) >= 0 (11)

N
∑

i=1

(z2
i ∂zi

+ 2zi∆i) < Φ1(z1) · · ·ΦN(zN ) >= 0 (12)

Indeed according to [21, 23] the operators

l− = ∂z , l0 = z∂z + ∆, l+ = z2∂z + 2z∆ (13)

are the differential realization of sl(2, IC), with ∂z = ∂
∂z

. When there are logarithmic operators

in CFT theories, the ordinary correlation functions, for instance ordinary two-point function,

should be replaced by eq. (8). According to [1], in the logarithmic conformal field theory, l0

is given by the following modified representation:

[L0, A(z)] = (z∂z + ∆A + D)A(z), (14)

where the operator D is such that DΦ(z) ≡ 0 and DΨ(z) ≡ Φ. This can be constructed by

taking the OPE of T (z) with Φ(0) and with Ψ(0). That is to say

T (z)Ψ(0) =
∆

z2
Ψ(0) +

∂zΨ(0)

z
+

Φ(0)

z2
+ · · · , (15)

T (z)Φ(0) =
∆

z2
Φ(0) +

∂zΦ(0)

z
+ · · · . (16)
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If we expand T (z) by Laurant series we can write [1],

[ln,Ψ(z)] = (zn+1∂z + ∆(n+ 1)zn)Ψ(z) + (n + 1)znΦ(z), (17)

[ln,Φ(z)] = (zn+1∂z + ∆(n + 1)zn)Φ(z) (18)

which means that we can redefine ln to Ln such that:

[Ln, A(z)] = (zn+1∂z + ∆A(n+ 1)zn + (n+ 1)znD)A(z) (19)

with the property DΨ ≡ Φ and DΦ ≡ 0. For example, one can show that eq.(8) is invariant

under modified L0 ( i.e. non-diagonal L0).

L0 < Ψ(z)Ψ(0) >=< [L0,Ψ(z)Ψ(0)] >

=< [(z∂z + ∆Ψ)Ψ(z) + Φ(z)]Ψ(0) > + < Ψ(z)∆ΨΨ(0) > + < Ψ(z)Φ(0) >

= (z∂z + 2∆Ψ) < Ψ(z)Ψ(0) > + < Ψ(z)Φ(0) > + < Φ(z)Ψ(0) > .

(20)

By using eqs.(8) and (9) we find that:

L0 < Ψ(z)Ψ(0) >= 0. (21)

Conversely, the eq.(19) allows us to write Ward identities (for n=-1, 0, 1 ) for the calculation

of the correlation functions. For instance, for two-point functions we have:

L−1 < Ψ(z)Ψ(0) >= L−1 < Ψ(z)Φ(0) >= L−1 < Φ(z)Φ(0) >= 0 (22)

L0 < Ψ(z)Ψ(0) >= L0 < Ψ(z)Φ(0) >= L0 < Φ(z)Φ(0) >= 0 (23)

L+ < Ψ(z)Ψ(0) >= L+ < Ψ(z)Φ(0) >= L+ < Φ(z)Φ(0) >= 0. (24)

Using eq.(23) we find,

(z∂z + 2∆Ψ) < Ψ(z)Ψ(0) > +2 < Ψ(z)Φ(0) >= 0, (25)

(z∂z + 2∆Ψ) < Ψ(z)Φ(0) > + < Ψ(z)Φ(0) >= 0, (26)

(z∂z + 2∆Ψ) < Φ(z)Φ(0) >= 0, (27)

which can be solved yeilding:

< Φ(z)Φ(0) >= −
a

z2∆Ψ
, (28)
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< Ψ(z)Φ(0) >=
1

z2∆Ψ
[2a log z + a′], (29)

< Ψ(z)Ψ(0) >=
1

z2∆Ψ
[2a log2 z − 2a′ log z + a′′] (30)

where so far a, a′ and a′′ are arbitry parameters. One can show that eq.(24) leads to the

following relation:

< Φ(z)Φ(0) >= 0 (31)

or a = 0 which has already been pointed out in [15]. This means that if we insist on

having conformal invariance, the two-point function of ordinary fields which have logarithmic

partner must be zero.

For a 6= 0 we don’t have the conformal invariance, however the correlation functions are

invariant under L+ and L−, which is the subalgebra of sl(2, IC). The condition (31) seems to

be very restrictive on two-point correlation functions. For example, in c = −2 theory, which

belongs to LCFT‘s of cp,1 series (with p=2) [20], the requirment of the conformal invariance

forced sets the two-point functions of fields with logarithmic partner to zero. In other words,

the ordinary fields with logarithmic partners do not propagate.

Here, we introduce another method for finding certain differential equations which can

be used to obtain the correlation functions by means of ordinary ln‘s. This approach is

based on the simple observation that in applying the differential operator (z∂z + 2∆Ψ) (the

differential representation of l0) on eq.(8), we obtain:

l0 < Ψ(z)Ψ(0) >=< [l0,Ψ(z)Ψ(0)] >≡ (z∂z + 2∆Ψ) < Ψ(z)Ψ(0) >= −2z−2∆Ψ . (32)

which behaves as eq.(9). Similary the action of ordinary l± are as follows:

< [l−1,Ψ(z)Ψ(0)] >≡ (∂z) < Ψ(z)Ψ(0) >= 0 (33)

< [l+,Ψ(z)Ψ(0)] >≡ (z2∂z + 2z∆Ψ) < Ψ(z)Ψ(0) >= −2z−2∆Ψ+1. (34)

Now we consider the action of l0 and l+ on the correlation of < Ψ(z)Ψ(0) >. This can be

written in the following form:

< [l0, [l+,Ψ(z)Ψ(0)]] >= (z2∂z + 2z∆Ψ)(z∂z + 2∆Ψ) < Ψ(z)Ψ(0) >=
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(z2∂z + 2z∆Ψ)(z∂z + 2∆Ψ)(−
2

z2∆Ψ
[log z + λ′]) = 0 (35)

Indeed, this is the action of differential representation of l0 and l+ on the logarithmic two-

point function.

At first glance, it seems that the logarithmic correlation function, < Ψ(z1)Ψ(z2) > is

invariant under the set of

{l−, l
2
0, l−l0, l+l0, l0l−l+, l

2
−l+, l+l−l+}

where the last three of them are observed using the fact that l−l+ times such correlation

functions behave as ordinary correlation functions in CFT. Using the commutation relation

of l0, l+ and l−,

[l0, l±] = ±l± [l+, l−] = −2l0, (36)

the last three members of Eq. (25) can be written in terms of the first four which we call

(A,B,C,D) respectively.

Simple calculations show that, the following algebraic relations hold:

[A,B] = −2C − A, [B,C] = 2AB + C, [C,D] = −2l30 − 2l0· · ·. (37)

Explicit calculation shows that this algebra is not closed. In each step, we need to add new

operators to the algebra.

On the other hand, the action of l0 on logarithmic correlation functions behave as ex-

pected. However the two-point function is the exception. In the case of three-point and

four-point correlation functions, the action of differential representation of l0 on correlation

functions which have logarithmic term, behave like ordinary three-point and four-point func-

tions of CFT. We will come to this point in the next section.

In the rest of this section we determine the connection between the above algebra and the

infinite dimensional W∞-algebra. The algebraic commutation relation of V i’s, generators of

spin-(i+ 2) W∞-algebra, are as follow [24]:

[V i
m, V

j
n ] =

∑

l≥0

g
ij
2l(m.n)V i+j−2l

m+n + ci(m)δi,jδm+n,0 (38)

where g
ij
2l(m,n) are structure constants of the algebra and ci(m) are central terms. V i

m

denotes the mth Laurent mode of spin-(i+2) current V i(z). In our case, this current can be
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constructed from the logarithmic operator Ψ [14]. For W∞-algebra with spins 2 ≤ s < ∞,

the indices i and j range from 0 to ∞. The structure constants and central terms can be

determined by demanding that eq. (38) be consistent with the Jacobi identities [24, 25],

ci(m) = m(m2 − 1)(m2 − 4) · · · (m2 − (i+ 2)2)ci (39)

where ci’s are central charges, and the structure constants take the form

g
ij
l (m,n) =

1

2(l + 1)!
Φij

l N
ij
l (m,n) (40)

where N ij
l (m,n) are given by

N
ij
l (m,n) =

l+1
∑

k=0

(−1)k(l+1
k )[i+ 1 +m]l+1−k[i+ 1 −m]k[j + 1 + n]k[j + 1 − n]l=1−k (41)

and [a]n = a(a− 1) · · · (a− n+ 1) = a!
(a−n)!

. The functions Φij
l are given by

Φij
l = 4F3







−1
2
, 3

2
, − l

2
− 1

2
, − l

2

−i− 1
2
, −j − 1

2
, i+ j − l + 5

2

; 1





 (42)

where 4F3(1) is a generalized hypergeometric function [25]. Now consider a ”wedge” of

generators V i
m for which |m| ≤ (i + 1). It can be easily shown that the commutator of any

two generators within a wedge only involves generators within the same wedge. The resulting

wedge subalgebra of W∞ which is known as W∧, has the feature that it is anomaly free, the

central terms vanish for all commutators. The algebra W∧ can be realized by generalization

of sl(2), subalgebra of the Virasoro algebra, generated by l+, l− and l0. Let us consider the

tensor-operator algebra of sl(2, IC). The tensor operator algebra may be constructed in the

following way. The sl(2, IC) generators satisfy the commutation relations of eqs. (36). The

Casimir operator may be written as

Q = l20 −
1

2
(l+l− + l−l+). (43)

The three generators, l−, l+ and l0 transform as the 3 representations of sl(2, IC). Higher-

tensor operators, T l
m with (−l ≤ m ≤ l), transforming in general as the (2l+ 1)-dimensional

representation of sl(2, IC), are constructed from appropriate polynomials of degree l in the
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l’s. According to [25], we start with the highest-weight state T l
l = (l+)l, and then construct

the lower-weight states in the usual way by (l −m) successive application of L−,

T l
m =

1

(−2l)l−m

[l−, [l−, · · · [l−, (l+)l] · · ·]] (44)

where (a)n = a(a + 1) · · · (a + n − 1) = (a+n−1)!
(a−1)!

. Subtilties arise when we determine the

exact relation of the above construction with the W∞-algebra. Acting upon a Hilbert space

in which the quadratic Casimir takes on a definite value Q = µ, the operators T l
m close into

an infinite-dimensional algebra which is parametrized by µ, and known as T (µ). Therefore,

we would expect that the above construction for W∧-algebra should coincide with T (µ)

for some specific value of µ. It has been shown in ref. [24], that the wedge subalgebra

W∧ contained in W∞-algebra is the sl(2, IC) operator algebra T (0), specified by the value

µ = 0 for the quadratic Casimir. However for any value of the parameter µ, we can allow

the representation to be infinite dimensional [24]. It can be easily checked that in our

case the logarithmic correlation functions are not invariant under all of T l
m’s, but they are

invariant under T l
m with −l ≤ m ≤ 0. Therefore the important result is that the logarithmic

correlation functions are invariant under the Borel subalgebra of W∧-algebra.

3 Correlation Functions with Logarithmic Behavior

In this section, we calculate the correlation functions that have a logarithmic term. A

straightforward way for calculating the correlation functions is to use Ward identities [26].

For simplicity, first we consider the correlation functions of conformal fields where only two

of them have two fields of equal dimension in their OPE. This can be done by using the

corresponding symmetry algebra, which was found in the last section. It can be shown that

in this case all correlation functions behave as follows:

l0 < A(z1)B(z2)O(z3) · · ·O(zn) >= kn < O(z1) · · ·O(zn) > (45)

where the OPE of A(zn−1)B(zn) is given by eq. (1) and O(zi) are ordinary operators. For

the calculation of the two point function of such a conformal field theory, we have

l0 < Ψ(z1)Ψ(z2) >= k2 < O(z1)O(z2) >= k2
1

z2∆Ψ

12

(46)
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and the following Ward identities:

l0l0 < Ψ(z1)Ψ(z2) >= 0, l− < Ψ(z1)Ψ(z2) >= 0, l+l0 < Ψ(z1)Ψ(z2) >= 0, (47)

and so on, where zij = zi − zj. Now we substitute the differential realization of l0 and l±

from (13) into the above equations by means of the ”co-product”,

[z1∂z1
+ z2∂z2

+ 2∆Ψ] < Ψ(z1)Ψ(z2) >= k2 < O(z1)O(z2) >

[(z1∂z1
+ z2∂z2

+ 2∆Ψ)(z1∂z−1 + z2∂z2
+ 2∆Ψ)] < Ψ(z1)Ψ(z2) >= 0

[∂z1
+ ∂z2

] < Ψ(z1)Ψ(z2) >= 0

[z2
1∂z1

+ z2
2∂z2

+ 2(z1 + z2)∆Ψ] < Ψ(z1)Ψ(z2) >= 0

(48)

and so on. Solving the above equations for < Ψ(z1)Ψ(z2) >, we have

< Ψ(z1)Ψ(z2) >= k2 < O(z1)O(z2) > [log z12 + λ′] (49)

where k2 is −2 and λ′ is a constant.

A similar methods can be used for solving the three point correlation function. Instead

of (46) we have

l0 < A(z1)B(z2)Ψ(z3) >= k3 < A(z1)B(z2)Φ(z3) >=
k3

z∆A+∆B−∆Ψ

12 z∆A−∆B+∆Ψ

13 z−∆A+∆B+∆Ψ

23
(50)

and similar Ward identities for the three-point function. Solving these equations gives:

< A(z1)B(z2)Ψ(z3) >= k3 < A(z1)B(z2)Φ(z3) > (a log z12 + b log z13 + c log z23 + λ) (51)

where k3, a, b and c must satisfy the following relation:

k3 + a + b+ c = 0. (52)

For the four-point correlation function, < A(z1)B(z2)O(z3)O(z4) >, we have

L0 < A(z1)B(z2)O1(z3)O2(z4) >= k4 < O(z1)O(z2)O(z3)O(z4) >

= k4

z
∆A+∆B−∆O1

+∆O2
12

z
∆A−∆B+∆O1

−∆O2
13

z
−∆A+∆B+∆O1

−∆O2
23

z
2∆O2
34

F (x).
(53)

Solving the relevant equations by a similar method, we find

< A(z1)B(z2)O(z3)O(z4) >= k4 < O(z1)O(z2)O(z3)O(z4) >

× [a log z12 + b log z13 + c log z14 + d log z23 + e log z24 + f log z34 + λ”]
(54)
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where λ” is a constant and k4, a, b, c, d, e and f must satisfy:

k4 + a+ b+ c+ d+ e+ f = 0. (55)

It can be seen that eq. (54), is valid for four-point function of < A(z1)B(z2)O(z3)Ψ(z4) >

type. However correlation function of < Ψ(z1)Ψ(z2)Ψ(z3) > type cannot be calculated by

this method [27].

4 OPE Coefficients

4.1 OPE of Ordinary Conformal Fields

The most general expression for the operator product expansion of ordinary conformal fields

is [21, 7]:

Φn(z, z̄)Φm(0, 0) =
∑

p

∑

k

z∆p−∆n−∆m+
∑

ki z̄∆̄p−∆̄n−∆̄m+
∑

k̄i Cp,{k},{k̄}
nm Φ{k},{k̄}

p (0, 0) (56)

where the coefficients are

Cp,{k},{k̄}
nm = Cp

nmβ
p,{k}
nm β̄p,{k̄}

nm , {k} = {k1, k2, · · · , kn}. (57)

This OPE is the first regular hypergeometric function F (x). Note that we have Φi(0) | 0 >=|

∆i >. Acting on | 0 >, by eq. (56) we obtain:

Φn(z) | ∆m >=
∑

p

Cp
nm z∆p−∆n−∆m φp(z) | ∆p > (58)

φp(z) =
∑

k z
∑

ki βp,{k}
nm L−k1

· · ·L−kn

| z,∆p >= φp(z) | ∆p > .
(59)

Expanding | z,∆p > in terms of the complete basis | N,∆p >, i.e.,

| z,∆p >=
∑

N

zN | N,∆p >, (60)

and applying Lj on eq. (58), we obtain:

Lj | N + j,∆p >= (∆p − ∆m + j∆n +N) | N,∆p > . (61)
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We also had that

L0 | N,∆p >= (∆p +N) | N,∆p > . (62)

By solving the recursion relations we can find βp,{k}
nm .

For the first level we have

L1 | 1,∆p >= (∆p − ∆m − ∆n) | ∆p > (63)

which results in

| 1,∆p >= α1L−1 | ∆p >; α1 =
∆p − ∆m + ∆n

2∆p

. (64)

For the second level by means of eqs. (60) and (64) we have

L1 | 2,∆p >= Âα1L−1 | ∆p >

L2 | 2,∆p >= B̂ | ∆p >
(65)

which results in:

| 2,∆p >= (α2L
2
−1 + α3L−2) | ∆p > (66)

with α2 and α3 satisfying the following system of equations:

2Nijαj = 2Ai, i, j = 2, 3

where

2N =







4∆p + 2 3

6∆p 4∆p + c
2





 , 2A =







Âα1

B̂





 . (67)

and index ”2” refers to the level. This system can now be solved to give:







α2

α3





 =
1

∆1







Ĉ − 3B̂

−6∆pÂα1 + D̂B̂





 (68)

where

Â = ∆p − ∆m + ∆n + 1

B̂ = ∆p − ∆m + 2∆n

Ĉ = 4∆p +
c

2
D̂ = 4∆p + 2

11



∆1 = c(2∆p + 1) + 2∆p(8∆p − 5). (69)

A similar method will work for higher levels. For the level N, we have in place of eq. (66),

an expansion corresponding to the partition of N. We then find a system of equations by

successively applying Lj , and finally the coefficients are derived. For the third level, using

Eq. (61), we have:

L1 | 3,∆p >= (Â+ 1)(α2L−2 + α3L
2
−1) | ∆p >

L2 | 3,∆p >= (B̂ + 1)α1L−1 | ∆p >

L3 | 3,∆p >= (B̂ + ∆n) | ∆p >

(70)

and | 3,∆p > is given by

| 3,∆p >= (α4L
3
−1 + α5L−1L−2 + α6L−3) | ∆p > (71)

where α4, α5 and α6 satisfy the following system of equations:

3Nijαj = 3Ai, i, j = 4, 5, 6

with

3N =















18∆p + 6 4∆p + c
2

+ 9 5

24∆p 16∆p + 2c 6∆p + 2c

6∆p + 6 2∆p + 7 4















3A =















(B̂ + 1)α1

B̂ + ∆n

(Â+ 1)(α2 + α3)















. (72)

Solving of the above system we obtain:

α4 = −1
6∆2

[

2α1(B̂ + 1)(6∆2
p + 6c∆p − 11∆p + 3c) + (B̂ + ∆n)(6∆p + 2c+ 1)

−(Â+ 1)(α2 + α3)(24∆2
p + 11c∆p − 26∆p + c2 + 8c)

]
(73)

α5 = 1
∆2

[

2α1(B̂ + 1)(3∆2
p + c∆p − 5∆p + c) + (B̂ + ∆n)(7∆p − 1)

−2(Â + 1)(α2 + α3)(9∆2
p + 3c∆p − 7∆p + c)

]
(74)

α6 = 1
2∆2

[

− 4(B̂ + 1)α1(4∆2
p + c∆p − ∆p + c) + (B̂ + ∆n)(−4∆2

p + c∆p

−20∆p + c+ 4) + 4(Â+ 1)(α2 + α3)(16∆2
p + 2c∆p − 10∆p + c)

]
(75)

where

∆2 = c2(∆p + 1) − c(∆2
p + 11∆p − 2) − 4∆p(3∆2

p − 7∆p + 2).
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4.2 OPE of Logarithmic Conformal Fields

The second most general solution of F (x), which implies new OPE for two conformal fields

which have two fields φ and ψ, of equal dimension in their fusion rule, eq. (1), is:

Φn(z, z̄)Φm(0, 0) =
∑

p

∑

k z
∆p−∆n−∆m+

∑

ki z̄∆̄p−∆̄n−∆̄m+
∑

k̄i

×
[

Cp,{k},{k̄}
nm log |z|2φ{k},{k̄}

p (0, 0) + C ′p,{k},{k̄}
nm ψ{k},{k̄}

p (0, 0)
]

(76)

where φ{k},{k̄}
p is an ordinary conformal fields, which has been discussed in the last subsection

and ψ{k},{k̄}
p denote the new pseudo-operator with unusual properties.

The coefficients Cp,{k},{k̄}
nm are the same as eq.(57) and

C ′p,{k},{k̄}
nm = C ′p

nmβ
p,{k}
nm β̄p,{k̄}

nm {k} = {k1, k2, · · · , kn}. (77)

Similar to the expressions for φ{k},{k̄}
p , we have the following for ψ{k},{k̄}

p :

ψi(0) | 0 >=| ∆′
p >, | z,∆′

p >= ψp(z) | ∆′
p > (78)

and instead of eq. (58), we have

φn(z) | ∆m >=
∑

p

z∆p−∆n−∆m [log z Cp
nm φp(z) + C ′p

nm ψp(z)] | ∆p > (79)

where

| z,∆′
p >= ψp(z) | ∆p > (80)

and its expansion in terms of zN is

| z,∆′
p >=

∑

N

zN | N,∆′
p > . (81)

Collecting the above expressions together, we obtain the following relations [1, 6, 21]

Lj | N + j,∆p >= (∆p − ∆m + j∆n +N) | N,∆p > (82)

Lj | N + j,∆′
p >=| N,∆p > +(∆p − ∆m + j∆n +N) | N,∆′

p > (83)

L0 | N,∆p >= (N + ∆p) | N,∆p > . (84)

L0 | N,∆
′
p >=| N,∆p > +(∆p +N) | N,∆′

p > . (85)

13



Now by using (82-85), we can calculate the OPE coefficients of two conformal operators,

which have at least two operators with equal dimension in their OPE.

In the same way as in the ordinary case, for the first level we have

| 1,∆′
p >= α′

1L−1 | ∆p > +β1L−1 | ∆′
p >

L1 | 1,∆′
p >= (2∆pα

′
1 + 2β1) | ∆p > +2∆pβ1 | ∆′

p >

=| ∆p > +(∆p − ∆m + ∆n) | ∆′
p >

(86)

with α′
1 and β1 satisfying the following system of equations;

1Mijγj = 1Bi; i, j = 1, 2; γ1 = β1, γ2 = α′
1. (87)

where

1M =









2∆p 2

0 2∆p









1B =







1

(Â− 1)





 (88)

which results in:






β1

α′
1





 =
1

2∆2
p







∆m − ∆n

∆p(Â− 1)





 . (89)

It is not surprising that α′
1 = α1.

For the second level we have

| 2,∆′
p >= (α′

2L
2
−1 + α′

3L−2) | ∆′
p > +(β2L

2
−1 + β3L−2) | ∆p > . (90)

Using (82-85), we see that α′
2, α

′
3, β2 and β3 satisfy the following system of equations:

2Mijγj = 2Bi; i, j = 1, 2, 3, 4; γ1 = β2, γ2 = β3, γ3 = α′
2, γ4 = α′

3 (91)

where

2M =



























4∆p + 2 3 4 0

6∆p 4∆p + c
2

6 4

0 0 4∆p + 2 3

0 0 6∆p 4∆p + c
2



























2B =





















Âβ1 + α1

1

Âα1

B̂





















. (92)
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These result in:




















β2

β3

α′
2

α′
3





















=
1

∆2
1





















Ĉ[Â(∆1β1 − 4Ĉα1) + ∆1α1 − 24B̂] + 3[c(3Âα1 + 2B̂) + 10B̂ − ∆1]

∆1(D̂ − 6∆p(Âβ1 + α1)) + 6Âα1(16∆2
p − c) − 4B̂(D̂ − 9)

Âα1∆1Ĉ − 3B̂∆1

−6Âα1∆1∆p + B̂∆1(4∆p + 2)





















.

(93)

For the third level, using eqs. (82-85), we have:

| 3,∆p >= (β4L
3
−1+β5L−1L−2+β6L−3) | ∆p > +(α′

4L
3
−1+α

′
5L−1L−2+α

′
6L−3) | ∆′

p > (94)

where α′
i and βi (i = 4, 5, 6) satisfy the following system of equations:

3Mijγj = 3Bj , i, j = 1, · · · , 6, (95)

γi’s (i = 1, 2, 3) denote βi’s (i = 4, 5, 6) and γi’s (i = 4, 5, 6) denote α′
i’s (i = 4, 5, 6),

respectively. The exact expression for 3Mi and 3Bi are:

3M =













































18∆p + 6 4∆p + 9 + c
2

5 18 4 0

24∆p 16∆p + 2c 6∆p + 2c 24 16 6

6∆p + 6 2∆p + 7 4 6 2 0

0 0 0 18∆p + 6 4∆p + 9 + c
2

5

0 0 0 24∆p 16∆p + 2c 6∆p + 2c

0 0 0 6∆p + 6 2∆p + 7 4













































(96)

3B =



































(B̂ + 1)β1 + α1

1

(Â+ 1)(β2 + β3) + (α2 + α3)

(B̂ + 1)α′
1

(B̂ + ∆n)

(Â + 1)(α′
2 + α′

3)



































. (97)

In the above results, three significant remarks are inorder:

1- In the diagonal blocks of iM, there are two copies of relevant ordinary iN .
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2- The upper off diagonal block of iM is the derivative of the diagonal block with respect

to ∆p and the lower off-diagonal block is zero.

This is another evidence insupport of the fact that logaritmic operator together with

ordinary operator form the basis of Jordan cell for L0.

Hence,

iM =







iN ∂∆p iN

0 iN





 iB =







iD

iA





 (98)

where ∂∆p
= ∂

∂∆p
, iA is the same as in the last subsection and iD is a column matrix with

elements which resemble the first half of iB in eqs. (88,92).

Finally, βis and α′
is are as follows:

[α′
i] = [αi] = iN−1

iA

[βi] = iN−1
iD + (∂∆p iN−1) iA.

(99)

3- Most significant remark is that in the expressions (89, 92, 97), first half of elements is

partial derivative of second half of elements with respect to ∆p. This means that iD =

∂∆p
(iA).

Finaly we can conclude as follows:

| n,∆′ >= αk1,k2,···L
k1

−1L
k2

−2L
k3

−3 · · · | ∆p > +(∂∆p
αk1,k2,k3···)L

k1

−1L
k2

−2L
k3

−3 · · · | ∆′
p > (100)

where
∑

mkm = n. It seems that appearance of ∂∆p
has more important rule in logarithmic

operator.
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