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Abstract. It is well known that the ballistic deposition and the restricted solid-
on-solid models belong to the same universality class, having the same roughness
and growth exponents. In this paper, we determine some new statistical
properties of the two models, such as the Kramers–Moyal coefficients and the
Markov length scale, and show them to be distinct for the two models.
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1. Introduction

The study of the statistical properties of surfaces growing under the deposition of
particles has attracted many researchers over the last two decades [1]–[7]. The theoretical
description of the surface growth processes has been accomplished using a number of
discrete and continuous models that belong mainly to three groups: the Edwards–
Wilkinson model [8], the Kardar–Parisi–Zhang equation (KPZ) [9], and models based
on molecular beam epitaxy [10]. The focus of such studies has been the statistical
characterization of the growing surface. This is achieved by estimating the roughness
exponent of the steady-state surface, the growth exponent [11], and the scaling functions
associated with the steady-state evolution of the surface [12]–[16].

The simplest quantitative characteristic of a given surface or interface is its roughness,
also called the interface width, defined as the root mean square fluctuation of the height
around its average position. The width w is usually averaged over different configurations,
and its scaling with the time and length of the substrate is used to characterize the growth
process. Consider a sample of size L and define the mean height of the growing film h
and its roughness w by the following expressions:

w(L, t) = (〈(h − h)2〉)1/2, (1)

where t is proportional to the deposition time and 〈· · ·〉 denotes an averaging over different
samples. For simplicity, and without loss of generality, we assume that h = 0. Starting
from a flat interface (one of the possible initial conditions), it was conjectured by Family
and Vicsek that a scaling of space by factor b and of time by factor bz (z is the dynamical
scaling exponent) rescales the roughness w by the factor bα as [17]

w(bL, bzt) = bαw(L, t), (2)

which implies that

w(L, t) = Lαf(t/Lz). (3)

If for large t and fixed L(t/Lz → ∞), w saturates, then f(x) −→ g as x −→ ∞. However,
for fixed and large L and t � Lz, one expects correlations of the height fluctuations to
exist only within a distance t1/z and, thus, they must be independent of L. This implies
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that for x � 1, f(x) ∼ xβg′ with β = α/z. Thus, for dynamic scaling one postulates that

w(L, t) =

{
tβg ∼ tβ, t � Lz;

Lαg′ ∼ Lα, t � Lz.
(4)

The roughness exponent α and the dynamic exponent z characterize the self-affine
geometry of the surface and its dynamics, respectively. The dependence of the roughness
w on h or t indicates that w has a fixed value for a given time.

A main problem in this area of research has been the scaling behavior of the moments
of the height difference, Δh = h(x1)− h(x2), and the evolution of the probability density
function (PDF) of Δh, i.e., P (Δh, Δx), in terms of the length scale Δx. Recently, Friedrich
and Peinke were able to derive a Fokker–Planck equation which describes the evolution
of the probability distribution function in terms of the length scale, for several stochastic
phenomena, such as rough surfaces [18]–[20], turbulent flows [21], financial data [22, 23],
heart interbeats [24], etc. They pointed out that the conditional probability density
of the field increments (velocity field, etc) satisfies the Chapman–Kolmogorov equation.
Mathematically, this is a necessary condition for the fluctuating data to follow a Markov
process in the length scales [5].

In this paper we compute the Kramers–Moyal (KM) coefficients for the fluctuating
field Δh = h(x + Δx) − h(x) of the restricted solid-on-solid (RSOS) and the ballistic
deposition (BD) models, and show that their first and second KM coefficients have
well-defined values, whereas their third- and fourth-order KM coefficients tend to zero.
Although the models have the same roughness and dynamical exponents, we show that
they have distinct KM coefficients, and are described by distinct stochastic Langevin
equations [25]. Hence, our computations make it possible to better distinguish the two
models.

2. The Markov nature of the height fluctuations: the drift and diffusion coefficients

The first model analyzed here is the RSOS model [26] in which the incident particle sticks
at the top of a growing column only if the differences of heights of all pairs of neighboring
columns do not exceed ΔHmax = 1. Otherwise, the attempt for the growth of the surface
is rejected. The second model was proposed for etching of a crystalline solid, by Mello et al
[27]: in each growth attempt a randomly chosen column i, with current height h(i) = h0,
has its height increased by one unit [h(i) → h0 + 1], and all the neighboring columns
whose heights are smaller than h0 grow to h0 (this may be called the growth version of
the etching model [28]).

In the simplest version of the BD model, particles are released from a randomly chosen
position above a d-dimensional substrate, follow trajectories perpendicular to the surface
and stick to it upon first contact with a nearest-neighbor occupied site. The resulting
aggregate is porous and has a rough surface. Several applications of the BD model or its
extensions to real growth processes have already been proposed, which justify the present
analysis (see, for example, the recent applications in [29, 30]).

In figures 1 and 2 we show snapshots of the height h(x) and Δh = h(x+1)−h(x) for
the BD and RSOS models in the stationary state, for samples of size 106 (in units of the
lattice constant). The complete characterization of the statistical properties of random
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Figure 1. Snapshots of the height fluctuations of h(x) and Δh = h(x + 1)−h(x)
for the BD model, after saturation.

fluctuations of a quantity, such as the height h of the surface in the two models, in terms
of a parameter x requires evaluation of the joint PDF, i.e., PN(h1, x1, . . . , hN , xN ), for
an arbitrary N . If the process is a Markov process, an important simplification arises,
since in this case PN can be generated by a product of the conditional probabilities
P (hi+1, xi+1|hi, xi), for i = 1, . . . , N − 1. As a necessary condition for the fluctuation
being a Markov process, the Chapman–Kolmogorov equation [5],

P (h2, x2|h1, x1) =

∫
d(hi) P (h2, x2|hi, xi) P (hi, xi|h1, x1), (5)

should hold for any value of xi, in the interval x2 < xi < x1.
Let us first check that the height fluctuations represent a Markov process, and

determine their corresponding Markov length scales LM. The Markov length scale LM

is the minimum length over which the data can be considered as a Markov process. Here,
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Figure 2. Same as figure 1, but for the RSOS model.

we use the least-squares method to determine the Markov length scale of the height h(x).
If h(x) is a Markov process, then, one finds

P (h3, x3|h2, x2; h1, x1) = P (h3, x3|h2, x2). (6)

We compare the three-point PDF with that obtained on the basis of the Markov process.
The joint three-point PDF, in terms of the conditional probability functions, is given by

P (h3, x3; h2, x2; h1, x1) = P (h3, x3|h2, x2; h1, x1)P (h2, x2; h1, x1). (7)

Using the properties of the Markov process and substituting in equation (7), we obtain

PMar(h3, x3; h2, x2; h1, x1) = P (h3, x3|h2, x2)P (h2, x2; h1, x1). (8)

In order to check the condition for the data being a Markov process, we must compute
the three-point joint PDF through equation (7) and compare the result with equation (8).

doi:10.1088/1742-5468/2008/02/P02010 5
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Figure 3. The χ2 tests for estimating the Markov length scales of the BD and
RSOS models, indicating that the Markov length scales are, respectively, 8 and
28 for the BD and RSOS models.

We define χ2 by [23]

χ2 =

∫
dh3 dh2 dh1[P (h3, x3; h2, x2; h1, x1)

− PMar(h3, x3; h2, x2; h1, x1)]
2/[σ3.joint + σMar], (9)

where σ3.joint and σMar are the variances of P (h3, x3; h2, x2; h1, x1) and PMar(h3, x3; h2, x2;
h1, x1), respectively. To compute the Markov length scale, we also used the likelihood
statistical analysis. In the absence of a prior constraint, the probability of the set of
three-point joint PDFs is given by a product of Gaussian functions:

p(x3 − x1) = Πh3,h2,h1

1√
(σ2

3.joint + σ2
Mar)

2

× exp

[
[P (h3, x3; h2, x2; h1, x1) − PMar(h3, x3; h2, x2; h1, x1)]

2

2(σ2
3.joint + σ2

Mar)

]
. (10)
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Figure 4. Typical test of the Chapman–Kolmogorov equation for several values,
Δh1 = −2, Δh1 = 0, and Δh1 = 2. The bold and dashed lines represent the
left and right side of equation (5), respectively. The length scales Δx1, Δx2, and
Δx3 are 180, 320, and 260, respectively. For clarity of presentation the PDFs
have been shifted on the Δh-axis.

This probability distribution must be normalized. Evidently, when, for a set of values of
the parameters, χ2

ν attains its minimum, the probability is at its maximum value. Figure 3
shows the normalized χ2

ν as a function of L = x3 − x1, where χ2
ν = χ2/N , with N being

the number of degrees of freedom. χ2
ν has its minimum at L ≈ 40 and L ≈ 80 for the BD

and RSOS models, respectively, hence yielding the corresponding Markov length scales
LM.

The process Δh = h(x + 1) − h(x) is also Markov. Using the method described
above, one can show that Δh has a Markov length scale of 1 and 6 (in units of the lattice
constant) for the BD and RSOS models, respectively. At this step we can check also the
Markov nature of the height increments in scales, i.e., Δh = h(x+Δx)−h(x). We checked
the validity of the Chapman–Kolmogorov equation for several Δh1 triplets by comparing
the directly evaluated conditional probability distribution P (Δh2, Δx2|Δh1, Δx1) with
those calculated according to the right-hand side of equation (5). In figure 4 the directly
computed and the integrated PDFs are superimposed, for the purpose of illustration, for
the BD and RSOS models. The bold and dashed lines represent, respectively, the left and
right sides of equation (5).

It is well known that the Chapman–Kolmogorov equation yields an equation for the
evolution of the distribution function P (Δh, Δx) across the scales Δx. The Chapman–
Kolmogorov equation, when formulated in differential form, yields a master equation
which takes on the form of a Fokker–Planck equation [5]:

∂

∂x
P (Δh, Δx) =

[
− ∂

∂Δh
D(1)(Δh, Δx) +

∂2

∂Δh2D(2)(Δh, Δx)

]
P (Δh, Δx). (11)
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Figure 5. Comparing the drift coefficients of the BD (top) and RSOS models.

The drift and diffusion coefficients, D(1)(Δh, Δx) and D(2)(Δh, Δx), are estimated directly
from the data and the moments M (k) of the conditional probability distributions:

D(k)(Δh, Δx) =
1

k!
limr→0M

(k),

M (k) =
1

r

∫
dh′(Δh′ − Δh)kP (Δh′, Δx + r|Δh, Δx). (12)

The coefficients D(k)(Δh, Δx) are known as the KM coefficients. According to the Pawula
theorem [5], the KM expansion can be truncated after the second term, provided that
the fourth-order coefficient, D(4)(Δh, Δx), vanishes [5]. The fourth-order coefficients
D(4) in our analysis were found to be about D(4) 
 10−4D(2), for both models. Thus,
in this approximation, we ignore the coefficients D(k) for k ≥ 3. We note that the
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Figure 6. Comparing the diffusion coefficients of the BD (top) and RSOS models.

Fokker–Planck equation is equivalent to the following Langevin equation (using the Ito
interpretation [5]):

∂

∂Δx
Δh(Δx) = D(1)(Δh, Δx) +

√
D(2)(Δh, Δx)f(Δx), (13)

where f(Δx) is a random force, with zero mean and Gaussian statistics, δ-correlated
in Δx, i.e., 〈f(Δx)f(Δx′)〉 = 2δ(Δx − Δx′). Furthermore, given the last expression,
it should be clear that we are able to separate the deterministic and the stochastic
components of the surface height fluctuations, in terms of the coefficients D(1)

and D(2).
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Figure 7. Markov length scale versus roughness or Hurst exponents.

3. The Kramers–Moyal coefficients of the BD and RSOS increments

Using the statistical parameters introduced in the previous sections, it is now possible to
obtain some quantitative information about the BD and RSOS models. We computed the
drift coefficient, D(1)(Δh), and the diffusion coefficient, D(2)(Δh); the results are displayed
in figures 5 and 6. It turns out that the drift D(1) is a linear function of Δh, whereas
the diffusion coefficient D(2) is a quadratic function of Δh. For large values of Δh, our
estimates become poor and, thus, the uncertainty increases. From the analysis of the data
set we obtain the following approximation for the BD model:

D(1)(Δh, Δx) = [−1.04(Δx)−1]Δh, (14)

D(2)(Δh, Δx) = (2.6 × 10−4)(Δh)2 + [(−1.6 × 10−3)(Δx)0.5 + 0.062]Δh,

and for the RSOS model, we find that

D(1)(Δh, Δx) = [−0.84(Δx)−1]Δh, (15)

D(2)(Δh, Δx) = (4.1 × 10−4)(Δh)2 + [(−2.4 × 10−4)(Δx)0.5 + 0.012]Δh.

Thus, apart from their Markov length scales being distinct for the BD and RSOS models,
we see that the drift and diffusion coefficients of the two models are also distinct. The
diffusion coefficient of the BD model is greater than that of the RSOS model. According
to the Langevin equation, it is multiplied by the random white noise f , which means that
the random part of the corresponding Langevin equation for BD model is stronger. This
is related to the existence of jumps in the surface generated by the BD model.

4. Markov length scale and roughness exponent of the surface

In this section we wish to determine the relation between the roughness exponent of a
rough surface and the Markov length scale LM, and the consequence of the relation for

doi:10.1088/1742-5468/2008/02/P02010 10
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Figure 8. Comparing the drift and diffused coefficients for surfaces with different
roughness or Hurst exponents.

the drift and diffusion coefficients. We generated a rough surface by using the Fourier
filtering algorithm with various Hurst exponents H and unit roughness [31]. For H < 1
the roughness and Hurst exponents are equal. First, we calculate the dependence of the
Markov length scale LM on the Hurst exponent of the surface. The results are shown
in figure 7. It is evident that LM is an increasing function of roughness exponent H . In
correlated data series, the height differences between the neighbors are small, which is due
to the fact that such series have persistent nature. As the correlation or Hurst exponent
increases, the height difference decreases. This means that data series have long memory.
One can translate the memory to the physical meaning of the Markov length scale: the
data with larger H also have long Markov length scale LM. We note, however, that for
a process with a given Hurst exponent one finds a unique LM, whereas, in general, the
opposite is not true. One may fit the functional dependence of LM on H using different

doi:10.1088/1742-5468/2008/02/P02010 11
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functions. The simplest functions are exponential and power-law functions. We obtain
LM = 0.01 exp(10.48H) and LM = 56.58H8.94 as the candidates.

Moreover, the same effect can also be analyzed for the drift and diffusion coefficients.
Figure 8(a) presents the calculated drift coefficient for the generated surfaces using several
Hurst exponents. It is seen that the drift coefficient exhibits a linear dependence on
H . Increasing the Hurst exponent results in a decreasing drift coefficient. We find
that the drift coefficient behaves as D(1)(h, H) = −f1(H)h, where f1(H) is given by
f1(H) = 0.255 + 1.810H − 1.643H2. The dependence of the diffusion coefficient of the
generated rough surface on the Hurst exponents is shown in figure 8(b). A decreasing
diffusion coefficient with increasing Hurst exponent is seen. The diffusion coefficients
exhibit quadratic dependence on the height h given by D(2)(h, H) = f2(H)h2, where
f2(H) is fitted by 0.02 + 0.54H + 0.57H2.

In summary, we showed that the probability densities of the height increments in
the BD and RSOS models satisfy a Fokker–Planck equation, which encodes the Markov
property of these fluctuations in a necessary way. We computed the Kramers–Moyal
coefficients for the field Δh = h(x + Δx) − h(x), and determined their corresponding
Langevin equations. We showed that the Markov length scales of the two models are
different, and that they also have distinct KM coefficients. In addition, we investigated
the dependence of the Markov Length scale on the roughness exponents of a rough surface.
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