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We study localization of elastic waves in two-dimensional heterogeneous solids with randomly distributed
Lamé coefficients, as well as those with long-range correlations with a power-law correlation function. The
Matin-Siggia-Rose method is used, and the one-loop renormalization group (RG) equations for the coupling
constants are derived in the limit of long wavelengths. The various phases of the coupling constants space,
which depend on the value p, the exponent that characterizes the power-law correlation function, are deter-
mined and described. Qualitatively different behaviors emerge for p<1 and p> 1. The Gaussian fixed point
(FP) is stable (unstable) for p<1 (p>1). For p<1, there is a region of the coupling constants space in which
the RG flows are toward the Gaussian FP, implying that the disorder is irrelevant and the waves are delocal-
ized. In the rest of the disorder space, the elastic waves are localized. We compare the results with those
obtained previously for acoustic wave propagation in the same type of heterogeneous media and describe the
similarities and differences between the two phenomena.
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I. INTRODUCTION

Ever since the discovery of electron localization,! much
attention has been devoted to this phenomenon, since it is not
only of fundamental scientific interest but also has much
practical importance. There is now extensive experimental
evidence for the localization phenomenon in disordered
materials. 23 On the theoretical side, the problem has been
studied for decades by several analytical methods, ranging
from the scaling theory* to the self-consistent perturbation
theory.>¢ In addition, numerical simulations using such tech-
niques as the transfer-matrix method and the statistics of en-
ergy levels have been used to verify the predictions of the
analytical results.

The development of the one-parameter scaling theory* of
electron localization in terms of the concepts of critical phe-
nomena suggests that the problem can be reformulated by
using an effective field theory which, when done, leads to the
so-called o model which is a nonlinear model. Wegner’ pro-
posed such a description of disordered conductors. Also
noteworthy among the theoretical developments is the work
of Efetov et al.,® who proposed the supersymmetric ap-
proach, now used widely. The renormalization group (RG)
approach, one of the most powerful methods in statistical
physics, has also been used to examine the critical properties
of the resulting effective field theory.” The RG approach
leads to a set of equations for the coupling constants, such as
the diffusivity and conductance of the disordered materials
under study. The main prediction of all of these approaches
is that, for space dimensions d > 2, there is a transition from
the localized to extended states, so that the lower critical
dimension of the localization phenomenon is d.=2. How-
ever, despite convincing numerical evidence for the validity
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of this prediction,'® the exponent v that characterizes the
power-law behavior of the localization length & near the
phase transition, £ |W—W,_|7" (where W, is the critical value
of the disorder intensity W), predicted by the RG method, is
not in agreement with the numerical results. A possible ex-
planation for this discrepancy is that some of the terms that
are neglected in the construction of the field theory may ac-
tually be relevant to the RG analysis.

Another approach to the field-theoretic description of the
problem is based on the method first developed by Martin-
Siggia-Rose (MSR),'! by which one constructs an effective
action (see below) based on the governing stochastic equa-
tion of motion for the phenomenon under study. The MSR
approach is well developed for critical phenomena far from
equilibrium'! and has been extensively used to study various
dynamical critical phenomena, such as those that are de-
scribed by the Langevin equation, or the driven interface
phenomena, such as surface growth and stochastic hydrody-
namics. The main advantages of the MSR method are that it
provides an exact generating functional and that one needs
no approximation in order to obtain the effective action. This
is the method that we use in the present paper.

An important implication of the wave characteristics of
electrons is that the localization phenomenon may also occur
in propagation of the classical waves in disordered media.
However, unlike the problem of electron localization in
strongly disordered materials, classical waves, such as seis-
mic waves,'2!3 do not interact with each other and, therefore,
their propagation in heterogeneous media provides an ideal
model for studying the phenomenon of localization of the
classical waves. Moreover, along with the work on electronic
transport in disordered materials, parallel work has been car-
ried out on localization properties of classical waves in dis-
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ordered media that describe the phonons that are responsible
for heat transport in solids.'*

Although waves that are described by scalar equations
have been used for describing phonons in disordered materi-
als, a more suitable continuum description of the phenom-
enon is through propagation of elastic waves. Due to the
presence of different polarizations and the coupling between
them (mode conversion), propagation of elastic waves in dis-
ordered solids constitutes a complex set of phenomena.'>!
Because of this complexity, there have been relatively few
studies in the literature dealing with propagation of elastic
waves in disordered solid.!” In particular, localization of spe-
cial types of elastic waves has been studied in the past, rang-
ing from surface elastic (Rayleigh) waves'? to transverse de-
flections of a beam!® and coherent backscattering and
multiple scattering.?%?!

At the same time, understanding how elastic waves propa-
gate at very large scales, particularly in highly heterogeneous
media such as rock, is fundamental to a host of other impor-
tant problems, such as earthquakes, underground nuclear ex-
plosions, the morphology and content of oil and gas reser-
voirs, oceanography, and materials sciences.'? For example,
seismic wave propagation and reflection are used to not only
estimate the hydrocarbon content of a potential oil or gas
field and gain insight into its morphology but also to image
structures located over a wide area, ranging from the Earth’s
near surface to the deeper crust and upper mantle.??

The purpose of the present paper is to study the effect of
heterogeneities, represented by spatial distributions of the lo-
cal elastic constants, on elastic wave propagation in disor-
dered media, such as rock, which represents a highly hetero-
geneous natural material. Recently, extensive experimental
data for the spatial distributions of the local elastic moduli,
the density, and the wave velocities in several large-scale
porous rock formations, both off- and onshore, were
analyzed.”®> The analysis provided strong evidence for the
existence of long-range correlations in the spatial distribu-
tions of the measured quantities, characterized by a power-
law correlation function. The existence of such correlations
in the data provided the impetus for the present study and
motivated an important question that we address in the
present paper: How do large-scale heterogeneities and long-
range correlations affect elastic wave propagation in disor-
dered media? Another question that we address in the present
paper is whether, in the presence of the heterogeneities, the
elastic waves can be delocalized. By localization we mean a
situation in which, over finite length scales (which can, how-
ever, be large), the waves” amplitude decays and essentially
vanishes.

Localization of elastic waves in rock would imply, for
example, that seismic exploration yields useful information
only over distances r from the explosion’s site that are of the
order of the localization length &. Thus, if, for example, £ is
on the order of a few kilometers, but the linear size of the
area for which a seismic exploration is done is significantly
larger than &, then, seismic recordings can, at best, provide
only partial information about the area. Localization of elas-
tic waves also implies that, if the stations that collect data for
seismic waves that are emanated from an earthquake in rock
are farther from the earthquake’s hypocenter than & no use-

PHYSICAL REVIEW B 77, 014203 (2008)

ful information on the seismic activity prior to and during the
earthquake can be gleaned from the data.?*

We use a field-theoretic formulation to study propagation
of elastic waves in two-dimensional (2D) disordered media
in which the Lamé coefficients are spatially distributed. Our
approach is based on the MSR method.!! We calculate the
one-loop B functions (see below) for both spatially random
and power-law correlated distribution?® of the local elastic
constants. Although our work is primarily motivated by the
analysis of experimental data for the spatial distribution of
elastic constants of rock at large scales,” the results pre-
sented in this paper are general and applicable to any solid
material in which the local elastic constants follow the sta-
tistics of the distributions that we consider. The present paper
represents the continuation of our previous work®?¢ in
which we studied acoustic wave propagation in the same
type of heterogeneous media. We will compare the results
with those obtained previously for propagation of acoustic
waves.

The rest of this paper is organized as follows. In Sec. II,
the model is described and the governing equations are pre-
sented. Section III describes the field-theoretic description of
the elastic wave equation and the development of the MSR
formulation for the propagation of the waves in heteroge-
neous media. In Sec. IV, the perturbative RG calculations,
based on the MSR action, are carried out and the results are
analyzed. In Sec. V, we compare the results with those ob-
tained previously>?® for propagation of acoustic waves in
the same type of heterogeneous media that we consider in
the present paper. The paper is summarized in Sec. VI.

II. MODEL AND GOVERNING EQUATIONS

To analyze propagation of elastic waves in a disordered
medium, we begin with the equation of motion of an elastic
medium with the mean density m,

ﬁzu,-
2 =90y, (1)

m
o

where u; is the displacement in the ith direction and oy; the

ijth component of the stress tensor o. As usual, 0;; is ex-

pressed in terms of the strain tensor,

0;i(x) = 2 (X + N(X)ug 5y @)

For small deformations, the strain tensor is given by
1
MU=5(§[L{/+ ﬁju,), (3)

where \ and u are the Lamé coefficients. For simplicity, we
take the two Lamé coefficients to be equal, but the main
results of the paper presented below will not change if they
are unequal, but follow the same type of statistical distribu-
tions. Hence, we write

m(x) = N(x) = N + 7(x), (4)

where No=(\(x)), with {-) representing a spatial averaging.
We assume that 7(x), the fluctuating part of the Lamé coef-
ficients, is a Gaussian random process. Thus, in performing
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the spatial average over the disorder, we use a probability
distribution of the form

P[n(X)]°<eXP{—dedX’n(X)D(X—X’)n(X’) )

where D(x) is the inverse of the correlation function C(x).
The disorder that we include in the model consists of two
parts. One is (random) & correlated, while the second part is
characterized by a power-law correlation function. Hence,
the overall correlation function of the spatial distribution of
the disorder is given by

(n(x)n(x")) =2C(x - x') =2D&(x = x') + 2D |x - x'|*™,
(6)

in which Dy and D, are, respectively, the strengths of the
disorder for the random and the power-law correlated parts,
C(x—x'") satisfies the following condition:

f dx"C(x-x")D(x" -x")=8(x - x'), (7)

and d is the spatial dimension (d=2 in this paper). Note that,
in two dimensions, p=H+1, with H being the Hurst expo-
nent.

A Gaussian distribution of form (5) gives rise to quadratic
couplings in the interaction part of the action defined below.
Moreover, the Gaussian distribution (5) may include a tail of
inadmissible negative values of the Lamé coefficients. In
principle, the unphysical tail can be removed by introducing
a modified probability distribution function which, however,
would produce couplings of higher order in the action. How-
ever, interactions of orders higher than quadratic are irrel-
evant in the RG analysis and, therefore, can be ignored.

We now take the Fourier transform of Eq. (1) with respect
to the time variable, which yields the governing equation for
a monochromatic wave with angular frequency o,

[?]O'l] + wzmui = )\0£l]u] =0. (8)

Here, £ is a 2 X2 differential matrix operator (see below).

II1. FIELD-THEORETIC REPRESENTATION
OF THE ELASTIC WAVE EQUATION

Using the formalism developed by De Dominicis and
Peliti?’ (see also Hochberg et al.?®), one obtains a MSR gen-
erating functional that corresponds to the (Fourier-
transformed) wave equation (8),

1
P[”?,M{] = ./Tf [Dﬂ][D{MZR,M,(}] 5(£1juf) 5(52‘,‘1456)
X &Ly ul)S(L ’J(M—u)1<a£—u)
( 1juj)5( 2,‘”.,') ol ou!

Xexp{—fdxdx’n(x)D(x—x')n(x’)]. 9)

Here, superscripts R and 7 indicate, respectively, the real and
imaginary parts of the solution of the wave equation, J is the
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Jacobian and, A is a normalization constant. The Jacobian
for the transformation u— Lu is expressed as A Grassman
integral over the anticommuting fields x; and x;,

J= f Dix; ,xi}exp{ J dilx) (%) x> (%)]

Ly L X
x( " ‘2>[X1( )} . (10)

Ly L) Lxa(x)
We now introduce two other auxiliary fields, #f and i/, in
order to express the & functions in Eq. (9) as Fourier trans-
forms. Then, substituting Eq. (10) in Eq. (9) and integrating

out 7 (by performing a Gaussian integration) lead to an ef-
fective MSR action S, with the following form:

S,=So+S,, (11)

So=fdx 2 [(x) - Lou“(x) + X" (x) - Lox“(x)],

a=R,]

(12)

S]:fdxdxl[ E l&]f(251u7+25]u7+(9kuz5u)

a=R,I

*
F N QAN+ 2000 + O @j)]
X

E l(?jﬁ?(Z(?,uj + 20’9147 + (9kuZ5,»j)

C(x—x'
a=R,I

205

*k
X Qaxi+ 200 + akxza,-,-)] , (13)
X!
where the subscripts x and x’ indicate where the quantities

are evaluated at. The explicit form of the matrix L is given
by

(3a§ + 3+ 0/
£0= :

20,0, )
20,0, '

Fr+ 30+ 0/

We now write down the action in the Fourier space and,
then, introduce a change of the basis to decouple the free
propagator into two components, the longitudinal and trans-
verse propagators. To do so, we use a transformation A
— UA in order to diagonalize the matrix £, in the Fourier
space, where it has the following form:

— 2k,k, )

=3k - k2 + /N
bo= ' -3+ o
— k= 3K+ Wi\

2k k,

with following eigenvectors:

1k, 1k
|1>=Z(ky)’ |2>_k< ke )

The corresponding eigenvalues are (w?/\g—k?) and (w?/\,
—3k?), respectively. The two eigenvalues represent the dis-
persion relations of the transverse and longitudinal waves
which propagate in a uniform medium with the phase veloci-
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ties v,=\s’)T0 and v;=\3\,. Using the eigenvectors, the trans-
formation matrix U is given by

1k, —k
U= —( ! ) : (14)
k\k,  k,
By applying the transformation U, we finally obtain

So= | 2 =k - Louk) + X (= k) - LIx" (k)]

k a=R.I

Slsz [ 2 a‘(py) - Llua(P2)+Xa*(P1) : KIXH(Pz)]
i

a=R.l

X [305<2 p,-> + 8k 8py + Py = k)83 + pat k)]

x[ S @ps) - Lu(py) + X () Ez)(l(m)], (15)

a=R,l
with
J [+ o' 0
Lo= 2 2 ’
0 -3k + w/\g
_ (A(Phpz) = C(p1.p2) )
""\cp.p)  Bpnpy) )
where

A=c[3(p; - p2)* +1Ip1 X paf],
B=c[(p,-p2)*-1Ip1 X pal*],

C=c2(py-p)(p1 X p2) - 2],

c=(pp,)7", and % is the unit vector perpendicular to the xy
plane. Here, the p; (i=x,y) represent 2D wave vectors that
span the square {|p,|,|p,| <A} in the Fourier space, for which
we have adopted the standard convention by defining

RN

Two coupling constants gg=D,/ )\S and g,=D,/ )\% appear
in S,, for which we carry out an RG analysis in the limit
w?/ No— 0 in order to derive, to one loop, the S functions
that describe their behavior in the coupling space. Note that
for those terms of §; with symmetric products of the fields
under an exchange of momenta, the corresponding coeffi-
cients will also retain the symmetric part. For example, the
coefficient of gyitt(p,)ul(p,)itt(p3)uf(p,) is written as a sum
of the symmetric and antisymmetric parts,

1
A(p1,p2)A(p3.py) = E[A(P1»P2)A(P3’P4) +A(p1,p2)A(P3.p))]

1
+ E[A(P 1:P2)A(P3.p4)

- A(p1.p)A(p3.p2)], (16)
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so that the antisymmetric part is canceled by integrating over
the momenta.

IV. RENORMALIZATION GROUP ANALYSIS

To study whether the elastic waves are localized or delo-
calized in the 2D heterogeneous media of the type that we
consider, we apply the RG method to the effective action,
Eq. (15). To do so, we follow the momentum shell RG**-3
and sum over the short-wavelength degrees of freedom.
More specifically, we denote all the fields in action (15) by
®(k). To facilitate the analysis, we change the domain of the
integration from the square to a circle of radius A. Since the
small k modes are supposed to control the critical behavior
of the system in the vicinity of localization-delocalization
transition, the change does not make any qualitative differ-
ence to the results. Hereafter, we refer to the small kK modes
as the slow modes, and the rest as the fast modes. We then
define two sets of variables,

O_=d(k) for 0 <k < A/l, slow modes,

O =P(k) for A/l < k=< A, fast modes,

where /> 1 is the rescaling parameter of the RG transforma-
tion. Then, the action is expressed in terms of ®_ and - as

S(Po, D) =Sy(Po) + Sp(P~) + 5P, D).

Sy is a quadratic function of its arguments that can be
separated into slow and fast terms, but S; mixes the two
modes. Then, the partition function Z is separated and writ-
ten as follows:

/- j (D] f [DD_Jexpl[Sy(®-)]
Xexp[So(P-)lexp[S (P, D-)]

= J [DD_Jexp[Sy(P-)],

which defines the effective action S’'(d_) for the slow
modes:

eXP[S'(¢<)]=eXP[So(¢<)]f[DCD>]
Xexp[So(P=) Jexp[S) (P, P-)]

=exp[SO(q)<)]f[D(D>]CXP[SO(CI)>)]

f [DP- Jexp[So(P-)lexp[ S P, P-)]

X

J [DD-. Jexp[So(P-)]

= Zy~ exp[So(P o) Kexp[S{ P, D-) ]y,
(17)
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FE—w®/xo
-1 _
ET—w?ho

FIG. 1. Graphical representation of the fields and the Feynman
rules for the propagators.

where (-),~ denotes an average with respect to the fast
modes and Z- is the partition function of Sy(P~) which
adds a constant to the action, independent of ®_. The next
step is to calculate the average (exp[S;(®_,P-)])y~, which
we treat perturbatively for weak disorder using the relation

(exp(V) = exp| (V) + 5 (V)= (1?) + ] (18)

Therefore, according to Egs. (17) and (18), we have, up to
one-loop order

S/ (@) =(5) + 5 (S~ (5)7). (19)

Each term in the series contains some monomials in the
fast and slow modes. The former must be averaged with

Ri

>

(r1) R,I:4,2 (r2) R.I1:2,2 (rs) R,I:2,2 (ra) R.I:2,2
(rs) R,1:2,2 (re) B.I:2,2 (r7) R,I:2,2 (re) R.I:2,2

i

(ro) R:2

FIG. 2. Feynman diagrams for renormalization of the kinetic
term —iit (=k)k’u (k) of Sy. They appear in the cumulant expansion
to the lowest order. External legs are the slow modes while the
internal fields are the fast modes, and the integration is done over
the fast modes. Those fields that consist of loops can be real or
imaginary and are denoted by R and I, respectively. The number of
choices for the construction of each diagram is also shown. The
diagrams with long-range interactions (zigzag lines) are divergent
due to the zero momentum carried by the zigzag lines, but such
diagrams are canceled by the corresponding diagrams with Grass-
manian loops (thick lines). In fact, only r; and ry contribute.
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respect to So(®-.). The first term in Eq. (19) yields tree-level
terms, as well as the corrections to the kinetic term of S,. We
introduce a graphical representation of the terms which is
shown in the Fig. 1. The Feynman diagrams that contribute
to the kinetic term of the propagator ﬁlfulf are shown in the
Fig. 2. According to Fig. 2, apart from a naive dimensional
rescaling, one should rescale the fields by a factor F in the
following way in order to keep the coefficient of the kinetic
term to be the same as in the original action:

—, (20)

with
F=1-18m(A%gy+ A7"7g ) ol + O(g5.87-808,). (21)

where dl=[-1.

We now derive the RG equations for the disorder
strengths by renormalization of the coupling of the vertex
i (p)ul(p,) it (p3)uf(p4). The Feynman diagrams that con-
tribute to the renormalized coupling in one-loop order of the
perturbation expansion, and the corresponding symmetry
factors, are shown in the Fig. 3. Note that the couplings are
functions of the momenta and, therefore, we consider the
first term in the Taylor expansion and set the external mo-

AR XA KA A XX

000

DX XX XX
1 s

OO
O D
O D e

dig: 1 dia 1
FIG. 3. Feynman diagrams for the renormalization of

ﬁf(pl)uf(pz)ﬁf(m)uf(pﬁ in the action. The diagrams with loops of
imaginary fields are indicated with /. The number of choices for
constructing each diagram is also given.
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menta to be parallel. The expressions for all the Feynman
diagrams are listed in the Appendix. It can be seen by dimen-
sional analysis that the canonical dimensions of the cou-
plings in units of length are

[g0] =2, (22)

[g,]=2-2p. (23)

The following rules should be considered in expressing the
Feynman diagrams of the vertex function shown in Fig. 3.

(i) The diagrams that are made by different vertices have
an extra factor of 2 due to the quadratic term of the cumulant
expansion.

(ii) All the diagrams have a factor of 1/2! due to the
cumulant expansion.

(iii) An extra (=1) factor should be included for the dia-
grams with Grassmanian loop. Given the above rules, we
obtain the following renormalized couplings:

937 716
goPA"% = ‘2<g0A2 + Kﬂ'gol\4 Sl + —77Tg2A 4o+ 51
3635
+ 5—4 WgogpA_2p+451> , (24)

g;l_2p+2Al_2p+2 — F—2<gpA—2p+2 + 367Tg0gpA_2"+4 Sl

1948 ,
+— A—4P+451> 25
7 8 (25)
where A’=A/I. Using Eq. (21) and writing the equations in
differential forms, we obtain the following expressions for
the B functions that describe the couplings:

5 93, ( 937) = 716
= —=-2g,+(36+
A& =517 18 )8 2%
3635\ _ _
+(36+ 5—4 808> (26)
g 1948
BE,) = ELZ (2p-2)g,+ 72808, + (36 + 7)89,
(27)
where g, and g, are dimensionless parameters defined by
Zo=mgoA%, (28)
g,=mg, A7 (29)

The B functions that we have derived, Egs. (26) and (27),
describe how the two couplings—g, and g,—behave if we
rescale all the lengths and consider the elastic medium at
coarser scales. If, for example, a small g, diverges under the
RG rescaling, its implication is that a small g, at small length
scales behaves as very strong disorder at much larger scales.
Therefore, under such condition, every wave amplitude will
be localized. If, on the other hand, for some g,<g,. (where g,
is a critical value of g,) g, vanishes under the RG rescaling,

PHYSICAL REVIEW B 77, 014203 (2008)

8o 8

g() 8o

8p 8

FIG. 4. (Color online) Renormalization group flows for (a) p
<0.14, (b) 0.14<p<0.18, (c) 0.18<p<1, and (d) p>1.

it implies that, in this regime, g, does not contribute much to
the behavior of the propagating waves at large length scales.
Therefore, one way of defining a localized state may be as
follows: The waves are localized if, under the RG rescaling,
at least either g, or g, diverges.

We must also point out that one may begin the RG res-
caling and analysis with the assumption that the couplings g,
and g, are small. If, under the RG rescaling, we find stable
fixed points (FPs), it would imply that the assumption of the
couplings being small about such FPs is still valid. However,
around an unstable FP, the couplings can grow and, hence,
the perturbation expansion that we have developed would
fail. For our main purpose, however, namely, determining the
localized and/or extended regimes and the transition between
them, the most important goal is to determine the condi-
tion(s) under which the FPs are unstable, around which the
couplings can diverge.

The FPs of the model are the roots of B functions. The
RG equations, together with the parameter p, have a complex
phase space. Depending on p, there are four regimes.

(i) For p<(-17 557527
+128119 977 620 601)/3 888 601 =0.14, there are two FPs:
the trivial Gauss1an FP {g0 g =0} Wthh is stable and a
nontrivial FP {g0—36/1585 0022 gp 0} which has one
positive eigenvalue (along the eigendirection of which is un-
stable) and one negative one (along the eigendirection direc-
tion of which is stable); see Fig. 4(a). Physically, this implies
that the diagram is divided into two parts. In one part, the
Gaussian FP is relevant and the disorder does not have any
effect, so that all the states are delocalized. In the second
part, the values of couplings increase under rescaling, so that
the disorder (both random and correlated) is relevant and,
therefore, the elastic waves are localized. Thus, the line
(more precisely, the curve) that separates the two parts is
where the localization-delocalization transition takes place.
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(ii) Four FPs exist if 0.14<p<289/1585=0.18. The
Gaussian FP is stable. The other FPs are unstable in one
elgendlrectlon but stable in the other eigendirection, except
{g,=0.022,g,=0}, which has positive eigenvalues and,
hence, is unstable in all directions. This is shown in Fig.
4(b).

(iii) There are three FPs for 0.18< p< 1. The Gaussian FP
is again stable. The FP {gO—O 022, 8= 0} is unstable in all
directions. The third FP is unstable in one eigendirection but
unstable in the second eigendirection. Figure 4(c) presents
this part of the RG flow diagram.

In both (ii) and (iii), as p increases, the system tries to
move away from case (i) (the delocalized-localized transi-
tion) to a purely localized state (see also below). Moreover,
in (i)-(iii), there is a point on the g, axis which obviously is
not a FP, but the RG flows change their direction on the g,
axis at that point. This means that one of the £ functions is
zero on this axis, while the other one is not.

(iv) For p>1, there are two FPs. As Fig. 4(d) indicates,
the Gaussian FP is stable on the g © 8o axis but unstable on the
gp axis, and the nontrivial FP {g,=0.022 g =0} is unstable
in all directions. The implication is that Whlle the power-law
correlated disorder is relevant, no new FP exists to one-loop
order and, therefore, the long-wavelength behavior of the
system is determined by the long-range component of the
disorder. This means that for p>1, the elastic waves are
localized in two dimensions.

Let us note that the extension of the present RG analysis
to three-dimensional (3D) systems is difficult but doable.
The reason for the difficulty is twofold. (i) It is difficult to
determine the transformation matrix U [see Eq. (14)] for a
3D system, as its forms become very complex in three di-
mensions. Knowledge of U is necessary for diagonalizing the
relevant matrices. (ii) As the Appendix indicates, the number
of contribution Feynman diagrams is large in two dimen-
sions. The number of such diagrams is much larger in three
dimensions.

V. COMPARISON WITH ACOUSTIC WAVE PROPAGATION

Since scalar equations have often been invoked for de-
scribing propagation of elastic waves, it is of interest to com-
pare the above results with those that we derived
previously?>2° for the scalar model of (acoustic) wave propa-
gation in heterogeneous media with precisely the same type
of disorder as what we consider in the present paper. The
governing equation for such waves is given by

&
ma—;‘ V- [AX) Vu)]. (30)

The analysis was carried out>2° for a d-dimensional system,
but we summarize its results for 2D media. The RG analysis
indicated that, depending on p, there can be two distinct
regimes (unlike the four regimes described above).

(i) For 0<p<, there are three sets of FPs. One set rep-
resents the Gau551an FP {g0 g: 0}, which is stable. The
other two are {g0 =1/4,g,=0} and”
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*

4
8o =~ 21{ +_(2P d)}

_2 2 == (2 22
+51 Vet (p a’)+256(p )%,

% 3

8,=78

|
J80+ 7c(d=2p), (31)

which, for d=2, reduces to

*

4
8o ="~ 21[2"‘ (P—l)}

z 55
{2+ =(p- )J +6—4(p—1)2,

21

3« 1
8= 780+ 5(1-p). (32)
which is stable in one eigendirection but unstable in the other
eigendirection. Therefore, for 0<p<1, the one-loop RG
analysis indicated that a medium with uncorrelated disorder
is unstable against long-range correlated disorder toward a
new FP in the space of the coupling constants. Hence, there
is a phase transition from delocalized to localized acoustic
waves with increasing the disorder intensity.

Thus, the physical implication of the RG results for
acoustic wave propagation described by Eq. (30) is as fol-
lows. In the interval 0 <p<1, there is a region in the space
of the coupling constants {g,g,} in which the RG flows take
any initial point to the Gaussian FP. This implies that, for
0<p<1, adisordered medium of the type considered in this
paper and our previous work?>?¢ looks like a pure (ordered
or homogeneous) medium at large length scales, implying
that acoustic waves are extended or delocalized.

However, when g, or g, are large enough that the initial
point is out of the basin of attraction of the Gaussian FP, the
RG flows move such points toward large values, hence im-
plying that, under the RG rescaling, the probability density
function of the disorder becomes broader and broader at in-
creasingly larger length scales. Therefore, in this case, a
propagating acoustic wave samples a medium with very
large spatial fluctuations in the elastic stiffness or moduli. We
also found that, 252 even if one starts in a disordered medium
with purely long-range correlations (i.e., one with g,=0), the
RG equations indicate that the growth of g, will lead to
increasing, i.e., nonzero, g, hence implying that uncorre-
lated disorder will be produced by the rescaling. Since the
local fluctuations in the bulk moduli play the role of scatter-
ing points, the implication for acoustic waves is that the mul-
tiple scattering of a propagating wave from the uncorrelated
disorder will destroy the wave’s coherence, leading eventu-
ally to the localization of acoustic waves.

(i) For p> 1, there are two FPs: the Gaussian FP which is
sta}*ble on thf 8o axis but not on the g, axis and a second FP
{go=1/4,g,=0} which is unstable in all directions. The im-
plication for acoustic waves is that, although power-law cor-
related disorder is relevant, no new FP exists to one-loop
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order and, therefore, the system’s long-wavelength behavior
is determined by the long-range component of the disorder.
This implies that for p> 1, the acoustic waves are localized
(in fact, in this case they are localized for any d), which are
similar to the elastic waves studied in the present paper. In
addition, in both cases, the system undergoes a disorder-
induced transition when only the uncorrelated disorder is
present.

Let us note that we argued in our previous papers>-2° that,
in the case of acoustic waves, although, similar to the elastic
waves considered in the present paper, the RG calculations
were carried out to one-loop order, the analysis should still
be valid for higher orders of the perturbation as well. The
argument was based on the fact that the signs of the higher-
order terms are all positive. That this is so is due to the
following. We must keep in mind that the contraction coef-
ficients for auxiliary fields are always greater than those of
auxiliary and Grassmanian fields that supply the negative
terms. Moreover, the numbers of diagrams of, e.g., a real
auxiliary field and an imaginary auxiliary field are equal to
number of diagrams of an auxiliary and Grassmanian field.
This implies immediately that the signs of higher-order terms
should also be positive. We, therefore, concluded that?520 the
one-loop results for the acoustic waves should be valid to all
orders. However, we now believe that this is only a neces-
sary but not sufficient condition. In the case of elastic waves,
though, we cannot even determine a priori the signs of the
higher-order terms.

Thus, comparison of propagation of elastic and acoustic
waves in the type of heterogeneous media that we consider
in this paper indicates that, while the RG flow diagrams for
the elastic waves are more complex than those of the acous-
tic waves, the region of the coupling constants space in
which they are delocalized is narrower than that of the
acoustic waves.

VI. SUMMARY

We developed a field-theoretic description of propagation
and localization of elastic waves in 2D heterogeneous solids
using a RG approach. Two types of heterogeneities, random
disorder and one with long-range correlations with a power-
law correlation function, were considered. We found that in

w2
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the presence of power-law correlated disorder with the expo-
nent p>1 (nondecaying correlations), the RG flows are to-
ward the strong coupling regime, and the waves are local-
ized. For p<1, and depending on its value, there are other
fixed points. One, which is stable, is the Gaussian FP with a
small domain of attraction. In this domain, long-range corre-
lated disorder, as well as the random disorder, is irrelevant
and, therefore, the waves are delocalized. In this regard, the
delocalized states in the Gaussian domain are unlike elec-
trons in 2D systems which remain localized for any disorder.

Whether the delocalized states predicted for the Gaussian
domain persist, if we analyze the RG flows beyond the one-
loop approximation, remains to be seen. It may be that the
domain of attraction of the Gaussian FP shrinks (and might
disappear completely) if we consider the contributions of the
higher-order loops. However, analytical determination of the
contribution of even the second-order loops for this problem
is very difficult.

As we mentioned in the Introduction, a challenging fea-
ture of the localization problem is obtaining an analytical
estimate of the localization length exponent. In this regard,
the previous analytical approaches are in contradiction with
the numerical results. We hope that the method developed in
this paper can provide a precise way of describing the critical
properties of the localization-delocalization transition and its
critical exponents in higher dimensions.

We are currently carrying out extensive numerical simu-
lations in order to further check the accuracy of the predic-
tions of the dynamical RG method developed in this paper.
The results will be reported in the near future.
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APPENDIX: INTEGRALS FOR THE FEYNMAN
DIAGRAMS

In this appendix, we list all the expressions for the Feyn-
man diagrams shown in Fig. 2 as follows:

2
a = f ﬁi[A(pl,pz)A(— q.q9) + A(q.p2)A(p1,— @) [A(p3.p)A(g,— q) + A(q.ps)A(p3.— q)]

TN

1
4

2
) (O]

p1p2p3p4J qdq f do[9 + (3 cos® B+ sin” 0)*]* =

15237
16

P1P2P3P4 J qdq,

d2q
a,= f W%fl(lﬂz,m)/&(c],—q)][A(m,pg)A(q,—q)]=324p1pzp3p4 f qdq J d6=6487p prp3ps j qdq,

e
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w
3q2__

d 1 1

ay=- f ( o o A 2P)CP2. ) NA P4 ) C(= 4.p3)1= Zp1papaps f qdq f d6(3 cos® 6+ sin’ 6)* sin(26)
2

“lle-t)

"

177
=", PP2psPa qdq,

2
a,= j (d—qwz>24[A(pz,p1)B(— 4.9) — C(p2.9)C(= q.p ) [A(p4.p3)B(= q.9) + C(p4.q)C(= q.p3)]

3 2_
q No

4

= gPIPaP3Ps f qdq f do[3 +sin*(20) 1 = 117p p,psps J qdq,

d2q
as= f 74[/4(172,171)3(— 4.9 [A(p4,p3)B(q,— ¢)]1 = 4p1pap3py f qdq f d6=8mp pypsps f qdq,
3¢* - —)
( TN

2 o’
P

d’q 1
aq = f (—%Z[A(q,poA(— 4.05) + A= 4.pDAG.PITA P2~ DAPag) + Alps= DA(P2.9)]
)\0)

=Pp1PaP3Ps f qdq f d6(3 cos® 0+ sin® 0)* = 9mp popspy f qdq,

d*q 4 87
a;=- f o2 2 4[A(q.p))C(- q,pa)][A(pz,—q)C(p4,q)]=§p1p2p3p4 f qdq J d0=?p1pzp3p4 f qdq,
2
( TN\ T,
d*q 1
ag= J 5 7 Z[C(q,pl)C(— 4.p3) + C(= q,p1)C(q.p3) L C(p2,— ) C(p4.q) + C(ps,— ) C(p2.q)]
o2
No No
1 .4 T
= gP1PP3Ps qdq | dfsin (29)=EP1P2P3P4 qdq,
dzq
ag=a;p=-— f 74&3(192,171)%\(61,—q)][A(p4,p3)A(q,— q)]=-324p \pspsps f qdq f dO=—648mp pyp3ps J qdq,
2_
(q xo)
dzq

2
w
3q2__

ap=dap=-— (
Ao

)24[A(pz,p1)B(q,— D A(Pp4,p3)B(q,— 9)]1 == 4p1papsps f qdq f df=~8mp prp3ps J qdq,

F-=

dq 1 1
by = J (—z)zzi[A(Pz’_ DAPLDAP4P3)AG.~9) + Alq.p3)APs~ @)1= Sp1Papapa J q g f dd[9 + (3 cos® 0
9

551
+sin® 0)*](3 cos? 8+ sin” )% = g PP f g g,
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2
br=bs= (o] "i2>zf;[A<p2,q)A<p4,—q)+A<p4,q>A(pz,—q)][A(pl,q>A<p3,—q)+A<p1,—q>A<p3,q>]
2

"

= P1P2P3Ps f q"'dq f df(3 cos® 6+ sin® 0)° = 9mp popspy f q""'dg,

d* 1
by= f = g 3\ 2L C@P)C(=q.p3) + C(= 4.p1)Cg.p)LC (P2~ 9)C(p4,q) + Cpa= 9)C(p2,q)]
2D

Ao Ao

— . o _
= gP1P2P3P4 f g"dg f d0sin*(26) = -p1pap3pa f q*dg,

d*q 2 .
bs=~ f . 3\ [APa- 9 Cla.p)][A(g.p) C(P2= @)1= SP1p2p3ps f q g f dfsin*(26)(3 cos” 0
(q YYACEW

. 177 B
+sin® 6)? = ¢ PPap3ps j g *"*dq,

d’q 2 .
b6=_f ( ) ) Z[A(%P3)C(P4,—Q)J[A(Pz,—Q)C(C]’Ih)]:§P1P2P3P4fq_2p+ldqfd9 sin*(26)(3 cos® @
=

) 17 _
+sin? 0)’ = g PIP2PiPs f q g,

d? 4
by=- f ( 2 . o AAG.p)C= q.p)][AP2.~ 9)Cpag)] = P23 J q"dgq f dfsin*(26)(3 cos® 0
mEeEs

. 177 _
+sin? 0)2=—3 P1PaP3Ps f g g,

& 4
by = f < g - )4[A(p4,p3)B(q,—q)—C(q,ps)C(p4,—q)][C(pz,—q)C(q,pl)]=5171192173174 f g *dq f dos

2 2
3q2_£>(3q2__
Ao Ao

. . 157 ~
+5in*(20)sin*(260) = == p1papsps f q*r*dq,

2 o’
F-=

2
= f #[A(q,pl)A(pz,—q)][A(pa,— 2)A(q.p4)]= P1P2p3P4 J g **ldg f do(3 cos® 0+ sin” )"
)

2277 g
=", P | 4 dq,

2 »’
F-=

d*q .
= f 7 3lA@.P)A(=4.p3) [[A(p2.— 9)A(p4.9)] = Prpap3ps f q**ldg f d6(3 cos® 0+ sin” )"
(-3

_22777 —apl g
=" 4 P1P2P3P4 | 4 q,
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3q2 -

d*q 4 B . T _
3= J T 22 C@P)C2= )N Cpa= ) Clg.p3)]= Spipapaps f g **dgq f de 81n4(20)=§p1p2p3p4 f q~**'dg,
( "x0>

d? 4
4= f 2 4 o (C DAL Cp2. = DN[APa~ 9)Clq.p3)] = prpapspay f g *"*'dg f d6(3 cos® 0
(22 )~ 5)

0

177
+sin? 0)% sin*(26) = = PP J q*"dq,

d’q 4
Cs :j 0 ) (= D[A(q.p))C(= q.p) [A(P2,— 9)C(ps,q) ] = §P1P2P3P4J q““"”dqfdG(S cos? 0
EEder
\o o
17
+sin” 6)” sin*(26) = Twmpzpw f g **ldg,
d2q 1 i .
6= f o7 2 [C(g.p)C(= q,p3)][C(pz,—q)C(p4,q)]=gplpzpzm f g **dg f d6sin*(26)
e 2D
\o o

w _
= P 1PP3Ps f q*"dg,

2 o’
;o=

2
dy= f %%[A(p%pl)A(_ 4.9) + A= 4.0)A(P2, ) [A(ps.p3)A(g,— q)] = gplpzpsm f qdq J dd[9 + (3 cos’ 6
9

_ 2437
+sin® 6)?]= 5 PiPPapa f qdq,

d2q
dy= f 74[A(p2,p1)A(— 7.9)[A(p4.p3)A(q,— )1 = 324p popsp, J qdq J d6=3247p popsps f qdq,
2 =
(q xo)
d3 = d4 = 0,
d2q
ds=dg= 74[14@2,191)3(%— DIAP3.p)A(q.— @) = 4p1papsps | qdg | dO=8mp\papsps | qdg.
3¢ - —)
( W
dzq
dy=dg=~ 74[/4(192,171)3(61,— D A(P4.p3)A(=q.9)]==324p papsps | qdq | dO=—6487p popsps | qdq,
3¢° - —)
( 77\
d9 = le = O,

2 w’
P

2
ey = f ﬁ[A(q,pl)A(pz,—q)][A(m,ps)A(q,—q)]=9p1pzp3p4 f g **dg f dO(3 cos 0+ sin” 6)°
9

=817ppapsps f g g,
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e2:€3=0,
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= ﬁ(— P )Cpnm A pupIBlg 1= spipopops [ a*da [ o0

3 2_
q o

4ar

=3 PiPapaps f g *"*ldg.
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