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Roughness of undoped graphene and its short-range induced gauge field
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We present both numerical and analytical studies of graphene roughness with a crystal structure including
500 X 500 atoms. The roughness can effectively result in a random gauge field and has important consequences
for its electronic structure. Our results show that its height fluctuations in small scales have a scaling behavior
with a temperature dependent roughness exponent in the interval of 0.6 <y <0.7. The correlation function of
height fluctuations depends on temperature with a characteristic length scale of =90 A (at room temperature).
We show that the correlation function of the induced gauge field has a short-range nature with a correlation
length of about =2-3 A. We also treat the problem analytically by using the Martin-Siggia-Rose method. The
renormalization group flows did not yield any delocalized-localized transition arising from the graphene rough-
ness. Our results are in good agreement with recent experimental observations.
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I. INTRODUCTION

An isolated two dimensional (2D) sheet of carbon atoms
having a simple honeycomb structure is known as graphene.'
According to the recent detailed measurements, these 2D
zero-gap semiconductors reveal new features in their elec-
tronic properties. In particular, the low-energy quasiparticles
of the system can formally be described by the massless
Dirac-like fermions.> Doped graphene sheets are pseudoch-
iral 2D Fermi liquids with abnormal effective electron-
electron interaction physics.? From the experimental point of
view, the melting temperature of thin films decreases with
decreasing thickness and becomes unstable when their thick-
ness reduces to a few atomic layers.* This observation sup-
ports the theoretical prediction that states that no strictly 2D
crystal can be thermodynamically stable at finite
temperatures.” Consequently, the expectation of not observ-
ing a free 2D material in nature lived on until Meyer et al.
discovered graphene.® Furthermore, because of the existing
coupling between bending and stretching energy modes in
any 2D material, one expects to observe a measurable undu-
lation or at least a very small roughness on the graphene
sheet and will reduce electronic transport in graphene and
affect its thermal conductivity.>¢

In this paper, we are interested in determining the tem-
perature dependence of graphene roughness. Here, roughness
is defined as the variance of the height fluctuations in
graphene due to temperature. Our numerical treatments sug-
gest that its height fluctuations have a scaling behavior in
small scale with a temperature dependent roughness
exponent.” We also determine the temperature dependence of
the amplitudes of the height structure function. We show that
the induced random gauge field has a short-range correlation
function with correlation length =2-3 A. Finally, we formu-
late a field theoretical method to investigate the electron dy-
namics of the undoped graphene in such a random gauge
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field and show that there is no disorder-induced transition
from delocalized to localized states.” This important result is
in good agreement with the experimental observation that
due to the graphene roughness, localization is suppressed.®

The rest of this paper is organized as follows. In Sec. II,
we introduce an effective interaction between carbon atoms
that enters the molecular dynamics simulation to model the
roughness of graphene. Section III contains our numerical
calculations of the graphene simulation. In Sec. IV, we derive
the effective Martin-Siggia-Rose action for Dirac fermion in
graphene with roughness and derive the 8 function of the
theory analytically. We finally conclude in Sec. V with a
brief summary.

II. ROUGHNESS EXPONENT

To study and arrive at a quantitative information of a
graphene surface, one may consider a surface with size L and
define the mean height of the surface, (L, \), and its rough-
ness, w(L,t,\), by the expressions such as h(L,\)
=%ff/Lz,2h(x,)\)dx and w(L,t,\)=(<(h—h)>>)1"? respec-
tively. The symbol (---) denotes an ensemble averaging.
Here, \ is an external factor which could be the temperature
in this problem® and  is the time. In the limit of large ¢, the
roughness saturates and behaves as w(L,\)~LXM. The
roughness exponent y characterizes the self-affine geometry
of the surface. The common procedure for measuring the
roughness exponents of a rough surface is to use a surface
structure function S(r)= <|h(x+7r)—h(x)|>>, which depends
on the length scale Ax=r. The surface structure function is
equivalent to the statistics of height-height correlation func-
tion C(r) and are related by S(r)=2w?[1-C(r)] for station-
ary surfaces. The second order structure function S(r) scales
with 7 as %2, where y=§&,/2.1011
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FIG. 1. (Color online) Snapshot of the graphene surface at
300 K (upper graph). The sample contains a lattice size of 500
X500 atoms. In the lower graph, we have plotted the induced mag-
netic field due to the roughness of the graphene surface.

The atomic structure of graphene will force us to define
two scaling exponents in the x-(zigzag) and y (armchair)
directions. The exponents can be found via the second order
structure functions  S,(r,)= <|h(x+r,,y)—h(x,y)[*> and
S,(r))=<|h(x,y+r)—h(x,y)|*>. The different scaling ex-
ponents in the zigzag and armchair directions show the an-
isotropic nature of the roughness in graphene. We have used
the empirical interatomic interaction potential, i.e., carbon-
carbon interaction in graphite,'> which has in addition three-
body interaction for molecular dynamics simulation of
graphene sheet to investigate its morphology and its depen-
dence of roughness exponents on temperature. The two-body
potential gives a description of the formation of a chemical
bond between two atoms. Moreover, the three-body potential
favors structures in which the angle between two bonds is
made by the same atom. Many-body effects of the electron
system, on average, are considered in the Brenner potential
through the bond order and, furthermore, the potential de-
pends on the local environment.

It is well known that the harmonic approximation result-
ing in bending instabilities due to soft wavelength phonons
leads to the crumpling of a membrane. It is important to note
that the Brenner potential has anharmonic coupling between
bending and stretching modes which prevents crumpling. We
have considered a graphene sheet including a size of 500
X500 atoms with periodic boundary condition. Considering
the canonical ensemble (NVT), we have employed a Nosé-
Hoover thermostat to control the temperature. Our simula-
tion time step is 1 fs in all cases and the thermostat’s param-
eter is 5 fs. Therefore, we have found a stable 2D graphene
sheet in our simulation.

III. NUMERICAL RESULTS

In the top graph of Fig. 1, we have shown a snapshot of
the graphene fluctuations at a temperature of 300 K. More-
over, the magnetic field induced by the roughness is shown
in the bottom graph to emphasize the randomness of the
surface structure. The order of height fluctuations is about
~5 A, which is in good agreement with the experimental
observation.® In Fig. 2, we have plotted (in log-log scales)
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FIG. 2. (Color online) Log-log plot of the second moment of
height difference as a function of r, in the y (armchair) direction,
which shows that for samples with temperatures of 10, 30, 100, and
300 K, the height fluctuations have a scaling behavior in small
scales. It indicates that the roughness exponent (the slope of the
plots) decreases with temperature and means that the surface will be
rough at high temperatures. A similar figure can be found for the
height-height structure function in the x (zigzag) direction.

the structure function in the armchair direction, namely,
Sy(ry), simulated at temperatures of 10, 30, 100, and 300 K.
Figure 2 shows that for some characteristic length scales, the
scaling behavior of the structure functions does not exist.
The typical characteristic length scales are approximately
90 A at room temperature, which is in good agreement with
experimental findings® that is in the range of 50—100 A.

In Fig. 3, the temperature dependence of the scaling ex-
ponents x ‘s in both zigzag and armchair directions are given.
As shown at low temperatures, the exponents for zigzag and
armchair directions are about 0.7 (see also Ref. 14). How-
ever, the exponent for the armchair direction is greater than
the one for the zigzag direction at large enough temperatures.
We have also used the bond order potential proposed by Los
et al."> and found good agreement between the results of the
two potentials.'® This is physically understandable since our
simulation has been performed for 7<<700 K and the two
potentials mainly differ at higher temperatures. Figure 3 (in-
set) also shows the amplitude of the second moments, C, and
C,, which are defined as Sx(rx)=erf2x and Sy(ry)=Cyr§2>‘ in
the scaling region, in terms of temperature.

To determine the characteristic length scales, we define
the quantity Q(r) as the difference between the joint prob-
ability distribution function (PDF) of height fluctuations at
two points. For instance, given the y and y+r points, the
Q(r) is calculated by P(h;,y;h,,y+r) and product of two
PDFs, P(h,,y) and P(hy,y+r)."3 Thus,
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FIG. 3. (Color online) The temperature dependence of the
roughness exponents shows that graphene is smoother in the arm-
chair direction as compared to the zigzag direction. For very
smooth surface, the exponent will be ~1.0. At high temperature
limit, the exponents approach a random noise exponent (i.e., 0.5).
The anisotropy of the graphene is due to the fact that the lattice
spacing in the armchair and zigzag directions are different. It shows
that (inset) the amplitudes of the second moments, C, and C,, are
increasing function of temperature.

o(r) = f dhidhy|P(hy,y;hay + 1) = P(hy,y)P(hy,y +1)|.

(1)

In Fig. 4, we have shown Q(r) as a function of r. This figure
clearly indicates that the height fluctuations at scales of 90
and 125 A for 7=300 K and 7=30 K, respectively, are al-
most independent. Obviously, the Q(r) becomes r indepen-
dent after these values of r (by considering its error bars).
Furthermore, we have found the same value for the correla-
tion length for graphene with fixed boundary condition. As a
consequence, this length scale is not an artifact of boundary
conditions.

IV. MARTIN-SIGGIA-ROSE EFFECTIVE ACTION

Roughness of graphene results in a random gauge field
and affects its electronic structure.'” The dependence of the
hopping integral I" on the deformation tensor is expressed by

ar . . L fu  ou
I=Do+ 7 -uy;, where u;; (Ref. 18) is given by u;;=315 +

dxj ~ ox;
o, ot ﬁx}' Here, x;=(x,y) are coordinates in the plane
and u,-jare the corresponding components of the displacement
vector. In the presence of roughness, an effective Dirac
Hamiltonian describes the electron_states near the K point,
H=v0{-ihV-£A), where vy=\3Tya/2fi and A is the
gauge field. The gauge field can be written in terms of the
hopping integral I' as szﬁ(FﬁI}—ZFl) and A,
(I'5—T,)." Labels 1, 2, and 3 refer to the nearest neigh-
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FIG. 4. (Color online) Scale dependence of Q(r) defined by Eq.
(1) as a function of r. It shows that the height fluctuations have
characteristic scales of 90 and 125 A for 7=300 K and T=30 K,
respectively.

bor atoms with vectors (—a/v3,0),(a/2y3,-a/2), and
(a/2\3,al2), respectively. In Fig. 5, we have plotted the
structure function of the gauge field A, namely, S,(r)
=([[A(x+1r)-A(x)]-£[*) versus the scale in the y direction.
The vectors r and X can be chosen in the x and y directions.
Therefore, we have four different types of structure func-
tions. As shown in Fig. 5, the gauge field and the related
magnetic field have small scale correlation with correlation
length I,=2-3 A. We have checked the other three structure
functions of the induced gauge field and their cross correla-
tion functions and find that they have a small scale correla-
tion and are almost statistically independent.

In what follows, we have developed a renormalization
group analysis to investigate the Dirac equation in random
gauge field and show that no delocalization-localization tran-
sition occurs for electrons in such a random gauge
potential 202!

The Lagrangian of Dirac fermions in (2+1) dimensions
and in the presence of gauge potential A, is given by L
=ifdt]dxpy"(d,~A, )¢, in which Y=o, y'=ic,, =
—io,, and o’s are the Pauli matrices and ’s satisfy the Clif-
ford algebra {y*, y"}=2g"". The wave functions #(x,t) and

(x,t) are 2D Dirac spinors and A 4 18 a static random gauge
field with a Gaussian distribution having a zero mean value.
The covariance is given by ((A;,(x)A;(x") }=2D5,;6(x-x"),
where i,j=1,2 and D, is the intensity of its spatial fluctua-
tions. This relation shows the spatially uncorrelated nature of
the gauge field.”?! We note that the Fermi velocity of elec-
trons in graphene is of the order of 10® m/s and the typical
velocity of the height fluctuations is of the order of 30 m/s.
Therefore, the random gauge potential will act as a quenched
random field on electrons. Focusing on a single mode with
energy €, we get the following expression for the Lagrang-
ian:
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FIG. 5. (Color online) Log-log plot of the second moment of the
induced gauge field (inset structure function of magnetic field) in
the y direction, for samples with temperatures of 30, 100, and

300 K. The correlation length is about 2—3 A. Similar figures can
be found for the other three gauge field structure functions.

L= f Ax(i7Y o, - iV A+ ey") . (2)

The expectation value of any operator O can be calculated
as follows:

J DYDYO exp(—iL)

(0)= 7 , 3)

in which the partition function Z is defined by

Z= f DYDYO exp{f A*xip(— Vo, + A, - ieyo)w} = det(
Ot A — i), @)

Introducing the Dirac bosons y and )y, one can reexpress
the above determinant as follows:

z'= f DxDx exp[— f dxxX(= A G+ VA - ifvp)x],
(5)
and, implicitly, we have

(0) = J DYDYDxDXO exp{ f d*xi(- Vo, + YA,

—iey) - f PXY(~ i/ G+ YA~ ify")x} . (6

Now, by integrating the above result over the Gaussian
variable A, whose probability density function is given by
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P exp(— ﬁ J dxA,%), (7)

0

one reaches the following result for the averaging of expec-
tation values over quenched random gauge:

«oy= f DyYDYDXDXO exp(=So= Sin)» (8)

where the free part of the effective action is

So= J ExPA I +ie)) i+ J Ixx(V o +ied)x, 9)

and the interaction part

=Dy | P U+ 0T+ )
(10)

where k=1,2. The B function of the coupling D, will deter-
mine its behavior under changing the scale. We found that in
one-loop order, the correction to the short-range roughness
intensity (D,) is proportional to k%; therefore, this correction
vanishes in the long-wavelength limit. One can see that the
same will happen at a higher order of perturbation, leading
us to the conclusion that the vanishing of the beta function in
all orders should be the consequence of the Ward identity
due the conservation of Dirac current, which leads to an
incompressible flow of electrons in the low-energy limit (e
~0).

This result shows that the resistance against the electron
flow due the interaction of Dirac fermions and roughness of
the graphene remains unchanged under the renormalization
group flow toward large scales, and this in turn excludes the
possibility of the localization of low-energy states (for more
details, see, for instance, Refs. 8 and 22-25).

V. SUMMARY

In conclusion, we find the temperature dependence of the
roughness exponents in different directions of a graphene
sheet by simulating the surface within molecular dynamics
approach. We have used the Brenner empirical interatomic
interactions for graphite which is a semiconductor. The point
we are making in this publication is the further detailed ex-
planations raised in Ref. 16 which roughness could affect.
We answer the question whether the roughness could lead to
localized electrons in graphene or not? The correlation func-
tion of height fluctuations shows that depending on the tem-
perature, there are characteristic length scales in the order of
~90 A at room temperature. We show that the induced
gauge field has a shortrange nature with correlation lengths
=2-3 A. More importantly, roughness essentially can affect
the electronic properties such as conductivity and modulation
of the hopping integrals.?® We treat the problem analytically
by using the Martin-Siggia-Rose method. The renormaliza-
tion group flows do not yield any delocalized-localized tran-
sition due to roughness. In the present work, the effect of
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Dirac-like electrons on roughness are not considered. It
would be of intrest to develop our work using the quantum
molecular dynamics simulation or ab initio Car-Parinnello
molecular dynamics for Dirac-like electrons to investigate
the dependence of Dirac-like electron on the graphene rough-
ness.
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