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Abstract. We study the metal–insulator transition of the one-dimensional
diagonal Anderson ternary model with long range correlated disorder. The
starting point of the model corresponds to a ternary alloy (i.e. with three
possible on-site energies), and shows a metal–insulator transition when the
random distribution of site energies is assumed to have a power spectrum
S(k) ∝ 1/k(2α−1). In this paper, we define a purity parameter for the ternary alloy
which adjusts the occupancy probability of site potentials, and for any given α
we calculate the critical purity parameter for which extended states are obtained.
In this way, we show that the ternary alloy requires weaker correlations than the
binary alloy to present a phase transition from localized to extended states. A
phase diagram which separates the extended regime from the localized one for
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the ternary alloy is presented, obtained as the critical purity parameter in terms
of the corresponding correlation exponent.

Keywords: Anderson model (theory), disordered systems (theory)
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1. Introduction

It was believed for about forty years [1] that all electron states in one-dimensional (1D)
disordered systems are exponentially localized for any amount of uncorrelated diagonal
disorder. Recently, the interest in 1D disordered models with correlated disorder has been
growing, as it has become progressively clearer that correlations of the random potential
can deeply affect the electronic localization properties. Spatial correlations of disorder can
unexpectedly create extended states at some particular energies. In a system with short
range correlation of the on-site disordered energies, e.g. in the random dimer model [2],
one can have a discrete number of extended states. This demonstration attracted a great
deal of attention to investigating the existence of a metal–insulator transition (MIT) in 1D
disordered systems. Experimental evidence of the delocalization effect produced by these
short range correlations in semiconductor superlattices was recently found [3]. Special
attention has been recently paid to the presence of a continuum of extended states and
mobility edges in the long range correlated disordered model. In [4] de Moura and Lyra
considered the discrete Anderson model in which the diagonal energies of the Hamiltonian
are generated by considering the potential as the trace of a fractional Brownian motion
and imposing a normalization condition that kept fixed the variance of potentials for
all system sizes (see also [5]). They showed how long range correlated sequences of site
energies could result in a continuum of extended states (although these results caused some
controversy [6]). Long range correlations also affect the level statistics of the system, which
can also experience a transition from Poissonian to non-Poissonian phase [7]. Recent works
study the delocalization effects produced when long range correlations are introduced in
the hopping terms of the Hamiltonian [8].

Several stochastic processes in Nature are known to generate long range correlated
random sequences which have no characteristic scale, for example, in the nucleotide
sequence of DNA molecules [9]. The relevance of the underlying long range correlations
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for the electronic transport in DNA was first introduced in [10], and later works confirm
this result [11, 12]. To understand the effect of long range correlations of the disorder
on a phase transition, Izrailev et al [13] perturbatively derived an analytical relationship
between localization length and potential pair correlators. They showed how specific
long range disorder correlations lead to the appearance of mobility edges in 1D discrete
models. An experimental confirmation of these findings was obtained by studying the
transmission of microwaves in a single-mode waveguide with a random array of correlated
scatterers [14]. In addition, there have been several theoretical and numerical studies of
these problems in various systems [15]–[20].

The works on correlated disorder referred to above have been carried out for
continuous and binary disordered systems, i.e., systems in which the site energies can take
any value or only two different values respectively. In the present paper, we introduce and
study the one-dimensional Anderson model with long range correlated disorder chosen
as a ternary model. The starting point of the model is a ternary alloy, i.e. a model in
which, with some probability, the on-site energies can have only three different values.
If the sequence of on-site energies is generated totally at random the system is naturally
an insulator. Nevertheless, we create long range correlated ternary models by generating
a correlated sequence of on-site energies continuously distributed, which is mapped into
three different values with some probability which is adjusted via the purity parameter.

We show below how the purity parameter can change the localization properties of
the system, and show also that for a fixed system size and for a certain value of the
correlations, there exists a critical value of the purity parameter for which a transition
from localized to extended states is observed. By performing finite-size scaling, we obtain
the asymptotic value of the purity parameter in the thermodynamic limit for any value of
the long range correlations imposed in the system. With these data, we present below a
phase diagram separating the localized phase from the extended one given as a function
of the relevant magnitudes: the purity parameter and the correlation exponent of the
system. This is the fundamental result of this paper.

2. Model and method

We consider non-interacting electrons in 1D disordered systems within a nearest-neighbor
tight-binding formalism. The Schrödinger equation projected on site i becomes

εiψi + ti,i+1ψi+1 + ti−1,iψi−1 = Eψi, (1)

where E is the energy of the incoming electron. The norm |ψi|
2 is the probability of finding

an electron at site i, εi is the potential at site i and ti−1,i = ti,i−1 is the hopping integral
from site i− 1 to site i. In this work, the disorder is applied to the site energies {εi} and
the hopping terms are taken to be unity (ti−1,i = 1), thus fixing the energy scale of the
disordered system. The site energies are extracted as the {εi} for the ternary alloy with
different probabilities. Without losing any generality, the ordered system is considered to
have zero on-site energy. A binary disorder is introduced on the site energies. Therefore,
three potential energies are possible at any site: εi = εA, εB or zero (see below for the
details of the model).
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The above equation (1) can be easily expressed by using the conventional transfer
matrix method as the following recursive matrix form:(

ψn+1

ψn

)
=

(
E − εn −1

1 0

) (
ψn

ψn−1

)
. (2)

The wavefunctions of the two ends can be related together by calculating a product of
matrices as PN,1 =

∏N
i=1 Pi,i−1. In this equation, N is the sample length and Pi,i−1 is the

transfer matrix which connects the wavefunctions of sites i and i − 1. According to the
component of this matrix, the Lyapunov exponent is defined in the following way:

γ = lim
N−→∞

1

N
〈ln ‖ PN,1 ‖〉. (3)

The Lyapunov exponent is a suitable variable for describing localization properties because
it is related to the exponential decreasing of the wavefunction. The localization length
corresponds to the inverse of the Lyapunov exponent (λ ∝ 1/γ).

We want to study the localization properties of a ternary model with long range
correlated disorder. Thus, we need first to generate long range correlated sequences of
site energies. A sequence of long range correlated potentials {εi} is produced by the
Fourier filtering method [21]. This method is based on a transformation of the Fourier
components {uk} of a random number sequence {ui} which is uncorrelated random
numbers with a Gaussian distribution. A sequence of {εk} is generated for a given α
using the formula εk = k−(2α−1)/2uk. Inverse Fourier transformation of the sequence {εk}
leads to the sequence of interest {εi}. The resulting sequence of potential energies are
spatially correlated with spectral density

S(k) ∝ k−(2α−1) (4)

and they follow a Gaussian distribution. The exponent α is called the correlation
exponent, and quantifies the degree of correlation imposed in the system. With the
definition in (4) α corresponds to the exponent provided by detrended fluctuation
analysis (DFA), which is one of the most widely used methods for quantifying long range
correlations [22]–[24]. Note that the case α = 0.5 corresponds to uncorrelated disorder
(white noise), while the case α > 0.5 indicates positive correlations. Several examples of
sequences of site energies for different values of the correlation exponent α are shown in
figure 1.

We would like to note that, once the sequences of site energies are generated using the
method referred to above, we normalize them so that the mean value 〈εi〉 is set to zero,
and the variance is set to unity. This choice is maintained in all the numerical calculations
in this paper.

2.1. The ternary model

The sequence of site energies of the ternary alloy is produced by applying a map on the
correlated sequences {εi} with Gaussian distribution generated with the Fourier filtering
method described above. By using a purity parameter (a), the Gaussian probability
distribution P (ε) of the correlated sequence is divided into three regions. Any value of
the correlated series which is in the interval −a ≤ εn ≤ a is mapped to zero. Furthermore,
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Figure 1. Three examples of series of site energies generated with the Fourier
filtering method for different values of the correlation exponent α and impurity
parameter a for the ternary model.
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Figure 2. Probability distribution of the correlated random sequence with a
correlation exponent α = 1.0. The purity parameter a determines how many
ordered sites are in the system.

Figure 3. Correlation function of on-site energies 〈εiεk〉 versus L = |k− i| for the
ternary model with exponent α = 1 and different impurity parameters a.

any value greater than a and less than −a is mapped into εA and εB, respectively. In
summary,

εn =

⎧⎪⎨
⎪⎩

εA, εn < −a,

0, −a ≤ εn ≤ a,

εB, εn > a.

(5)

Figure 2 shows the Gaussian distribution of the correlated potentials with exponent
α = 1.0. The purity parameter seen in figure 2 determines the concentration of the
ordered sites (see also figure 1). In the limit a −→ 0, the system tends to be completely
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Figure 4. Length distribution of sequences of sites with the same energy, which
shows that it has scaling behavior with exponent � −1.3, for on-site energies
with exponent α = 1.

disordered. In this case, we have a binary alloy chain with the same concentration for
both of the on-site energies. The occupation probabilities of the sites with potentials
εA and εB are the same, as PA = PB. We consider the site energies of A and B to be
εA = −εB = 0.5.

In figure 3 we have plotted the correlation function of on-site energies 〈εiεk〉 versus
L = |k − i| for the ternary model with exponent α = 1 and different impurity parameters
a. For white noise α = 0.5 we find that the on-site energy correlations are zero except for
the case i = k, which gives the variance of the on-site energies. Figure 4 shows the length
distribution of sequences of sites with the same energy, which shows that it has scaling
behavior with exponent � −1.3, for α = 1 and different impurity parameters.

In the following, we show that for the ternary case, for any value of the correlation
exponent α one can find some well defined a in the limit of N → ∞ for which the system
undergoes a transition from a localized to an extended phase. As we show below, we
find that for systems with many ordered sites (i.e., for large a), the transition from the
extended regime to the localized one requires weaker correlations (smaller α) than that
for the binary case (equivalent to a = 0).

3. Numerical results

Now, we study numerically the localization properties of the ternary model described
above. In the numerical calculations, the localization properties and the possibility of a
phase transition from localized to extended states in the band center are investigated. For
all of the calculations, the average of the Lyapunov exponent is obtained in the energy
region −ε ≤ E ≤ ε with finite and small ε (with ε = 0.1), from which the average
localization length is obtained as the inverse of the Lyapunov exponent.
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Figure 5. Localization length as a function of energy with α = 0.8 and
for different values of the purity parameter (a). The system size is fixed at
N = 3 × 104, and the variance of the series of site energies is fixed at unity. The
averaging is taken over 5000 realizations.

For a fixed system size N there are two parameters which control the localization
length of the system: the purity parameter a and the correlation exponent α. For a specific
correlation exponent α, the localization length increases when raising the purity parameter
a (see figure 5), because the system becomes more ordered. For a finite system size N , the
extended regime is produced by the set of values of a for which the localization length λ
has a value greater than the system size (λ ≥ N). Therefore, the phase transition at finite
N will occur at a critical value of the purity parameter (ac(N)) where the localization
length is equal to the system size.

Figure 5 shows the localization length λ around the band center as a function of
energy for the correlation exponent α = 0.8 for a system with N = 3 × 104 sites. As
shown in figure 5, the localization length increases with a, and for large a (see the case
a = 3.25), around the band center, the existence of mobility edges separating localized
states from extended ones can be appreciated. This means that there exists a continuum
spectrum of extended states around of the band center, at least for finite N . To determine
the critical value of purity parameter a for fixed N , we take averaged localization lengths
in the interval −0.1 ≤ E ≤ 0.1, e.g. λ(E), and compare with size N . For λ(E) > N the
system will be in a delocalized state.

For the special case of a = 0, it has been shown by [4, 13] that there exists a continuum
of extended states located around of the band center just for the range of correlation
exponents α ≥ 1.5. We show below that this result changes in the case of the ternary
model, for which the critical value of α at which the transition occurs is also controlled
by the purity parameter a.

Up to now, we have described the transition from localized to extended states for finite
N , and we have defined the transition operationally as the point where the localization

doi:10.1088/1742-5468/2007/09/P09014 8

http://dx.doi.org/10.1088/1742-5468/2007/09/P09014


J.S
tat.M

ech.
(2007)

P
09014

Metal–insulator transition in a ternary model with long range correlated disorder

Figure 6. Inverse of the critical purity parameter (ac) as a function of the system
size N for correlation exponents α = 0.7, 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5. The average
is obtained using 5000 realizations. The variance of the series of site energies is
fixed at unity.

length equals the system size (λ = N). However, the phase transition condition should be
generally defined as λ ∝ Nβ , where β = 1 and β < 1 correspond to extended and localized
states respectively, since in this way we guarantee that in the thermodynamic limit, the
localization length diverges with the system size. Therefore, we have to calculate also our
transition point given by ac(N) in the thermodynamic limit N → ∞ for any value of the
correlation exponent α, in order to prevent the delocalization effect shown in figure 5 from
being simply a finite-size effect.

For a certain correlation exponent α, a system with larger size N needs a higher
critical purity parameter ac for the occurrence of the transition. Thus, for any value of α
we calculate systematically the behavior of ac(N) for increasing system size N . Figure 6
shows the inverse of the critical purity parameter ac(N) versus the system size N for
different correlation exponents. According to this figure, for a fixed size, the higher the
correlation exponent α (the stronger the long range correlations), the lower the purity
parameter ac needed by the system to experience a phase transition.

Using the results shown in figure 6, we see that ac presents an asymptotic behavior
and in the thermodynamic limit N → ∞, it tends to a constant value ac(∞) for a specified
α. To obtain numerically the value of ac(∞) by extrapolating the data shown in figure 6
(we have run up to N = 100 000 00) we have fitted the data for ac(N) versus the system
size N with an expression of the form

1

ac
= u +

w

N c
. (6)

According to this expression, u−1 is the value of ac in the limit N → ∞, i.e. ac(∞) = u−1.
When using expression (6) to fit data of the type shown in figure 6, we obtain at least a
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Figure 7. Phase diagram separating localized from extended states in the
thermodynamic limit given in terms of the purity parameter (ac(∞)) as a function
of the correlation exponent (α).

correlation coefficient of 0.999, and therefore the value of ac(∞) is obtained consistently.
We also find that the exponent c in (6) is almost independent from the correlation exponent
α and is c = 0.28±0.02. All the results for the critical purity parameter at infinity (ac(∞))
and the corresponding correlation exponents are summarized in the phase diagram shown
in figure 7. This phase diagram is the main result of this paper, and contains all the
information on the localization properties of the long range correlated ternary model. For
α � 1.8, we find ac(∞) = 0.

4. Conclusion

In summary, we have studied a one-dimensional Anderson model with long range
correlated disorder when the disorder is introduced as a ternary model. The ternary
model is a binary alloy with partly ordered on-site energies, the proportion of which is
controlled by the purity parameter. The localization length of this ternary model increases
with the purity parameter and finally a phase transition from localized to extended states
can occur. The critical purity parameter for which the transition takes place depends
also on the degree of correlation introduced in the system, controlled via the correlation
exponent α. For a certain correlation exponent α, the system with larger size needs a
higher purity parameter to show a phase transition. Finally, we have shown that the
purity parameter tends asymptotically to a critical value in the thermodynamic limit. As
our main result, we present a phase diagram which separates the localized regime from
the extended one given in terms of the two relevant magnitudes of the system: the critical
purity parameter in the thermodynamic limit and the correlation exponent.
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