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Markov analysis and Kramers-Moyal expansion of nonstationary stochastic processes
with application to the fluctuations in the oil price
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We describe a general method for analyzing a nonstationary stochastic process X(¢) which, unlike many of
the previous analysis methods, does not require X(7) to have any scaling feature. The method is used to study
the fluctuations in the daily price of oil. It is shown that the refurns time series, y(1)=In[X(t+1)/X(1)], is a
stationary and Markov process, characterized by a Markov time scale 7,,. The coefficients of the Kramers-
Moyal expansion for the probability density function P(y,f|y,t,) are computed. P(y,t|,yq,t,) satisfies a
Fokker-Planck equation, which is equivalent to a Langevin equation for y(z) that provides quantitative predic-
tions for the oil price over times that are of the order of 7, Also studied is the average frequency of
positive-slope crossings, v.=P(y;> a,y;_; < @), for the returns, where T(@)=1/v}, is the average waiting time

for observing y(f)=a again.
DOI: 10.1103/PhysRevE.75.060102

Characterizing nonstationary stochastic processes has
been a problem of fundamental interest for a long time. Ex-
amples of such processes include various indicators of eco-
nomic activity [1], fluctuations in the porosity and perme-
ability of porous media [2], velocity fluctuations in turbulent
flows, and heartbeat dynamics [3]. We propose in this Rapid
Communication a general method for (i) generating a sta-
tionary process y(f), given a nonstationary one, X(r); (ii) ana-
lyzing the statistical properties of y(7); and (iii) constructing
stochastic continuum equations that not only reconstruct y(r)
[and hence X(z)], but also provide quantitative predictions
for it over a certain time scale that we identify below.

Given X(7), one may be able to construct a stationary
process y(f) by at least one of the two following methods. (i)
Constructing the algebraic increments, y(t)=X(t+1)-X(z).
The best-known example of such processes is the fractional
Brownian motion (FBM) with a power spectrum, S(f)
o 1/f2H*1 where H is the Hurst exponent. It is well known
that the FBM’s increments [with S(f) o< 1/f2f~1] are station-
ary. Moreover, when H=1/2, the increments are uncorre-
lated, while for H=—1/2 X(z) itself becomes random. (ii) Let
Z=In X(¢). Then, one may construct y(¢), by y(£)=Z(r+1)
—Z(t)=In[X(t+1)/X(r)], so that y(¢) represents the logarith-
mic increments.

We then analyze y(z) based on the application of Markov
processes and development of a Langevin equation for it. As
a concrete example, we analyze the fluctuations in oil’s daily
price, a most notorious nonstationary process, and show that
they fall in the class of nonstationary processes, the logarith-
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mic increments of which are stationary. The method is, how-
ever, general and applicable to a large class of nonstationary
processes.

Figure 1 presents the fluctuations in oil’s daily price, X(r)
[4]. It is not difficult to show that X(¢) is not stationary by
showing, for example, that its variance computed in a win-
dow is not stable if we increase the windows size or move it.
Hence we construct the logarithmic increments, or the log-
returns, of X(z) by y(t)=In[X(z+1)/X(r)]; see Fig. 2. It is
now straightforward to show that y(z) is stationary using
three different methods. We computed its average and vari-
ance in moving windows of increasing sizes to check that
they are stable. We then computed the spectral density S(f)
of y(£). The result, S(f) « f with 8=0, indicated the absence
of long-range correlations in y(z). We also analyzed y(¢) us-
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FIG. 1. (Color online) The daily oil price [4] (in $). The time lag
is 1 day. Shown is a sample of the actual daily oil prices (red) and
the reconstructed data (blue), using Eq. (8).
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FIG. 2. (Color online) Comparison of the actual return data (red,
left) and the reconstructed ones using the Langevin equation (blue,
right). For clarity, the time series have been shifted on the 7 axis.

ing the detrended fluctuation analysis and the rescaled-range
method, to further check that y(z) is stationary [5-7]. They
both yielded B8=0 and thus y(r) is, at least to a good degree
of approximation, stationary.

Since long-range correlations are absent in y(z), but short-
range correlations may exist, we check whether y(¢) follows
a Markov chain [8—11], in which case we estimate its Mar-
kov time scale t;,—the minimum time interval over which
y(f) can be approximated by a Markov process. Characteriz-
ing the statistical properties of y(¢) requires evaluation of the
joint probability density function (PDF) P,(y,,f15...;Yns1,)
for an arbitrary n, the number of the data points. If, however,
y(#) is a Markov process, the n-point joint PDF P, is the
product of the conditional probabilities P(y,,ti1|y;»;), for
i=1,...,n—1. A necessary condition for y(¢) to be a Markov
process is that the Chapman-Kolmogorov (CK) equation
[12],
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P(yz,t2|y1,t]):fdy3 P(y2,12]y3,153) P(y3,13]y1.11), (1)

should hold for any #; in t; <t3<t,. The validity of the CK
equation for different values of y; is checked by comparing
the directly evaluated P(y,,t,|y;,t;) with those calculated
according to right side of Eq. (1). Note that the opposite is
not necessarily true, namely, that if a stochastic process sat-
isfies the CK equation, it is not necessarily Markovian [13].

To estimate 7, we used the least-squares method. If y(r)
is a Markov process, one has

P(y3,13y2.12;y1.11) = P(y3,13]y2.12). (2)

Thus we compare the PDFE,  P(ys,f3;V2,0:V1.1)
=P(y5.t3v2.12:y1,11)P(y2.12:y1,1;), with that obtained
based on the Markov process. Using the properties of the
Markov process and substituting in Eq. (2), we obtain

Py(ys. 13390, 10:51,11) = P(y3.130y2, 1) P(ya, 123y 1,1) . (3)

[Note that the stationarity of a stochastic process is not nec-
essary for using Egs. (2) and (3)]. To check whether y(z) is a
Markov process, we must compute the three-point joint PDF
through Eq. (2) and compare the result with that obtained
through Eq. (3). To do so, we first determine the quality of
the fit through computing the least-squares fitting quantity
X°, defined by

X2=fd)’3 dy, dy [ P(y3.13:2.123)1.11)

= Py(ys. 13530125y 1.1) (03 + 03y), 4)

where a%j and o3 are the variances of P(ys,3;V2,023y1,1;)
and Py (ys,13;V2,65;y;,1;), respectively. To estimate 7,;, we
used the likelihood statistical analysis [14]. In the absence of
a prior constraint, the probability of the set of three-point
joint PDFs is given by

1
P(t;—1,) =11, exp
o G|

P(x) must be normalized. Evidently, when, for a set of the
parameters, Xi= X*/N is minimum (N is the degree of free-
dom), the probability is maximum. Figure 3 presents )(i; its
minimum is =0.6, corresponding to t),=t;—#;=1 day. Fig-
ure 4 shows the likelihood function of #,,. Here, we used the
X° test to estimate f,,, and also used the method proposed in
Refs. [6-11,15-18] which enables us to estimate f,, via a
direct check of the CK equation. The result is, again, f,
=1 day.

For a Markov process, knowledge of P(y,,t,|y;.t;) is suf-
ficient for generating the entire statistics of y(¢), encoded in

[P(y3,13:¥2.12:)1,11) — PM(Y3,ta;yz,tz;y1,t1)]2} 5)

2(0'§j+ )

the n-point PDF which satisfies a master equation which, in
turn, is reformulated by a Kramers-Moyal (KM) expansion:

k
§P<y,r Vol = (— i) [D90.0P(.dyeto)]. (6)
t dy

k

The KM coefficients DW(y, 1) are given by

1
DW(y,1)=— lim M®,
k! At—0

060102-2



MARKOV ANALYSIS AND KRAMERS-MOYAL EXPANSION...

0.7

0.65

0.55

1 1 1
0.5 25 50 75

FIG. 3. (Color online) The x” test for estimation of 7.

M(")=ifdy’(y'—y)"P(y’,t+Aty,t). (7
For a general stochastic process, all the KM coefficients may
be nonzero. However, provided that D™ vanishes or is small
compared to the first two coefficients [12], truncation of the
KM expansion after the second term is meaningful in the
statistical sense. For the oil data, D =10"2D® where y(7)
is measured in units of its maximum, y,,.. Thus we truncate
the KM expansion after the second term, reducing it to a
Fokker-Planck (FP) equation. According to the Ito calculus
[12,19], the FP equation is equivalent to a Langevin equa-
tion,

30 =000) + OG0, ®

where f(7) is a random “force” with zero mean and Gaussian
statistics, S-correlated in ¢, i.e., (f(¢)f(¢'))=26(t-1").
Furthermore, Eq. (8) enables us to reconstruct a time se-
ries for y(z) which is similar to the original one in the statis-
tical sense. In Fig. 2 the original and reconstructed y(r) are
both shown. We find that D" and D®, estimated directly
from the data, are well represented by the approximants,
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FIG. 4. (Color online) Relative likelihood function for z,,.
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FIG. 5. (Color online) Comparison of the directly evaluated
PDFs using the actual data (squares), and the PDFs obtained from
Eq. (10) (triangles). Values for y;, from left to right, are —0.1, 0.0,
and 0.1 [measured in units of y,,(¢)]. For better presentation, the
PDFs have been shifted on the horizontal axis.

DY(y) =-1.09y,

DP(y) =0.0033 = 0.003y + 0.716y?, 9)

but the estimates become relatively inaccurate for large y and
thus the uncertainty in them increases.

We now evaluate the precision of the reconstructed y(z),
by computing the conditional PDF through the numerical
solution of the FP equation, which is very sensitive to the
numerical errors in D and D® [6-11,19-22]. The solution
of the FP equation for small Az is given by

1
P( ,t+At ,t)=—/—
Y2 |y1 2\3”7TD(2)(y2)At

_ —v. —DW AP
Xexp{ b 4};(2)(y2)A()t}2) d } (10)

Equation (10) enables us to predict the probability of an
“observation” y, at time r+At, if we know y; at 7. In Fig. 5
we show the computed conditional PDFs using the data, and
those using Eq. (10), for three values of y; with Ar=1. To
further check the accuracy of the reconstructed y(z), we used
the Kolmogorov-Smirnov test to compare the cumulative
distribution function for the original and reconstructed [i.e.,
Eq. (10)] y(z). With 1682 data points, we find the maximum
difference between the two cumulative PDFs to be about
0.030. For the a levels 10%, 5%, and 1%, we find the critical
values to be 0.042, 0.046, and 0.056, respectively.

To make predictions for the future, we write x(z+1) in
terms of x(7),

x(r+ 1) =x()explo,[y(1) + ¥1}, (11

where y and o, are the mean and standard deviations of y(z).
To use Eq. (11) to predict x(z+1), we need [x(z),y(r)]. We
select three consecutive points in the series y(z) and search
for three consecutive points in the reconstructed y(z) with the
smallest difference with the selected points. The difference is
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FIG. 6. (Color online) The level crossing v*a for the returns
time series. Actual data (symbols) and reconstructed ones (curve).

considered minimum if it is less than 0.05y,,... Wherever this
happens is taken to be the time r which fixes [x(z),y(r)].
Shown in Fig. 1 are the actual data and the predictions for
some interval in the oil price x(¢), beginning with 7= 2006.
Our computations indicate that the predictions are accurate
for up to 8 days (recall that ,, is on the order of 1 day), but
the uncertainties increase beyond this time.

Finally, we computed the frequency of the level crossings
at a given level a [23-25], given by v:=P(y;>a,y;_ < a),
where v}, is the number of positive-difference crossings of
y(2), y(1)=y=e, in the interval T. The quantity T(«)=1/v, is
the average time interval that one should wait in order to
observe y=a again. The frequency v, is given by

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 75, 060102(R) (2007)

300

250

LONLEL |

T(o)

T
-0.4 -0.2 0 0.2 0.4

o

FIG. 7. (Color online) The average waiting time 7T(«) (in days)
for observing y(f)=a again. Actual data (symbols) and recon-
structed ones (curve).

V:;:f f P(yuyi—)dy; dy;_

=f f P()’ib’i—l)P()’i-l)d)’i dy;_i, (12)

where P(y;_;=y)=[C/DP]exp[[3dy' DV (y")/D?(y")], and
P(y;|y;_;) is given by Eq. (10) with Ar=1, with C being a
normalization constant. In Figs. 6 and 7, we present the com-
puted level-crossing frequency and 7(«), in units of days,
over a time interval, for both the actual data set and the
reconstructed one obtained through Eq. (11). The maximum
and minimum of y are 0.4 and —0.4, respectively.
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