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Propagation of acoustic waves in strongly heterogeneous elastic media is studied using renormalization
group analysis and extensive numerical simulations. The heterogeneities are characterized by a broad distri-
bution of the local elastic constants. We consider both Gaussian-white distributed elastic constants, as well as
those with long-range correlations with a nondecaying power-law correlation function. The study is motivated
in part by recent analysis of experimental data for the spatial distribution of the elastic moduli of rock at large
length scales, which indicated that the distribution contains the same type of long-range correlations as what
we consider in the present paper. The problem that we formulate and the results are, however, applicable to
acoustic wave propagation in any disordered elastic material that contains the types of heterogeneities that we
consider in the present paper. Using the Martin-Siggia-Rose method, we analyze the problem analytically and
find that, depending on the type of disorder, the renormalization group �RG� flows exhibit a transition to a
localized or extended regime in any dimension. We also carry out extensive numerical simulations of acoustic
wave propagation in one-, two-, and three-dimensional systems. Both isotropic and anisotropic media �with
anisotropy being due to stratified� are considered. The results for the isotropic media are consistent with the RG
predictions. While the RG analysis, in its present form, does not make any prediction for the anisotropic media,
the results of our numerical simulations indicate the possibility of the existence of a regime of superlocaliza-
tion in which the waves’ amplitudes decay as exp�−��x� /����, with ��1, where � is the localization length.
However, further investigations may be necessary in order to establish the possible existence of such a
localization regime.
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I. INTRODUCTION

Wave propagation in heterogeneous media is a fundamen-
tal phenomenon of great scientific and practical interest, and
has been studied for a long time. It is relevant to such im-
portant problems as analyzing data for earthquakes and mak-
ing predictions for their possible occurrence in the future,
detecting underground nuclear explosions, understanding the
large-scale structure of oil, gas, and geothermal reservoirs,
gaining insight into what happens at large depths in the
oceans, and designing instruments that are used for medical
imaging, and characterizing materials.1,2 For example, seis-
mic wave propagation and reflection are used to not only
estimate the hydrocarbon content of a potential oil reservoir,
but also the spatial distributions of its fractures, faults, and
strata, as well as its porosity.3 More generally, they are used
to image structures located over a wide area, ranging from
the Earth’s near surface to the deeper crust and upper mantle.

The purpose of the present paper is to study the effect of
strong heterogeneities, represented by a spatial distribution
of the local elastic constants, on wave propagation in disor-
dered media. An important example of such media is rock,
which represents a highly heterogeneous natural material.
Recently, extensive experimental data for the spatial distri-

butions of the local elastic moduli, the densities, and the
wave velocities in several large-scale porous rock forma-
tions, both off- and onshore, were analyzed.4 The analysis
indicated4 the existence of long-range correlations in the spa-
tial distributions of the measured quantities, characterized by
nondecaying power-law correlation functions. The existence
of such correlations in the data provided the impetus for the
present study and motivated an important question that we
address in the present paper: How do such large-scale and
strong heterogeneities and long-range correlations affect
wave propagation in elastic media, and in particular in rock?

To better understand the problem that we wish to study in
this paper, consider seismic wave propagation in rock.4 In a
seismic experiment �typically carried out by creating an ex-
plosion on the ground� for, for example, exploration, rock’s
heterogeneities �represented by the spatial distributions of its
elastic constants, the porosity, the anisotropy caused by
stratification, and existence of fractures and faults� cause
multiple scattering and interference of the waves. The second
question that we would like to address in the present paper
is, whether the heterogeneities and the associated scattering
and interference effects can give rise to localization of the
waves. By localization we mean a situation in which, over
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finite length scales �which could, however, be large�, the
waves’ amplitude decays and essentially vanishes.

If the waves do localize �in the sense defined above�, they
would have important practical implications. For example, a
main goal of a seismic exploration is to gain information on
the morphology of rock �in addition to its contents�, i.e., the
spatial distributions of its porosity, faults, fractures, and
strata. However, localization of seismic waves in the rock
would imply that such information can be obtained only over
distances r from the explosion’s site that are of the order of
the localization length �. In other words, if, for example, � is
on the order of a few kilometers, but the linear size of an oil
reservoir for which the seismic exploration is done is signifi-
cantly larger than �, seismic recordings can, at best, provide
only partial information on the reservoir, over length scales
that are smaller than �.

As another example, consider the analysis of the seismic
waves that are emanated by an earthquake in rock. If the
station that collects data for such waves is at a distance from
the earthquake’s hypocenter which is larger than the local-
ization length of the propoagating seismic wave in the rock,
no useful information on the seismic activity prior to and
during the earthquake can be gleaned from the data, as they
should represent only noise, and not carry much useful infor-
mation.

To put the problem that we study in this paper in a famil-
iar context, we recall a well-known phenomenon in con-
densed matter physics, namely, the nature of electronic states
in heterogeneous materials.5 It is now well-known and well-
understood that the answer to the question of whether elec-
trons in a given material are localized or are in an extended
state depends strongly on the material’s spatial dimensional-
ity d and the state of its heterogeneity. In one-dimensional
�1D� materials, even weak disorder, irrespective of the en-
ergy, localizes the wave function.6 The wave function ��r�
decays exponentially at large distances r from the domain’s
center, ��r��exp�−r /��, where � is the localization length.
In fact, the scaling theory of localization7 predicts that, for
d�2, all electronic states are localized for any degree of
disorder, but a transition to extended states occurs for
d�2, depending on the strength of the disorder. The
transition between the two states—the metal-to-insulator
transition—is characterized by divergence of � according to,
�� �W−Wc�−�, where Wc is the critical value of the disorder
intensity. Both the scaling theory and the field-theoretic for-
mulation of the electron localization problem by Wegner8

predict that the lower critical dimension for the localization
problem is, dc=2. Over the years, extensive numerical simu-
lations have also been carried out to confirm such predic-
tions; see, for example, Kramer and MacKinnon9 for a re-
view.

An important implication of the wave characteristics of
electrons is that, the localization phenomenon may also oc-
cur in propagation of classical waves in disordered media.
This observation provided another motivation for our study.
However, unlike the problem of electron localization in
strongly heterogeneous materials which has proven to be
very difficult to study,10 classical waves,11 such as seismic
waves, do not interact with one another and, therefore, their
propagation in such highly heterogeneous media as natural

rock provides an ideal model for studying the localization
phenomenon.

Thus, as the first step toward the eventual goal of studying
propagation of elastic waves in strongly heterogeneous sol-
ids, we study in this paper propagation of acoustic waves in
the same type of media in which the heterogeneities, repre-
sented by the spatial distribution of the local elastic con-
stants, are broadly distributed. We consider both a random
distribution of the local elastic constants and also, consistent
with the recent results,4 a correlated distribution with a
power-law, nondecaying correlation function, and investigate
the possibility of localization of acoustic waves in such dis-
ordered solids.

The problem is studied by two different methods. First,
we formulate a field-theoretic method to investigate acoustic
wave propagation in disordered media that are characterized
by a broad distribution of the elastic constants. Our approach
is based on the method first introduced by Martin, Siggia,
and Rose �MSR� �Ref. 12� for analyzing dynamical critical
phenomena. We calculate the one-loop 	 functions12 for both
spatially random and power-law correlated distribution of the
local elastic constants. Next, we present the results of exten-
sive numerical simulation of acoustic wave propagation in
the same disordered media in one �1D�, two �2D�, and three
dimensions �3D�, and show that in any case there is a
disorder-induced transition from delocalized to localized
states for any spatial dimension d. The preliminary results of
our work were presented in a recent paper.13 In the present
paper, we provide full details of our renormalization group
�RG� analysis, which is quite complex, and present extensive
numerical results. Although our work was primarily moti-
vated by the analysis of experimental data for the spatial
distribution of elastic constants of rock at large scales,4 the
results presented in this paper are general and apply to any
solid material in which the local elastic constants are distrib-
uted broadly, and follow the statistics of the distributions that
we consider.

We point out that theoretical studies of localization of
acoustic waves were previously carried out by several
groups.14–17 For example, Baluni and Willemsen16 studied
propagation of acoustic waves in a 1D layered system, com-
posed of blocks of different elastic constants in series, and
showed that the waves are localized. In addition, there have
been several experimental studies of these problems in vari-
ous disordered media.18,19 However, the previous theoretical
studies did not consider the problem in the type of strongly
disordered media that we consider in this paper, which rep-
resent the continuum limit of an acoustic system with off-
diagonal disorder, and also not in the context of the issues
that are of interest to us. In addition, the dynamical RG
method that we utilize13 had not been used before.

The rest of this paper is organized as follows. In Sec. II
we present a MSR formulation for the propagation of acous-
tic waves in heterogeneous media, and perform a perturba-
tive RG calculation based on the MSR action. In Sec. III we
discuss the physical implications of the RG results, while the
analytical calculations by the RG method are tested in Sec.
IV by carrying out extensive numerical simulations. The re-
sults are summarized in Sec. V.
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II. RENORMALIZATION GROUP ANALYSIS

Acoustic waves propagate in elastic solids, and viscous
and inviscid fluids,1,20 although only the former type of me-
dia is of interest to us in this paper. To study acoustic wave
propagation in an elastic medium with a distribution of elas-
tic constants, we analyze the scalar wave equation �Refs. 1
and 20�:

�2

�t2��x,t� − � · �
�x� � ��x,t�� = 0, �1�

where ��x , t� is the wave amplitude �a complex quantity�, t is
the time, and 
�x�=e�x� /m the ratio of the elastic stiffness
e�x� and the medium’s mean density m. Equation �1� is valid
in any dimension d �d=1,2, and 3�. Usually, propagation of
the P waves in an elastic medium is described by Eq. �1�.1,20

Real disordered solids support the propagation of both P and
S waves. But, as mentioned in the Introduction, the present
study represents a first concrete step toward the eventual goal
of studying propagation of elastic waves in the type of dis-
ordered solid media that we consider in the present paper.

To introduce the spatial distribution of 
�x� and its corre-
lation function into the analysis, we write 
 as follows,


�x� = 
0 + ��x� , �2�

where 
0= �
�x��. In the present paper ��x� is assumed to be
a Gaussian random process with a zero mean and the cova-
riance,

���x���x��� = 2C��x − x��� = 2D0�d�x − x�� + 2D
�x − x��2
−d,

�3�

in which D0 and D
 represent, respectively, the strength of
the disorder due to the delta-correlated and power-law corre-
lated parts of the disorder. Previously, Souillard and
co-workers15 studied wave propagation in disordered fractal
media, the geometry �connectivity� of which was character-
ized by a decaying power-law correlation function, whereas
in the present problem we make no reference to the system’s
geometry, and consider power-law correlation functions only
for the local elastic constants. Thus, their study is not related
to our work.

Before proceeding further, let us point out that the spatial-
dependence of electron localization, while sharing some
similarity with localization of classical waves, may not nec-
essarily be identical with localization of acoustic waves. The
equation that we use—the scalar wave equation given
above—is obviously not identical with the Schrödinger equa-
tion. Moreover, there are some basic differences between the
two equations. For example, whereas Eq. �1� is invariant
under time reversal, i.e., under the transformation t→−t,
there is no such symmetry in the Schrödinger equation. In
addition, the Schrödinger equation contains an extra
parameter—the mass—which must be carefully taken into
account in any RG analysis. In the analysis that follows, the
average �
0� plays the role of mass, but with the difference
that, as we show below, the RG analysis can handle it in a
straightforward manner.

Consider a wave component with angular frequency � by
taking the temporal Fourier transformation of ��x , t�,

��x,�� =
1

�2��d 	 dt exp�i�t���x,t� . �4�

Equation �1� then yields the following equation for the
propagation of a wave component with a frequency �:

f��� = �2��x,�� +
w2


0
��x,�� + � · 
��x�


0
� ��x,��� = 0.

�5�

The Gaussian nature of the noise ��x� leads us to write the
following generating functional for wave function:

P��R,�I,�� � 	 D�D�RD�I��f��R����f��I��

�J
 �f��R�
��R

�J
 �f��I�
��I

�
�exp
−	 dxdx���x�D�x − x����x��� ,

�6�

where �R�x� and �I�x� are, respectively, the real and imagi-
nary components of the wave function �both satisfying Eq.
�1��, and D�x−x�� is the inverse function of correlation func-
tion C�x−x�� that satisfies the following equation:

	 dx�C�x − x��D�x� − x�� = ��x − x�� . �7�

In Eq. �6�, J��f��R� /��R� and J��f��I� /��I� are the Jacobi-
ans given by

J = det� �f���x��
���x�� 


= det��2��x − x�� +
w2


0
��x − x�� + �

· 
��x�

0

� ��x − x���
 . �8�

Using the MSR method,12 we write the delta function as a

Gaussian integral over an auxiliary field �̃R�x� and �̃I�x�. On
the other hand, using the integral representation of the deter-
minant by the anticommuting variables, we can also write
the Jacobian as a Gaussian integral over the Grassmanian
fields � and �* �where * indicates a complex-conjugate prop-
erty�. Therefore, Eq. �6� is rewritten

P��,�,�,�*,�� � 	 �D���D�̃��D���D�*��D��exp�

− S��,�̃,�,�*,��� , �9�

where the action S�� , �̃ ,� ,�* ,�� is given by,
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S =	 dxdx�
i�̃R�x����2 +
w2


0
��R�x� + i�̃I�x����2 +

w2


0
��I�x� − i

�


0
�x� � �̃R�x�� � �R�x� − i

�


0
�x� � �̃I�x�� � �I�x�

+ �R
*�x����2 +

w2


0
��R�x� + �I

*�x����2 +
w2


0
��I�x� −

�


0
�x� � �R

*�x�� � �R�x� −
�


0
�x� � �I

*�x�� � �I�x����x − x��

− ��x�D�x − x����x�� . �10�

Using simple Gaussian integration we integrate � out in Eq. �9� to obtain

P��,�,�,�*� � 	 �D���D�̃��D���D�*�exp�− Se��,�̃,�,�*�� , �11�

in which the effective action Se is given by,

Se��,�̃,�,�*� =	 dxdx�
�i�̃I�x����2 +
�2


0
��I�x� + i�̃R�x����2 +

�2


0
��R�x����x − x���

+ ��I
*�x����2 +

�2


0
��I�x� + �R

*�x����2 +
�2


0
��R�x����x − x�� + �i � �̃I � �I + i � �̃R � �R

+ ��I
* � �I + ��R

* � �R�
C�x − x��


0
2 ��i � �̃I � �I + i � �̃R � �R + ��I

* � �I + ��R
* � �R�� . �12�

Two coupling constants, g0=D0 /
0
2, and, g
=D
 /
0

2, appear in Se, when we substitute Eq. �3� for the function C�x−x�� into Eq.
�12� �see Fig. 1�. Thus, carrying out a RG analysis in the critical limit, �2 /
0→0, we derive, to one-loop order, the beta
functions12 that govern the two coupling constants under the RG transformation.

There is an intuitively appealing diagrammatic representation of the terms that appear in the perturbative evaluation of the
rescaling in the RG analysis, which is shown in Fig. 2. We show in Fig. 3 all the diagrams that contribute to the four-point

correlation function term, ��R�x1��̃R�x2��R�x3��̃R�x4��, to one-loop order. There are also ten vertices that contribute to renor-
malization of g0 and g
. Figure 4 indicates that the following expression holds for I2 in the hydrodynamic limit, � /
0→0,

I2 =
16g0

2

� k2

2
− k1

2�� k2

2
− k2

2� 	 dq

q · �k

2
+ k1��
q · �k

2
− k1��
�q + k1 + k2� · �k

2
+ k2��
�q + k1 + k2� · �k

2
− k2��

�q2 − i
�


0
�
�q + k1 + k2�2 + i

�


0
� .

�13�

q is calculated in spherical coordinates. We use, ki ·q=kq cos �i, where �i is the angle between q and ki, which yield,

I2 =
16g0

2

� k2

2
− k1

2�� k2

2
− k2

2�
Sd−1

2�d 	 dqqd−1	 d�1 sind−2 �

�


� kq cos �

2
+ k1q cos �1��
� kq cos �

2
− k1q cos �1��
� kq cos �

2
+ k2q cos �2��
� kq cos �

2
+ k2q cos �2��

�q2 − i
�


0
�
�q + k1 + k2�2 + i

�


0
�

= 16g0
2kd
 d + 5

2d�d + 2�� 	 dqqd−1, �14�
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with kd=Sd / �2�d�, and Sd being the surface area of the
d-dimensional unit sphere. Thus, we find that

I1 = 16g0
2kd
 d + 5

2d�d + 2�� 	 dqqd−1,

I3 = − 4g0
2kd
 d + 5

2d�d + 2�� 	 dqqd−1,

I4 = 16g0g
kd
 d + 5

2d�d + 2�� 	 dqqd−1q−2
,

I5 = 16g0g
kd
 d + 5

2d�d + 2�� 	 dqqd−1q−2
,

I6 = 16g

2kd
 d + 5

2d�d + 2�� 	 dqqd−1q−4
,

I7 = 16g

2kd
 d + 5

2d�d + 2�� 	 dqqd−1q−4
,

I8 = 16g0g
kd
 d + 5

2d�d + 2��k−2
	 dqqd−1,

I9 = − 4g0g
kd
 d + 5

2d�d + 2��k−2
	 dqqd−1,

I10 = 16g0g
kd
 d + 5

2d�d + 2��k−2
	 dqqd−1q−2
. �15�

It is also straightforward to determine that the dimensions of
parameters under a change of scale, x→bx, are:

�g0� = d , �16�

�g
� = d − 2
 . �17�

The functions 	�g̃0� and 	�g̃
� are then given by,

	�g̃0� =
�g̃0

� ln l
= − dg̃0 + 8g̃0

2 + 10g̃

2 + 20g̃0g̃
, �18�

	�g̃
� =
�g̃


� ln l
= �2
 − d�g̃
 + 12g̃0g̃
 + 16g̃


2, �19�

where l�1 is the rescaling parameter, and

g̃0 = kd
 d + 5

2d�d + 2��g0, �20�

g̃
 = kd
 d + 5

2d�d + 2��g
, �21�

with kd=Sd / �2�d�.

III. IMPLICATIONS OF THE RG RESULTS

The beta functions that we have determined, Eqs. �18� and
�19�, describe how the two couplings—g0 and g
—behave, if

FIG. 1. Diagrammatic representations of the fields appearing in
the effective action, Eq. �12�. FIG. 2. Diagrammatic representations of the propagators and

vertices in the effective action Se. k is the momentum transfer from
left to right.

FIG. 3. One-loop corrections
to the four-point correlation
function.
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we rescale all the lengths and consider the elastic medium at
coarser scales. If we find, for example, that a small g0 di-
verges under the RG rescaling, it implies that a small g0 at
small length scales behaves as very strong disorder at much
larger scales and, therefore, every wave amplitude will be
localized. If, on the other hand, we find, for example, that for
some g0�gc �where gc is a critical value of g0� g0 vanishes
under the RG rescaling, it implies that in this regime g0 does
not contribute much to the behavior of the propagating
waves at large length scales. Therefore, a localized state may
be defined as follows: we have localized states if, under the
RG rescaling, at least either g0 or g
 diverges.

To understand better the predictions of the RG analysis,
we examine the RG flows, Eqs. �6� and �7�, which reveal
that, depending on 
, there can be two distinct regimes:

�i� For 0�
�
1
2d there are three sets of fixed points: The

trivial set representing the Gaussian fixed points, g0
*=g


*=0,
which is stable, and two other sets representing nontrivial
fixed points and the corresponding eigendirections. One is,
�g0

*= 1
8d ,g


*=0�, while the other set is given by,

g0
* = −

4

41

d +

5

16
�2
 − d��

−
4

41
�
d +

5

16
�2
 − d��2

+
205

256
�2
 − d�2,

g

* =

3

4
g0

* +
1

16
�d − 2
� , �22�

which is stable in one eigendirection but unstable in the other
eigendirection. The corresponding RG flow diagram is
shown in Fig. 5. Therefore, for 0�
�

1
2d the one-loop RG

analysis indicates that a medium with uncorrelated disorder
is unstable against long-range correlated disorder towards a
new fixed point in the space of the coupling constants.
Hence, there is a phase transition from delocalized to local-
ized states with increasing the disorder intensity.

Thus, the physical implication of the RG results becomes
clear. Figure 5 indicates that, in the interval 0�
�

1
2d, there

is a region in the space of the coupling constants �g0 ,g
� in
which the RG flows take any initial point to the Gaussian
fixed point, �g0=g
=0�. This indicates that, in this region, a
disordered medium of the type considered in this paper looks
like a pure �nondisordered or homogeneous� medium at large
length scales, implying that the wave is extended or delocal-
ized.

However, when g0 or g
 are large enough that the initial
point is out of the basin of attraction of the Gaussian fixed
point, the RG flow moves such points toward large values,
hence implying that, under the RG rescaling, the probability
density function of the disorder becomes broader and
broader at larger and larger length scales. Therefore, in this
case, a propagating wave samples a medium with a very
large spatial fluctuation in the elastic stiffness or moduli.
Moreover, note that even if one starts in a disordered me-
dium with purely long-range correlations �i.e., one with
g0=0�, one finds from the RG equations that the growth of g


will lead to increasing, i.e., nonzero, g0, hence implying that
uncorrelated disorder will be produced by the RG rescaling.
Since the local fluctuations in the bulk moduli �and, more
generally, the local stiffness� play the role of scattering
points, the implication is that the multiple scattering of a
propagating wave from the uncorrelated disorder will destroy
the wave’s coherence, leading eventually to its localization.
This is the basis of the localization-delocalization transition
in the low frequency limit, in terms of the disorder intensity.

�ii� For 
�
1
2d there are two fixed points: the Gaussian

fixed point which is stable on the g0 axis but not on the g


axis, and the nontrivial fixed point, �g0
*= 1

8d ,g

*=0�, which is

unstable in all directions. The corresponding RG flow dia-
gram is shown in Fig. 6. The implication is that, although
power-law correlated disorder is relevant, no new fixed point
exists to one-loop order and, therefore, the system’s long-
wavelength behavior is determined by the long-range com-
ponent of the disorder. This implies that for 
�

1
2d the waves

FIG. 4. Feynman diagram of integral I2.

FIG. 5. �Color online� Flows in the coupling constants space for
0�
�

1
2d.

FIG. 6. �Color online� Flows in the coupling constants space for

�

1
2d.
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are localized for any d. In addition, in both cases the system
undergoes a disorder-induced transition when only the uncor-
related disorder is present.

Let us mention that the above results are general so long
as D
�0 �which is the only physically acceptable limit�. For
D
�0 the above phase space is valid for 
�

1
2 �d+1�.

We also point out that, it is convenient to begin the RG
rescaling and analysis with the assumption that the couplings
g0 and g
 are small. If, under the RG rescaling, we find stable
fixed points, it would imply that the assumption of the cou-
plings being small about such a fixed point is still valid.
However, around the unstable fixed point the couplings can
grow and, hence, the perturbation that we have developed
would fail. But, for our purpose, i.e., to determine the
localized/extended regimes, the most important goal is to
determine the condition�s� under which the fixed points are
unstable, so that the couplings can diverge.

Although the above RG calculations were carried out to
one-loop order, the analysis will still be valid for higher or-
ders of the perturbation as well, since it should be clear that
the signs of the higher-order terms are all positive. That this
is so due to the following. We must keep in mind that the
contraction coefficients for auxiliary fields are always greater
than those of auxiliary and Grassmanian fields, that supply
the negative terms. Moreover, the numbers of diagrams of,
e.g., a real auxiliary field and an imaginary auxiliary field are
equal to the number of diagrams of an auxiliary and Grass-
manian field. This implies immediately that the signs of
higher-order terms should also be positive.

IV. NUMERICAL SIMULATIONS

To test the predictions of the RG analysis, we have carried
out numerical simulations of the problem in 1D, 2D, and 3D
systems. In what follows we describe the techniques that we
used for the numerical simulation of the problem in 1D sys-
tems on the one hand, and 2D and 3D systems on the other
hand, which are quite distinct. We then describe and discuss
the numerical results.

A. One-dimensional media

An experimental realization of a simple 1D model that
exhibited wave localization was presented by He and
Maynard.18 It consisted of a 15 m long steel wire, suspended
vertically, with a diameter of 0.178 mm. The tension in the
wire was maintained with a weight attached at its lower end.
Then, the function ��x , t� corresponds to transverse waves in
the wire with an electromechanical actuator at one end of the
wire. It was demonstrated18 that, even for very small devia-
tions �less than 1%� from periodicity, the diagonal disorder,
represented by, e.g., variations in the resonance frequencies
of the oscillators, produces localization, which agrees with
Furstenberg’s theorem.21 On the other hand, variations �of up
to 13%� in the masses, representing off-diagonal disorder,
resulted in localization lengths that were much larger than
the system’s size. This is in agreement with the RG predic-
tion presented here.

To reproduce numerically the results of He and Maynard18

for 1D systems, to confirm the RG prediction, and to calcu-
late the localization length �, we used the transfer-matrix
�TM� method of Soukoulis, Economou, Grest, and Cohen.9

Discretizing the 1D version of Eq. �1�, and writing down the
result for site n of a linear chain yields,




��

�x
�

n+�1/2�
− 



��

�x
�

n−�1/2�
+ �2�n = 0, �23�

and


n+�1/2���n+1 − �n� − 
n−�1/2���n − �n−1� + �2�n = 0.

�24�

Setting, 
n+�1/2�=	n+1, and 
n−�1/2�=	n, we rewrite Eq. �24�
in the following recursive form;

Mn� �n

�n−1
� = ��n+1

�n
� �25�

with

Mn = �− �2 + 	n−1 + 	n

	n
−

	n−1

	n

1 0
� . �26�

The localization length ���� is defined by, ����−1

=limN→� N−1 ln��N /�0�, where N is the chain’s length ��−1 is
sometimes referred to as the Lyapunov exponent�. To check
the existence of a nontrivial localization transition, we must
consider a nonzero �, even in the thermodynamic limit. The
reason is that the mode �=0 is related to the translational
invariance of the system and has no physical importance.

The computations were carried out for many values of the
system size N and frequency �. For a system of a finite size
N one has a minimum frequency, �m=2��
0�1/2 /N, so that in
the limit, N→�, �m→0, and one recovers the continuous
limit. We used, 
0=10 and took its random component, ��x�
�see Eq. �2��, to be a white noise with variance, 2D0=�. For
every realization of the disorder we computed �N and, hence,
����. We used, �0=�1=1/�2, and carried out computations
at selected values of �. As shown in Refs. 22 and 23, in
order to reduce the calculations’ error, it is better to carry out
the computations at frequencies, �co=N1/2�m=2��
0 /N1/2,
to check for the localization/delocalization transition. Every
computed value of � represents an average over 6000 real-
izations for a fixed system size N and frequency �.

Figure 7 presents the critical variance �c for the
localization/delocalization transition, as a function of the
system size N. It demonstrates clearly that, in the thermody-
namic limit �N→��, there is a nontrivial �c, such that for
���c there is a phase transition. Fitting the numerical data
for �c shown in Fig. 7 to an expression of the form,

�c = a + bN−�, �27�

where a=�c�N→��, we find that, a�2.20±0.03, b
�3.26±0.10, and ��0.18±0.01.

We present in Fig. 8 the frequency dependence of ���� for
N=6�106 ��c�2.34� and three regimes, ���c, �=�c, and
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���c. In the limit, �=0 �and N→��, the localization length
� diverges, and the TM calculations shown in Fig. 8 confirm
this expectation. For ���c, there are frequencies for which
the localization length � is larger than the size N of the linear
chain. Thus, in this regime of disorder and frequency modes
the chain behaves like a metal in the classical localization.
Increasing � reduces the localization length �. Thus, for �
=�c the lowest modes �which is �co, a cutoff frequency due
to the finite-size effects� give rise to localization length of the
order of the chain size N. Finally, for ���c all the modes
are localized. We also indicate in Fig. 8 where the localiza-

tion lengths are comparable to the system size N for �co.
These results are in agreement with the predictions of the RG
analysis described above.

To further check the existence of the extended states for
���c in the thermodynamic limit, one needs to check the
condition limN→��� /N�=constant�0. If this condition is not
satisfied, � becomes negligible in comparison with N in the
thermodynamic limit �N→��, and the wave amplitude
would, therefore, be localized. Hence, we study the behavior
of � as a function of N for two different values of the noise
variance. As � is also a function of the wave frequency �, we
choose �=�co, the cutoff frequency.

To carry out the computations, we solve the following
eigenvalue problem,

H��� = − �2��� , �28�

where,

Hm,n = 
m+�1/2���m+1,n − �m,n� − 
m−�1/2���m,n − �m−1,n� ,

�29�

and diagonalize H to compute all the eigenvalues for differ-
ent realization of the noise 
. We then approximate �co by
the nearest � �to within a small numerical window� in defi-
nition of the localization length � in terms of the transfer
matrix M, i.e., ����−1=N−1�ln�Tr��n=1

N Mn���, and compute
the localization length �. To avoid excessive numerical fluc-
tuations, we average � in a small energy window around �co,
and more specifically in the interval �−0.01,0.01�. The aver-
aging is taken over the realizations of the disorder. To com-
pute the eigenvalues, we diagonalize the matrix representa-
tion of H and, using the QR factorization algorithm,
compute all the eigenvalues of the real symmetric tridiagonal
matrix.

We find a power-law relation between � and N, ��N�.
This is shown in Fig. 9. The exponent � seems to weakly
depend on the disorder’s variance, if at all. For �=0.1 �i.e.,
less than �c�N→���2.20�, we find �=1, while for �=5.0
�greater than �c�N→���2.20� we find, �=0.93±0.02.
These results confirm, once again, the predictions of the RG
analysis for 1D disordered media.

B. Two- and three-dimensional media

We also carried out extensive numerical simulations in 2D
and 3D systems by solving Eq. �1�, using the finite-
difference �FD� method with second-order discretization for
the time and fourth-order discretization for the spatial vari-
ables. Consider, for example, the 2D systems. Using the FD
approximation, we write ��x , t� as �i,j

�n�, where n denotes the
time step number. The second-order FD approximation �ac-
curate to �t2� to the time-dependent term of Eq. �1� is the
standard form, �2��x , t� /�t2���i,j

�n+1�−�i,j
�n�+�i,j

�n−1�� / ��t2�,
where �t is the time step’s size. As for the spatial deriva-
tives, we first expand the right side of Eq. �1� as follows:

� · �
�x� � ��x,t�� = �
�x� · ���x,t� + 
�x��2��x,t�

= �x
�x��x��x,t� + �y
�x��y��x,t�

+ 
�x���x
2��x,t� + �y

2��x,t�� .

FIG. 7. �Color online� The critical variance �c as a function of
system size N for white noise disorder. The results represent aver-
ages over 6000 realizations of the system.

FIG. 8. �Color online� Localization length � as a function of the
frequency � for ���c�2.4 and ���c. The system size is
N=6�106. The results represent averages over 6000 realizations.
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Then, using the fourth-order FD discretization, we obtain for,
for example, the derivatives in the x direction,

�x
2��x,t� �

− �i+2,j
�n� + 16�i+1,j

�n� − 30�i,j
�n� + 16�i−1,j

�n� − �i−2,j
�n�

12�x2 ,

�30�

and

�x��x,t� �
− �i+2,j

�n� + 8�i+1,j
�n� − 8�i−1,j

�n� + �i−2,j
�n�

12�x
, �31�

where �x is the spacing between two neighboring grid points
in the x direction. Similar expressions are written down for
the partial derivatives with respect to the y direction �and the
z direction for the simulations in 3D�. Such approximations
proved to be accurate enough and provide the required sta-
bility to the numerical results, as we work in the limit of low
frequencies or long wavelengths.24 We used Lx�Ly grids in
2D with Lx=8000 and Ly =400 �where x is the main direction
of wave propagation�, and Lx�Ly �Lz grids in 3D with Lx
=Ly =70, and Lz=500 �where z is the main direction of wave
propagation�. The parameter 
�x�, representing the
gridblock-scale elastic constant, was distributed spatially
with the power-law correlation function described above.

Two distinct classes of disordered media were considered.
In one case, the disordered media studied were isotropic. In
this case the spatial distribution of 
�x� was generated using
the midpoint displacement method25 �we took D
=1.0�. In
the second case, the media studied were anisotropic. While
one may consider a variety of anisotropic systems, we con-
sidered, consistent with the structure of rock,3 the anisotropy
that is caused by stratification. Such disordered media con-
tain layers with sharp contrasts between them. To generate

the spatial distribution of the local elastic constants in the
layered systems, we used a fast Fourier transformation
technique.26 A convenient representation of the distribution
of 
�x�, the correlation function of which is of the power-law
type given by Eq. �3�, is through its power spectrum—the
Fourier transform of its covariance—which is given by,

S��� =
a�d�

��
i

�i
2�H+d/2 , �32�

where a�d� is a d-dependent constant, and �= ��1 , . . . ,�d�,
with �i being the Fourier component in the ith direction.
Here, H=
−1 is the Hurst exponent with, 0�H�1, such
that H�1/2��1/2� implies positive �negative� correlations
among the increments of the values generated by the distri-
bution, while H=1/2 is the usual Brownian �random� case.
We rewrite the power spectrum in a more general form,

S��� =
b�d�

��c
2 + �

i

ai�i
2�H+d/2 , �33�

where b�d� is another d-dependent constant. The coefficients
ai are numerical constants such that with ai=1 one recovers
Eq. �32� for the isotropic case. For example, in 2D, setting
a1�1 and a2=1 generates strata that are parallel to direction
1. �c is a cutoff frequency such that for length scales
���c=1/�c, the local elastic constants 
�x� are correlated,
whereas for ���c they are random and uncorrelated. Thus,
in addition to the isotropic systems, we also studied acoustic
wave propagation in stratified media, as well as in those with
a cutoff in the extent of the correlations. We also carried out
simulations for the case in which values of 
�x� were uncor-
related and uniformly distributed, but with the same variance
as that of the power-law case.

To begin the simulations we start with a pulse wave
source located at every node of the first row of the grid at
y=0 �in 2D�, or at every node of the xy plane at z=0 �in 3D�.
Such a boundary condition ensured generation of a smooth
initial wave front. Using a point source will not change the
results that we present below, although it would require a
larger number of realizations for obtaining reliable statistics.
As the source function S�t� we used the following to generate
the pulse waves �any other source may be used�;

S�t� = − A�t − t0�exp�− ��t − t0�2� , �34�

where A is a constant and � controls the wavelength of the
wave. The discretized wave equation was then solved nu-
merically throughout the system. Periodic boundary condi-
tions were imposed in the lateral direction�s�, which did not
distort the nature of the wave propagation, as we used large
system sizes. The discretized equations were integrated with
up to 96 000 time steps in 2D and 24 000 time steps in 3D.
The accuracy of the solution was checked by considering the
stability criterion and the wavelength of the source.24 To
compute the amplitude decay in the medium, we collected
the numerical results at 80 receivers �grid points�, distributed
evenly throughout the grid, along the main direction of wave
propagation. The results were averaged over 45 realizations

FIG. 9. �Color online� Test of the condition, limN→��� /N�
=constant�0 for the existence of the extended states for ���c in
the thermodynamic limit. We chose, �=�co, and averaged � in a
small energy window, �−0.01,0.01�, around �co. The results indi-
cate a power law, ��N�.
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of the system. The decay in the amplitude of the wave is
caused by scatterring of the wave by the system’s heteroge-
neities generated by the spatial distribution of the local elas-
tic constants.

Figure 10 shows the wave front �WF� at three different
times in a 2D stratified medium with 
=1.5. As the wave
propagates, the roughness of the WF increases. The same
qualitative patterns are observed in all the cases for 
�1.5,
except that the WFs become somewhat smoother, as the cor-
relations in the local elastic constants for 
�1.5 are positive
and, therefore, there are extended zones of similar local elas-
tic constants in the system.

Figure 11 presents the decay in the wave amplitude
through a uniformly random 2D medium, and that of a 2D
anisotropic medium with a nondecaying power-law correla-

tion function for the local elastic constants 
�x�, with 

=1.2 and 1.5. The wave amplitudes for the correlated cases
decline very fast, much faster than those in the uniformly
random medium. The results shown in Fig. 11 are consistent
with the RG prediction that, acoustic waves in 2D systems
must be localized for 
�

1
2d=1.

As is well-known, in the case of electron localization, the
amplitudes ��x� in isotropic media decay exponentially,

��x� = �0 exp�− �x�/�� . �35�

However, it is not yet clear how � should decay in an aniso-
tropic medium of the type that we have considered in the
present paper. The question of how the wave’s amplitude
decays in such anisotropic media should presumably depend
on whether the main direction of wave propagation is �more
or less� parallel to the strata or perpendicular to them. There-
fore, we rewrite Eq. �35� in a slightly more general form,

��x� = �0 exp�− ��x�/���� . �36�

If we fit the results for the 2D correlated media shown in Fig.
11 to Eq. �36� �which are for the case in which the main
direction of wave propagation is parallel to the strata�, we
find that, ��1 for both values of 
. That is, one has the usual
localization in which the wave’s amplitude decays exponen-
tially with the distance from the source.

The decay in the wave’s amplitudes in an isotropic 2D
medium with 
=1.5, in which there is a cutoff length scale
�c in the extent of the correlations, is shown in Fig. 12. The
cutoff is measured in units of the distance between two
nearest-neighbor grid points. When the cutoff is relatively
short, the amplitude decay is slow, as the system behaves as
a random one at large length scales. As the cutoff �c in-
creases, the extent of the correlations between the grid blocks
increases and, therefore, the medium’s behavior approaches
that of one in which the extent of the correlations is as large

FIG. 10. The wave front in a 2D anisotropic system at �dimen-
sionless� times, t1=328, t2=384, and t3=440, with 
=1.5.

FIG. 11. Wave amplitudes in 2D anisotropic media, for both
uniformly random and power-law correlated elastic constants. The
main direction of wave propagation is parallel to the strata. The
straight lines indicate that the amplitudes decay essentially
exponentially.

FIG. 12. Same as in Fig. 11, but in 2D isotropic media with a
cutoff �c for the extent of the correlations, and 
=1.5. For the
largest �c the medium behaves essentially as a completely corre-
lated system and, therefore, the amplitudes should decay exponen-
tially. The straight line indicates that this is the case.
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as the system’s size. For the largest cutoff length scale, �c
=1000, the medium essentially behaves like a completely
correlated one.

Figure 13 presents the wave’s amplitude decay in isotro-
pic 3D systems for 
=1.3 �negative correlations� and 

=1.8 �positive correlations�. Also shown are the results for a
uniformly random 3D medium, but with the same variance
as that of the correlated distribution of the local elastic con-
stants. When the correlations are positive �
=1.8�, the decay
in the wave amplitudes is essentially exponential �indicated
by the straight line�, because there are zones of positively
correlated �more or less similar� elastic constants that help to
trap the wave front, hence resulting in the fast decay of the
amplitudes. A fit of the numerical results for 
=1.8 to Eq.
�36� also confirms that, ��1, consistent with the RG predic-
tion that, in 3D, for 
�

1
2d=3/2 the waves must be localized.

In contrast, the wave amplitudes in the random medium is
practically constant, while in the medium with 
=1.3�3/2
the amplitudes do not seem to decay fast enough. While the
RG analysis does not predict localization of the waves in 3D
systems with 
�1.5, a fit of the results for 
=1.3 shown in
Fig. 13 indicates that, ��0.1, although this estimate of � is
not very accurate because the system is somewhat short.

In a practical application of propagation of acoustic waves
in rock, such as seismic exploration, the main direction of
wave propagation may more or less be perpendicular to the
planes of the strata. For example, in seismic exploration the
wave source is typically on the ground surface while the
strata are more or less parallel to the ground surface, imply-
ing that the waves penetrate the ground and move perpen-
dicular to the strata. Figure 14 presents the results of the
numerical simulations for such a system in 2D. The decay in
the wave’s amplitudes appear to be fast. A fit of the results to
Eq. �36� indicates that, ��1.4. Figure 15 shows the corre-
sponding results in 3D, indicating the same qualitative be-
havior. We have no plausible explanation at this point for this

surprising result, which corresponds to superlocalization of
the waves. We should, however, point out that we cannot rule
out the possibility that, if we carry out much more extensive
simulations with much larger systems, we would obtain the
usual localization with �=1. We are currently carrying out
more extensive simulations which are, however, very time
consuming.

We emphasize once again that our RG analysis, in its
present form, does not make any prediction for the nature of
wave localization in the type of anisotropic media that we
study in this paper. Thus, whether Eq. �36� with ��1 repre-
sents a general result for the type of anisotropic media that
we studied remains to be seen. However, as argued above,
the possibility that ��1 is very interesting, and deserves
further study.

FIG. 13. Wave amplitudes in 3D isotropic media with negative
�
=1.3� and positive �
=1.8� correlations, and their comparison
with random media. The RG analysis indicates that for 
�1.5 the
waves must be localized and, therefore, their amplitudes must decay
exponentially. The straight line indicates that this is the case.

FIG. 14. Wave amplitudes in 2D anisotropic media in which the
main direction of wave propagation is perpendicular to the strata.
The curves indicate the best fits to the data.

FIG. 15. Same as in Fig. 14, but for wave amplitudes in 3D
anisotropic media in which the main direction of wave propagation
is perpendicular to the strata.
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V. SUMMARY

We showed that, depending on the nature of the disorder,
acoustic waves in strongly disordered media can be localized
or delocalized in any dimensions. In particular, they can be
extended in disordered 1D systems if the correlation function
for the distribution of the local elastic constants is of nonde-
caying power-law type, and that the waves are localized in
any dimension if the exponent 
 of the power-law correlation
function is larger than 1

2d �or, equivalently, the Hurst expo-
nent H is larger than 1

2d−1�. These results, which contradict
the generally accepted view that off-diagonal disorder has a
much weaker effect on localization than the diagonal disor-
der, have important practical implications.

For example, as pointed out in the Introduction, in order
for seismic records to contain meaningful information on the
geology and content of a natural porous formation of linear
size L, the localization length � must be larger L. Otherwise,
propagation and scattering of such waves can provide infor-
mation on the formation only up to length scale �; one cannot
obtain meaningful information at larger length scales.13 The
localization length � is, clearly, a function of the system’s
dimensionality, the exponent 
 and amplitude D
, and other
relevant physical parameters of the system. The determina-
tion of � remains a major numerical task.

Separately, we showed recently27 that power-law correla-
tions of the type that we consider in this paper give rise to
rough, self-affine wave fronts in the heterogeneous media
that we studied here. The self-affinity of the WFs is charac-
terized by a roughness exponent �, which is estimated28 as
follows. We compute the second-order front-front correlation
function, defined by

C�r� = ��d�x� − d�x + r��2� , �37�

where d�x� is the position of the WF. For example, in 2D and
at a given x d�x� is the WF distance along the y direction, the

main direction of wave propagation, from the first row at y
=0 �see Fig. 10�, and the averaging, for each value of r �also
a point on the WF�, is over all values of x. For a self-affine
rough front, one must have �Ref. 28�,

C�r� � r2�, �38�

where � is the roughness exponent. We showed27 that in all
the cases one has, to within a few percent of H,

� = H = 
 − 1. �39�

That is, the WF roughness exponent—a dynamical property
of the medium—is equal to the Hurst exponent—a static
property of the medium that characterizes the spatial distri-
bution of its local elastic moduli. This opens up the possibil-
ity of determining the Hurst exponent H �or, equivalently, the
exponent 
� in a laboratory experiment. This aspect of the
problem will be studied in a future paper.

As mentioned in the Introduction, localization of seismic
waves in heterogeneous rock also has important implications
for the analysis of the seismic data that are generated by an
earthquake.29 If the waves are localized in the rock, and if a
station that monitors the seismic activity of the rock is at a
distance from the earthquake’s hypocenter which is larger
than the waves’ localization length, then, the data collected
by the station will not provide any useful information about
the seismic activity prior to and during the earthquake. The
results of a study of this issue will be reported in a future
paper.
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