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Abstract

The effect of etching time scale of glass surface on its statistical properties has been studied using atomic force

microscopy technique. We have characterized the complexity of the height fluctuation of an etched surface by the

stochastic parameters such as intermittency exponents, roughness, roughness exponents, drift and diffusion coefficients

and found their widths in terms of the etching time.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The complexity of rough surfaces is the subject of a large variety of investigations in different fields of
science [1,2]. Surface roughness has an enormous influence on many important physical phenomena such as
contact mechanics, sealing, adhesion, friction and self-cleaning paints and glass windows [3,4]. A surface
roughness of just a few nanometers is enough to remove the adhesion between clean and (elastically) hard
solid surfaces [3]. The physical and chemical properties of surfaces and interfaces are to a significant degree
determined by their topographic structure. The technology of micro-fabrication of glass is getting more and
more important because glass substrates are currently being used to fabricate micro-electro-mechanical system
(MEMS) devices [5]. Glass has many advantages as a material for MEMS applications, such as good
mechanical and optical properties. It is a high electrical insulator, and it can be easily bonded to silicon
substrates at temperatures lower than the temperature needed for fusion bonding [6]. Also micro- and nano-
structuring of glass surfaces is important for the production of many components and systems such as
e front matter r 2006 Elsevier B.V. All rights reserved.
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gratings, diffractive optical elements, planar wave guide devices, micro-fluidic channels and substrates for
(bio) chemical applications [7]. Wet etching is also well developed for some of these applications [8–14].

One of the main problems in the rough surface is the scaling behavior of the moments of height h and
evolution of the probability density function (PDF) of h, i.e. Pðh;xÞ in terms of the length scale x. Recently
some authors have been able to obtain a Fokker–Planck equation describing the evolution of the probability
distribution function in terms of the length scale, by analyzing some stochastic phenomena, such as rough
surfaces [15–17], turbulent system [18], financial data [19], cosmic background radiation [20] and heart
interbeats [21], etc. They noticed that the conditional probability density of field increment satisfies the
Chapman–Kolmogorov equation. Mathematically, this is a necessary condition for the fluctuating data to be a
Markovian process in the length (time) scales [22].

In this work, we investigate the etching process as a stochastic process. We measure the intermittency
exponents of height structure function, roughness, roughness exponents and Kramers–Moyal’s (KM)
coefficients. Indeed we consider the etching time t, as an external parameter, to control the statistical
properties of a rough surface and find their variations with t. It is shown that the first and second KM’s
coefficients have well-defined values, while the third and fourth order coefficients tend to zero. The first and
second KM’s coefficients for the fluctuations of hðxÞ enable us to explain the height fluctuation of the etched
glass surface.
2. Experimental

We started with glass microscope slides as a sample. Only one side of the sample was etched by HF solution
for different etching times (less than 20min). The HF concentration was 40% for all the experiments. The
surface topography of the etched glass samples in the scale ðo5mmÞ was obtained using an AFM (Park
Scientific Instruments). The images in this scale were collected in a constant force mode and digitized into
256� 256 pixels. A commercial standard pyramidal Si3N4 tip was used. A variety of scans, each with size L,
were recorded at random locations on the surface. Fig. 1 shows typical AFM image with resolutions of about
20 nm.
Fig. 1. AFM surface image of etched glass film with size 5� 5mm2 after 12min.
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3. Statistical quantities

3.1. Multifractal analysis and the intermittency exponent

Assuming statistical translational invariance, the structure functions SqðlÞ ¼ hjhðxþ lÞ � hðxÞjqi (moments
of the increment of the rough surface height fluctuation hðxÞ) will depend only on the space deference of
heights l, and has a power law behavior if the process has the scaling property

SqðlÞ ¼ hjhðxþ lÞ � hðxÞjqi / SqðL0Þ
l

L0

� �xðqÞ

, (1)

where L0 is the fixed largest length scale of the system, h� � �i denotes statistical average (for non-overlapping
increments of length l), q is the order of the moment (we take here q40), and xðqÞ is the exponents of structure
function. The second moment is linked to the slope b of the Fourier power spectrum: b ¼ 1þ x2. The main
property of a multifractal process is that it is characterized by a non-linear xq function versus q. Monofractals
are the generic result of this linear behavior. For instance, for Brownian motion (Bm) xq ¼ q=2, and for
fractional Brownian motion (fBm) xq / q.

3.2. Roughness and roughness exponents

It is also known that to derive the quantitative information of the surface morphology one may consider a
sample of size L and define the mean height of growing film h and its variance, s by

sðL; tÞ ¼ ðhðh� hÞ2iÞ1=2, (2)

where t is etching time and h� � �i denotes an averaging over different samples, respectively. Moreover, etching
time is a factor which can be applied to control the surface roughness of thin films.

Let us now also calculate the roughness exponent of the etched glass. Starting from a flat interface (one of
the possible initial conditions), it is conjectured that a scaling of space by factor b and of time by factor bz (z is
the dynamical scaling exponent) rescales the variance s by factor bw as follows [1]:

sðbL; bztÞ ¼ basðL; tÞ (3)

which implies that

sðL; tÞ ¼ Laf ðt=LzÞ. (4)

For large t and fixed L ðx ¼ t=Lz !1Þ s saturates. However, for fixed large L and t5Lz, one expects that
correlations of the height fluctuations are set up only within a distance t1=z and thus must be independent of L.
This implies that for x51, f ðxÞ�xb with b ¼ a=z. Thus dynamic scaling postulates that

sðL; tÞ /
tb; t5Lz;

La; tbLz:

(
(5)

The roughness exponent a and the dynamic exponent b characterize the self-affine geometry of the surface and
its dynamics, respectively.

The common procedure to measure the roughness exponent of a rough surface is the use of surface structure
function depending on the length scale l which is defined as

S2ðlÞ ¼ hjhðxþ lÞ � hðxÞj2i. (6)

It is equivalent to the statistics of height–height correlation function CðlÞ for stationary surfaces, i.e.
S2ðlÞ ¼ 2s2ð1� CðlÞÞ. The second order structure function SðlÞ scales with l as l2a [1].

3.3. The Markov nature of height fluctuations: drift and diffusion coefficients

We check whether the data of height fluctuations follow a Markov chain and, if so, measure the Markov
length scale lM . As is well known, a given process with a degree of randomness or stochasticity may have a



ARTICLE IN PRESS
G.R. Jafari et al. / Physica A 375 (2007) 239–246242
finite or an infinite Markov length scale [23]. The Markov length scale is the minimum length interval over
which the data can be considered as a Markov process. To determine the Markov length scale lM , we note that
a complete characterization of the statistical properties of random fluctuations of a quantity h in terms of a
parameter x requires evaluation of the joint PDF, i.e. PN ðh1;x1; . . . ; hN ; xN Þ, for any arbitrary N. If the process
is a Markov process (a process without memory), an important simplification arises. For this type of process,
PN can be generated by a product of the conditional probabilities Pðhiþ1;xiþ1jhi;xiÞ, for i ¼ 1; . . . ;N � 1. As a
necessary condition for being a Markov process, the Chapman–Kolmogorov equation,

Pðh2;x2jh1;x1Þ ¼

Z
dðhiÞPðh2;x2jhi;xiÞPðhi;xijh1;x1Þ, (7)

should hold for any value of xi, in the interval x2oxiox1 [22].
The simplest way to determine lM for homogeneous surface is the numerical calculation of the quantity,

S ¼ jPðh2;x2jh1;x1Þ �
R
dh3Pðh2; x2jh3;x3ÞPðh3; x3jh1;x1Þj, for given h1 and h2, in terms of, for example, x3 �

x1 and considering the possible errors in estimating S. Then, lM ¼ x3 � x1 for that value of x3 � x1 such that,
S ¼ 0 [23].

It is well known, the Chapman–Kolmogorov equation yields an evolution equation for the change of the
distribution function Pðh;xÞ across the scales x. The Chapman–Kolmogorov equation formulated in a
differential form yields a master equation, which can take the form of a Fokker–Planck equation [22,23]:

q
qx

Pðh; xÞ ¼ ½�
q
qh

Dð1Þðh; xÞ þ
q2

qh2
Dð2Þðh;xÞ�Pðh;xÞ: ð8Þ

The drift and diffusion coefficients Dð1Þðh; rÞ, Dð2Þðh; rÞ can be estimated directly from the data and the
moments M ðkÞ of the conditional probability distributions:

DðkÞðh;xÞ ¼
1

k!
lim
r!0

M ðkÞ,

MðkÞ ¼
1

r

Z
dh0ðh0 � hÞkPðh0;xþ rjh; xÞ. (9)

The coefficients DðkÞðh;xÞ’s are known as Kramers–Moyal coefficients. According to Pawula’s theorem [22],
the Kramers–Moyal expansion stops after the second term, provided that the fourth order coefficient Dð4Þðh;xÞ
vanishes [22]. The forth order coefficients Dð4Þ in our analysis was found to be about Dð4Þ ’ 10�4Dð2Þ. In this
approximation, we can ignore the coefficients DðnÞ for nX3. We note that this Fokker–Planck equation is
equivalent to the following Langevin equation (using the Ito interpretation) [22]:

q
qx

hðxÞ ¼ Dð1Þðh;xÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð2Þðh;xÞ

q
f ðxÞ, (10)

where f ðxÞ is a random force, zero mean with Gaussian statistics, d-correlated in x, i.e.
hf ðxÞf ðx0Þi ¼ 2dðx� x0Þ. Furthermore, with this last expression, it becomes clear that we are able to separate
the deterministic and the noisy components of the surface height fluctuations in terms of the coefficients Dð1Þ

and Dð2Þ.

4. Results and discussion

Now, using the introduced statistical parameters in the previous sections, it is possible to obtain some
quantitative information about the effect of etching time on surface topography of the glass surface. To study
the effect of the etching time on the surface statistical characteristics, we have utilized an AFM imaging
technique in order to obtain micro-structural data of the etched glass surfaces at the different etching times in
the HF. Fig. 1 shows the AFM image of etched glass after 12min of etching. To investigate the scaling
behavior of the moments of dhl ¼ hðxþ lÞ � hðxÞ, we consider the samples that reached the stationary state.
This means that their statistical properties do not change with time. In our case the samples with an etching
time of more than 20min are almost stationary. Fig. 2 shows the log–log plot of the structure functions versus
length scale l for different orders of moments. The straight lines show that the moments of order q have the
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Fig. 2. Scaling of the structure functions in log–log plot for moments less than 8. (from bottom to top).
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Fig. 3. The results of scaling exponent xq which is clearly linear vs. q.
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scaling behavior. We have checked the scaling relation up to moment q ¼ 10. The resulting intermittency
exponent xq is shown in Fig. 3. It is evident that xq has a linear behavior. This means that the height
fluctuations are mono-fractal behavior. We also directly estimated the scaling exponent of the linear term
lqH=hðhðxþ lÞ � hðxÞÞqi and obtained the following values for the samples with 20min etching time, x1 ¼
0:70� 0:04 and x2 ¼ 1:40� 0:04. This means etching memorizes fractal features during etching. Therefore
using the scaling exponent x2 we obtain the roughness exponent a as x2=2 ¼ 0:70� 0:04. Fig. 4 presents the
structure function SðlÞ of the surface at the different etching times, using Eq. (6). It is also possible to evaluate
the grain size dependence on the etching time, using the correlation length achieved by the structure function
represented in Fig. 4. The correlation lengths increase with etching time. Its value has an exponential behavior
448ð1� expð�0:15tÞÞnm. Also we find that the dynamical exponent is given by b ¼ 0:6� 0:1. Also we
measured the variation of the Markov length with etching time t (min), and obtain lM ¼ 40þ 3t (nm) for time
scales to20 min.

Finally, to obtain the stochastic equation of the height fluctuation behaviors of the surface, we need to
measure the Kramer–Moyal Coefficients. In our analysis the forth order coefficients Dð4Þ is less than second
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Fig. 4. Log–Log plot of selection structure function of the etched glass surfaces.
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Fig. 5. Drift coefficients of the surfaces at different etching times less than 20min.
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order coefficients, Dð2Þ, about Dð4Þ ’ 10�4Dð2Þ. In this approximation, according to Pawula’s theorem [22], we
ignored the coefficients DðnÞ for nX3. Therefore to discuss the surfaces, we need just measure the drift
coefficient Dð1Þðh=sÞ and diffusion coefficient Dð2Þðh=s using Eq. (9). Figs. 5 and 6 show the drift coefficient
Dð1Þðh=sÞ and diffusion coefficients Dð2Þðh=sÞ for the surfaces at the different etching times, respectively. It can
be shown that the drift and diffusion coefficients have the following behavior:

Dð1Þ
h

s
; t

� �
¼ �f ð1ÞðtÞ

h

s
; ð11Þ

Dð2Þ
h

s
; t

� �
¼ f ð2ÞðtÞ

h

s

� �2

: ð12Þ

The two coefficients f ð1ÞðtÞ and f ð2ÞðtÞ increase with the h=s and is then saturated. Using the data analysis we
obtain that they are linear versus time (min): f ð1ÞðtÞ ¼ 0:005t and f ð2ÞðtÞ ¼ 0:0003t for time scales to20 min. To
better compare the parameters of samples we divided the heights to their variances. In this case, maximum and
minimum of heights are about plus 1 and minus 1, respectively. Comparing samples with etching times 2 and
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Fig. 6. Diffused coefficients of the surface at different etching times less than 20min.
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6min shows f ð1Þ increases 300% after 4min (from 2 to 6min) from f ð1Þðt ¼ 2� 60Þ ¼ 0:6 to
f ð1Þðt ¼ 6� 60Þ ¼ 1:8. Also, f ð2Þ is 0.006 and 0.018 after 2 and 6min, respectively.

5. Conclusion

We have investigated the role of etching time, as an external parameter, to control the statistical properties
of a rough surface. We have shown that in the saturated state the structure of topography has fractal features
with fractal dimension Df ¼ 1:30. In addition, Langevin characterization of the etched surfaces enables us to
regenerate the rough surfaces grown at the different etching times, with the same statistical properties in the
considered scales [15].
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