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Abstract. We use multifractal detrended fluctuation analysis (MF-DFA), to
study sunspot number fluctuations. The result of the MF-DFA shows that there
are three crossover timescales in the fluctuation function. We discuss how the
existence of the crossover timescales is related to a sinusoidal trend. Using Fourier
detrended fluctuation analysis, the sinusoidal trend is eliminated. The Hurst
exponent of the time series without the sinusoidal trend is 0.12 + 0.01. Also
we find that these fluctuations have multifractal nature. Comparing the MF-
DFA results for the remaining data set to those for shuffled and surrogate series,
we conclude that its multifractal nature is almost entirely due to long range
correlations.
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1. Introduction

The important feature of the sun’s outer regions is the existence of a reasonably strong
magnetic field. To the lowest order of approximation, the sun’s magnetic field is dipolar
in character and is axisymmetric. The strength of the field at a typical point on the solar
surface is approximately a few gauss. There is, however significant variation in this value
and there are localized regions (called sunspots) in which the field can be much higher [1].
Because of the symmetry of the twisted magnetic lines at the origin of sunspots, they
are generally seen in pairs or in groups of pairs on both sides of the solar equator. As
the sunspot cycle progresses, spots appear closer to the sun’s equator giving rise to the
so-called ‘butterfly diagram’ in the time latitude distribution [2]. The twisted magnetic
fields above sunspots are sites where solar flares are observed. It has been found that
chromospheric flares show a very close statistical relationship with sunspots [1]. The
number of sunspots is continuously changing in time in a random fashion and constitutes
a typically random time series. Figure 1 shows the monthly measured number of sunspots
in terms of time. The data belong to a data set collected by the Sunspot Index Data
Center (SIDC) from 1749 up to the present [3].

Recently, the statistical properties of sun activity have been investigated by some
methods in chaos theory [4] and multifractal analysis [5,6]. The periodic occurrences
of hemispheric sunspots have been analysed with respect to the changes in time using
wavelets. The north—south asymmetries concerning solar activity and rotational behaviour
have been investigated by using wavelets and autocorrelation functions [7]. Cross-
correlation functions between monthly mean sunspot areas and sunspot numbers have
been determined in some papers [8]. The evidence for the existence of ‘active longitudes’
on the sun is given by using the autocorrelation function of daily sunspot numbers [8,9].
See also [10, 11] as regards the relation between sunspot number fluctuation and number
of flares, their evolution steps, i.e. duration, rise times, decay times, event asymmetries.
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Figure 1. Observed spot numbers as a function of time.

In this paper we would like to characterize the complex behaviour of sunspot time
series through the computation of the signal parameters—scaling exponents—which
quantify the correlation exponents and multifractality of the signal. As shown in figure 1,
the sunspot time series has a sinusoidal trend, with a frequency equal to the well-known
cycle of sun activity, approximately 11 years. Because of the non-stationary nature of
sunspot time series, and due to the finiteness of the available data sample, we should
apply some methods which are insensitive to non-stationarities, like trends.

To eliminate the effect of the sinusoidal trend, we apply Fourier detrended fluctuation
analysis (F-DFA) [12,13]. After elimination of the trend we use multifractal detrended
fluctuation analysis (MF-DFA) to analyse the data set. The MF-DFA methods are
the modified version of detrended fluctuation analysis (DFA) used to detect multifractal
properties of time series. The detrended fluctuation analysis (DFA) method introduced by
Peng et al [14] has became a widely used technique for the determination of (mono)fractal
scaling properties and the detection of long range correlations in noisy, non-stationary
time series [14]-[18]. It has been applied successfully in diverse fields such as DNA
sequences [14,19], heart rate dynamics [20]-[22], neuron spiking [23], human gait [24], long
time weather records [25], cloud structure [26], geology [27], ethnology [28], economical
time series [29], solid state physics [30].

The paper is organized as follows. In section 2 we describe the MF-DFA and F-
DFA methods in detail and show that the scaling exponents determined via the MF-DFA
method are identical to those obtained by the standard multifractal formalism based on
partition functions. We eliminate the sinusoidal trend via the F-DFA technique in section 3
and investigate the multifractal nature of the remaining fluctuation. In section 4, we
examine the source of multifractality in sunspot data by comparing the MF-DFA results
for the remaining data set to those obtained via the MF-DFA for shuffled and surrogate
series. Section 5 closes with a discussion of the present results.
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2. Multifractal detrended fluctuation analysis

The simplest type of multifractal analysis is based upon the standard partition function
multifractal formalism, which has been developed for the multifractal characterization of
normalized, stationary measurements [31]-[34]. Unfortunately, this standard formalism
does not give correct results for non-stationary time series that are affected by trends or
that cannot be normalized. Thus, in the early 1990s an improved multifractal formalism
was developed, the wavelet transform modulus maxima (WTMM) method [35], which is
based on the wavelet analysis and involves tracing the maxima lines in the continuous
wavelet transform over all scales. Another method, multifractal detrended fluctuation
analysis (MF-DFA), is based on the identification of the scaling of the gth-order moments
depending on the signal length and is a generalization of the standard DFA using only
the second moment ¢ = 2.

The MF-DFA does not require the modulus maxima procedure, in contrast to the
WTMM method, and hence does not require more effort in programming and computing
than the conventional DFA. On the other hand, often experimental data are affected
by non-stationarities like trends, which have to be well distinguished from the intrinsic
fluctuations of the system in order to find the correct scaling behaviour of the fluctuations.
In addition very often we do not know the reasons for underlying trends in collected data
and even worse we do not know the scales of the underlying trends; also, usually the
available record data set is small. For the reliable detection of correlations, it is essential
to distinguish trends from the fluctuations intrinsic to the data. Hurst rescaled range
analysis [36] and other non-detrending methods work well if the records are long and do
not involve trends. But if trends are present in the data, they might give wrong results.
Detrended fluctuation analysis (DFA) is a well-established method for determining the
scaling behaviour of noisy data in the presence of trends without knowing their origin and
shape [14, 21], [37]-[39].

2.1. Description of the MF-DFA

The modified multifractal DFA (MF-DFA) procedure consists of five steps. The first
three steps are essentially identical to the conventional DFA procedure (see e.g. [14]-
[18]). Suppose that xj is a series of length N, and that this series is of compact support,
i.e. 7, = 0 for an insignificant fraction of the values only.

e Step 1. Determine the ‘profile’

V(i)=Y [a, — (2)], i=1,...,N. (1)

k=1

Subtraction of the mean (x) is not compulsory, since it would be eliminated by the
later detrending in the third step.

e Step 2. Divide the profile Y (i) into N; = int (N/s) non-overlapping segments of equal
lengths s. Since the length N of the series is often not a multiple of the timescale s
considered, a short part at the end of the profile may remain. In order not to disregard
this part of the series, the same procedure is repeated starting from the opposite end.
Thereby, 2N, segments are obtained altogether.
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e Step 3. Calculate the local trend for each of the 2Ny segments by a least squares fit
of the series. Then determine the variance

1 < . :
F(s,v) = ;Z{Y[(V— Ds + ] — 40}, (2)
i=1
for each segment v, v =1,..., Ny, and

F(s,0) = 2 S AYIN = (= NoJs +1] = i)} )

for v = Ng+1,...,2N,. Here, y,(i) is the fitting polynomial in segment v. Linear,
quadratic, cubic or higher order polynomials can be used in the fitting procedure
(conventionally called DFA1, DFA2, DFA3, ...) [14,22]. Since the detrending of the
time series is done by the subtraction of the polynomial fits from the profile, different
order DFA differ in their capability of eliminating trends in the series. In (MF-)DFAm
(mth-order (MF-)DFA) trends of order m in the profile (or, equivalently, of order m—1
in the original series) are eliminated. Thus a comparison of the results for different
orders of DFA allows one to estimate the type of the polynomial trend in the time
series [16,17].

e Step 4. Average over all segments to obtain the gth-order fluctuation function, defined
as

2N, 1/q
Fy(s) = {;VS > [F(s VW} , (4)

where, in general, the index variable ¢ can take any real value except zero. For ¢ = 2,
the standard DFA procedure is retrieved. Generally we are interested in how the
generalized ¢ dependent fluctuation functions Fj(s) depend on the timescale s for
different values of q. Hence, we must repeat steps 2, 3 and 4 for several timescales s.
It is apparent that F,(s) will increase with increasing s. Of course, F(s) depends on
the DFA order m. By construction, F,(s) is only defined for s > m + 2.

e Step 5. Determine the scaling behaviour of the fluctuation functions by analysing
log-log plots of F,(s) versus s for each value of ¢. If the series x; are long range power
law correlated, Fj(s) increases, for large values of s, as a power law,

F,(s) ~ s"9. (5)

In general, the exponent h(q) may depend on ¢. For stationary time series such
as fGn (fractional Gaussian noise), Y (i) in equation (1) will be a fBm (fractional
Brownian motion) signal, so 0 < h(q = 2) < 1.0. The exponent h(2) is identical to
the well-known Hurst exponent H [14,15,31]. Also for a non-stationary signal, such
as fBm noise, Y (i) in equation (1) will be a sum of fBm signals, so the corresponding
scaling exponent of F,(s) is identified by h(q¢ = 2) > 1.0 [14,40] (see the appendix
for more details). In this case the relation between the exponents h(2) and H will be
H = h(q = 2)—1. The exponent h(q) is known as the generalized Hurst exponent. The
autocorrelation function can be characterized by a power law C(s) = (ngpng4s) ~ s 7
with exponent v = 2 — 2H. Its power spectra can be characterized by S(w) ~ w™?
with frequency w and § = 2H —1, In the non-stationary case, the correlation exponent
and power spectrum scaling are v = —2H and = 2H + 1, respectively [14, 40].
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For monofractal time series, h(q) is independent of ¢, since the scaling behaviour
of the variances F?(s,v) is identical for all segments v, and the averaging procedure in
equation (4) will just give this identical scaling behaviour for all values of ¢. If we consider
positive values of ¢, the segments v with large variance F(s,v) (i.e. large deviations from
the corresponding fit) will dominate the average F,(s). Thus, for positive values of ¢,
h(q) describes the scaling behaviour of the segments with large fluctuations. For negative
values of ¢, the segments v with small variance F?(s,v) will dominate the average F,(s).
Hence, for negative values of ¢, h(q) describes the scaling behaviour of the segments with

small fluctuations®.

2.2. Relation to standard multifractal analysis

For a stationary, normalized series the multifractal scaling exponents h(q) defined in
equation (5) are directly related to the scaling exponents 7(q) defined by the standard
partition function-based multifractal formalism as shown below. Suppose that the series
x, of length N is a stationary, normalized sequence. Then the detrending procedure in step
3 of the MF-DFA method is not required, since no trend has to be eliminated. Thus, the
DFA can be replaced by the standard fluctuation analysis (FA), which is identical to the

DFA except for a simplified definition of the variance for each segment v, v =1,..., N,.
Step 3 now becomes (see equation (2))
Fa(s,v) = [Y(vs) = Y((v = 1)s)]*. (6)

Inserting this simplified definition into equation (4) and using equation (5), we obtain

2N 1/q
{2]1\[5 Z Y (vs) =Y ((v — 1)3)|Q} ~ @) (7)

For simplicity we can assume that the length N of the series is an integer multiple of the
scale s, obtaining Ny = N/s, and therefore

N/s

DY (ws) =Y ((r—1)s)|? ~ s, (8)

This corresponds to the multifractal formalism used e.g. in [32,34]. In fact, a hierarchy of
exponents H, similar to our h(g) has been introduced on the basis of equation (8) in [32].
In order to relate also to the standard textbook box counting formalism [31, 33], we employ
the definition of the profile in equation (1). It is evident that the term Y (vs)—Y ((r—1)s)
in equation (8) is identical to the sum of the numbers z;, within each segment v of size s.
This sum is known as the box probability ps(v) in the standard multifractal formalism

6 For the maximum scale s = N the fluctuation function F,(s) is independent of g, since the sum in equation (4)
runs over only two identical segments (Ns = [N/s] = 1). For smaller scales s < N the averaging procedure runs
over several segments, and the average value F,(s) will be dominated by the F?(s,v) from the segments with small
(large) fluctuations if ¢ < 0 (¢ > 0). Thus, for s < N, F,(s) with ¢ < 0 will be smaller than F,(s) with ¢ > 0,
while they become equal for s = N. Hence, if we assume an homogeneous scaling behaviour of Fy(s) following
equation (5), the slope h(g) in a log-log plot of Fy(s) with ¢ < 0 versus s must be larger than the corresponding
slope for F,(s) with ¢ > 0. Thus, h(q) for ¢ < 0 will usually be larger than h(q) for ¢ > 0.
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http://dx.doi.org/10.1088/1742-5468/2006/02/P02003

Multifractal detrended fluctuation analysis of sunspot time series

for normalized series xy,

vs

()= D wm=Y(vs) = Y((v—1)s). (9)
k=(v—1)s+1
The scaling exponent 7(q) is usually defined via the partition function Z,(s),
N/s

Zy(s) =Y Ips(n)]? ~ 57, (10)

where ¢ is a real parameter as in the MF-DFA method, discussed above. Using equation (9)
we see that equation (10) is identical to equation (8), and obtain analytically the relation
between the two sets of multifractal scaling exponents,

7(q) = qh(q) — 1. (11)

Thus, we observe that h(q) defined in equation (5) for the MF-DFA is directly related
to the classical multifractal scaling exponents 7(¢). Note that h(q) is different from the
generalized multifractal dimensions

7(q)  qh(q) —1

D =
(q) 1 =)

: (12)

that are used instead of 7(¢) in some papers. While h(q) is independent of ¢ for a
monofractal time series, D(q) depends on ¢ in this case. Another way to characterize
a multifractal series is via the singularity spectrum f(«), that is related to 7(¢) via a
Legendre transform [31, 33]:

a=7(g) and  f(a)=qa—7(0). (13)

Here, a is the singularity strength or Holder exponent, while f(a) denotes the dimension
of the subset of the series that is characterized by «. Using equation (11), we can directly
relate a and f(«) to h(q):

a=h(q)+qh'(q9) and  f(a)=qla—h(g)]+1. (14)

A Holder exponent denotes monofractality, while in the multifractal case, the different
parts of the structure are characterized by different values of «, leading to the existence
of the spectrum f(«).

2.3. Fourier detrended fluctuation analysis

In some cases, there exist one or more crossover (time)scales sy separating regimes with
different scaling exponents [16,17]. In this case investigation of the scaling behaviour is
more complicated and different scaling exponents are required for different parts of the
series [18]. Therefore one needs a multitude of scaling exponents (multifractality) for a
full description of the scaling behaviour. A crossover can often arise from a variation in
the correlation properties of the signal at different scales of time or space, or from trends
in the data. To remove the crossover due to a trend such as a sinusoidal trend, Fourier
detrended fluctuation analysis (F-DFA) is applied. F-DFA is a modified approach for the
analysis of low frequency trends added to a noise in time series [12,13,41,42].
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Figure 2. Behaviour of the standard deviation of the sunspot time series as a
function of the timescale. It shows that this time series is not stationary and
direct calculation of the correlation gives a strongly wrong result.

In order to investigate how we can remove trends having a low frequency periodic
behaviour, we transform the data record to Fourier space, then we truncate the first
few coefficients of the Fourier expansion and inverse Fourier transform the series. After
removing the sinusoidal trends we can obtain the fluctuation exponent by using the direct
calculation of the MF-DFA. If truncation numbers are sufficient, the crossover due to a
sinusoidal trend in the log-log plot of F|(s) versus s disappears.

3. Analysis of sunspot time series

As mentioned in section 2, a spurious correlation may be detected if the time series is non-
stationarity, so direct calculations of correlation behaviour, spectral density exponents,
fractal dimensions etc do not give reliable results. It can be checked that the sunspot time
series is non-stationary. One can verified the non-stationarity property experimentally by
measuring the stability of the average and variance in a moving window, for example
with scale s. Figure 2 shows that the standard deviation of the signal versus scale s is not
saturated. Let us determine whether the data set has a sinusoidal trend or not. According
to the MF-DFA1 method, generalized Hurst exponents h(q) in equation (5) can be found
by analysing log-log plots of F,(s) versus s for each ¢. Our investigation shows that there
are three crossover timescales sy in the log-log plots of F,(s) versus s for every ¢g. These
three crossovers divide F(s) into four regions, as shown in figure 3 (for instance we took
q = 2). The existence of these regions is due to the competition between the noise and
sinusoidal trend. For s < s1x and s > s3., the noise has the dominating effect [17]. For
S1x < 8 < 89y and Son < § < 83, the sinusoidal trend dominates [17]. The value of so, is
approximately equal to 130 months which is equal to the well-known cycle of sun activity.
As mentioned before, for very small scales s < s, the effect of the sinusoidal trend is
not pronounced, indicating that in this scale region the signal can be considered as noise

doi:10.1088,/1742-5468,/2006/02/P02003 8
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Figure 3. Crossover behaviour of the log—log plot of F'(s) versus s for the sunspot
time series for ¢ = 2.0. There are three crossover timescales in the plot of F'(s),
at scales sy, sox and s3x.
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Figure 4. The MF-DFA1 functions Fj(s) for the sunspot time series versus the
timescale s in a log-log plot. The original time series m = 0, truncation of the
first 20 terms m = 20 and 50 terms m = 50.

fluctuating around a constant which is filtered out by the MF-DFA1 procedure. In this
region the generalized DFA1 exponent is h(q¢ = 2) = 1.12 £ 0.01, which confirms that the
process is a non-stationary process with anticorrelation behaviour.

To cancel the sinusoidal trend in MF-DFA1, we apply the F-DFA method to sunspot
data. We truncate some of the first coefficients of the Fourier expansion of the sunspot
series. According to figure 4, for eliminating the crossover scales, we need to remove
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http://dx.doi.org/10.1088/1742-5468/2006/02/P02003

Multifractal detrended fluctuation analysis of sunspot time series

15 T T T T T

h(q)

q
1.05
1 oo, |
5 095} o 5
= 09 o ]
le) ]
0.85 S ]
5 ° ]
0.8 2. R R S SR S S S S S RS S ST RS 6 W
1.1 1.2 1.3 1.4
o

Figure 5. The ¢ dependence of the generalized Hurst exponent h(q), the
corresponding 7(¢) and the singularity spectrum f(«) are shown in the upper
to lower panels respectively for sunspot time series without a sinusoidal trend.

approximately 50 terms of the Fourier expansion. Then, by inverse Fourier transformation,
the noise without a sinusoidal trend is extracted.

The MF-DFAT1 results of the remaining new signal are shown in figure 5. The sunspot
time series is a multifractal process as indicated by the strong ¢ dependence of the
generalized Hurst exponents and 7(q) [43]. The ¢ dependence of the classical multifractal
scaling exponent 7(¢) has different behaviours for ¢ < 0 and ¢ > 0. For positive and
negative values of ¢, the slopes of 7(q) are 1.11 + 0.01 and 1.44 4+ 0.01, respectively.
According to the relation between the Hurst exponent and h(2),i.e. h(¢ =2)—1 = H, we
find that the Hurst exponent is 0.12 + 0.01. This result is equal to the value of the Hurst
exponent on a small scale of MF-DFA1 for noise with a sinusoidal trend. The fractal
dimension is obtained as Dy = 2 — H = 1.88 [16]. The values of quantities derived from
the MF-DFA1 method are given in tables 1 and 2.

Usually, in the MF-DFA method, deviation from a straight line in the log-log plot
of equation (5) occurs for small scales s. This deviation limits the capability of DFA
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Table 1. The values of h(g = 2), multifractal scaling and generalized multifractal
exponents for ¢ = 2.0 for original, surrogate and shuffled monthly sunspot time
series obtained by MF-DFA1.

Data h T D

Sunspot 1.124+0.01 1.244+0.02 1.24+0.02
Surrogate 1.13+£0.01 1.26+0.02 1.26+0.02
Shuffled 0.51£0.01 0.02+£0.02 0.02+0.02

Table 2. The values of the Hurst (H), power spectrum scaling (3) and
autocorrelation scaling () exponents for original, surrogate and shuffled monthly
sunspot time series obtained by MF-DFAL.

Data H 16} ~

Sunspot 0.12£0.02 1.24+£0.02 —-0.24£0.02
Surrogate 0.13£0.02 1.264+0.02 —0.26+£0.02
Shuffled 0.501£0.01 0.02+£0.02 0.98 £ 0.02

to determine the correct correlation behaviour for very short scales and in the regime of
small s. The modified MF-DFA is defined as follows [16]:

mod (o) _ 4(s)
KE )
v ([Fqs‘th(s')]2>1/2 81/2

4 (s) (TG T T (for & > 1), (15)

where ([F:™(s)]?)!/2 denotes the usual MF-DFA fluctuation function (defined in
equation (4)) averaged over several configurations of shuffled data taken from the original
time series, and s’ &~ N/40. The value of the Hurst exponent obtained by modified MF-
DFA1 methods for sunspot time series is 0.11 + 0.01. The relative deviation of the Hurst
exponent which is obtained by modified MF-DFA1 in comparison to MF-DFA1 for the
original data is approximately 8.33%.

4. Comparison of the multifractality for original, shuffled and surrogate sunspot
time series

As discussed in the section 3 the remaining data set after the elimination of the sinusoidal
trend has a multifractal nature. In this section we are interested in determining the source
of multifractality. In general, two different types of multifractality in time series can be
distinguished:

(i) Multifractality due to a fatness of the probability density function (PDF) of the time
series. In this case the multifractality cannot be removed by shuffling the series.

(ii) Multifractality due to different correlations in small and large scale fluctuations. In
this case the data may have a PDF with finite moments, e.g. a Gaussian distribution.

doi:10.1088/1742-5468 /2006 /02/P02003 11
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Thus the corresponding shuffled time series will exhibit monofractal scaling, since all
long range correlations are destroyed by the shuffling procedure. If both types of
multifractality are present, the shuffled series will show weaker multifractality than the
original series. The easiest way to clarify the type of multifractality is by analysing the
corresponding shuffled and surrogate time series. The shuffling of time series destroys
the long range correlation, therefore if the multifractality belongs only to the long range
correlation, we should find hge(g) = 0.5. The multifractality nature due to the fatness
of the PDF signals is not affected by the shuffling procedure. On the other hand, to
determine the multifractality due to the broadness of the PDF, the phase of the discrete
Fourier transform (DFT) coefficients of sunspot time series are replaced with a set of
pseudo-independent distributed uniform (—7, 7) quantities in the surrogate method. The
correlations in the surrogate series do not change, but the probability function changes to
the Gaussian distribution. If multifractality in the time series is due to a broad PDF, h(q)
obtained by the surrogate method will be independent of ¢. If both types of multifractality
are present in sunspot time series, the shuffled and surrogate series will show weaker
multifractality than the original one.

To check the nature of the multifractality, we compare the fluctuation function F(s),
for the original series (after cancellation of the sinusoidal trend) with the result for the
corresponding shuffled, F""(s), and surrogate series F;"(s). Differences between these
two fluctuation functions and the original one directly indicate the presence of long range
correlations or broadness of the probability density function in the original series. These
differences can be observed in a plot of the ratios Fy(s)/F:™ (s) and F,(s)/F;"(s) versus
s [43]. Since the anomalous scaling due to a broad probability density affects F,(s) and
F;huf(s) in the same way, only multifractality due to correlations will be observed in

F,(s)/F;™(s). The scaling behaviours of these ratios are

, (16)

Fy)/F(s) o 0@ = heor(@), (17)

If only fatness of the PDF is responsible for the multifractality, one should find h(q) =
hent(q) and heor(¢) = 0. On the other hand, deviations from he,(¢) = 0 indicate the
presence of correlations, and ¢ dependence of hey(¢q) indicates that multifractality is due
to the long range correlation. If only correlation multifractality is present, one finds
hewt(q) = 0.5. If both distribution and correlation multifractality are present, both
hsnut (q) and hgy,(q) will depend on . The g dependences of the exponent h(q) for original,
surrogate and shuffled time series are shown in figure 6. The ¢ dependence of h., and
hppr shows that the multifractality nature of sunspot time series is due to both broadness
of the PDF and long range correlation. The absolute value of h.,(q) is greater than
hppr(q), so the multifractality due to the fatness is weaker than the multifractality due
to the correlation. The deviations of hgy(q) and hgyue(q) from h(q) can be determined by
using the x? test as follows:
N 2
2 Z [h(%) ho(qz)] (18)

Xo = )

Fq<5)/FqShuf<S> ~ Sh(Q)_hshuf(q) — Shcor(q)

where the symbols ‘¢’ can be replaced by ‘sur’ and ‘shuf’, to determine the confidence
level of hg,, and hg,,s for generalized Hurst exponents of the original series, respectively.
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Figure 6. Generalized Hurst exponent, h(q) as a function of ¢ for the original,
surrogate and shuffled data.

Table 3. The value of the Hurst exponent obtained using MF-DFA1 and modified
MF-DFAL1 for the original, shuffled and surrogate monthly sunspot time series.

Method Sunspot Surrogate  Shuffled

MF-DFA1 0.124+0.01 0.13+£0.01 0.514+0.01
Modified 0.11+0.01 0.12+£0.01 0.50+£0.01

The values of the reduced chi square x2, = x2/N (N is the number of degrees of freedom)
for shuffled and surrogate time series are 1653.47, 1.10, respectively. On the other hand,
the widths of the singularity spectrum, f(«), i.e. A = @(¢min) — @(Gmax) for original,
surrogate and shuffled time series, are approximately 0.44, 0.75 and 0.22 respectively.
These values also show that the multifractality due to correlation is dominant [44].

The values of the generalized Hurst exponent h(g = 2.0), multifractal scaling 7(q = 2)
and generalized multifractal exponents (D(g = 2)) for the original, shuffled and surrogate
sunspot time series obtained with the MF-DFA1 method are reported in table 1, The
related scaling exponents are indicated in table 2. The values of the Hurst exponent
obtained by MF-DFA1 and modified MF-DFA1 methods for original, surrogate and
shuffled sunspot time series are given in table 3.

5. Conclusion

The MF-DFA method allows us to determine the multifractal characterization of the
non-stationary and stationary time series. The concept of MF-DFA of sunspot time
series can be used to gain deeper insight into the processes occurring in non-stationary
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dynamical systems, such as sunspot formation. We have shown that the MF-DFA1 result
for the monthly sunspot time series has three crossover timescales (s ). These crossover
timescales are due to the sinusoidal trend. To minimize the effect of this trend, we have
applied F-DFA to sunspot time series. Applying the MF-DFA1 method to truncated
data, we demonstrated that the monthly sunspot time series is a non-stationary time
series with anticorrelation behaviour. The ¢ dependence of h(gq) and 7(gq) indicated that
the monthly sunspot time series has multifractal behaviour. By comparing the generalized
Hurst exponent of the original time series with the shuffled and surrogate ones, we have
found that multifractality due to the correlation makes a greater contribution than the
broadness of the probability density function.
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Appendix

In this appendix we derive the relation between the exponent h(2) (DFA1 exponent)
and the Hurst exponent of a fBm signal. We show that for such a non-stationary signal
the average sample variance (equation (4)) for ¢ = 2 is proportional to s"% where
h(q =2) = H + 1. It is shown that the averaged sample variance F?(s) behaves as

2N,
1

F2(s) o, > [F(s,v)],

= ([F*(s: 1)),
= Cpy 2+, (A1)

where F?(s,v) is defined as in equation (2) and Cp is a function of Hurst exponent H.

To prove the statement we note that the data set z(k) is a fractional Brownian motion
(fBm); the partial sums Y (i) (equation (1)) will be a summed fBm signal. In the DFAT1,
the fitting function will have the expression (y, = a, + b,i). The slope b, and intercept
a, of a least squares line on Y (i) (from 0 to s) for every window (v) are given by

b — Do Y(@)i— (1/s) 0 Y (@)D i
V S — (s
S Y(@)i—(s/2) >0, V(i)
s3/12 (A.2)

R N S
aV:;;Y(Z)—g;zzg;Y(z)—g,

respectively.
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Using equations (4) and (A.2), equation (A.1) can be written as follows:

([F2(s,0)]) = <§ S —a- b¢)2>

~ <§ iy(¢)2> +{a®) + %2 ()

i=1

i=1 i=1 i=1
A 4 12 12
= - —_B-"D+—=0C A3
s s2 54 + 53 (A-3)

where we have discarded the subscript v for simplicity. Now let us calculate the functions
A, B, C and D in equation (A.3). The increment of summed fBm and fBm signals, i.e.

z(i) =Y (@) =Y(i—1)
u(i) = (1) —x(i — 1),

are a fBm z(7) and fGn (i) noise, respectively. The correlations of Y (i) and x(i) are as
follows [15]:

(A4)

(e(@)2(j)) = T [P + 72 — i = 3]

o’ H+1 (A.5)
VIOV () = -
(Y)Y (4)) 12 (ig)" ",
where 0? = (u(i)?). Also the variance of a summed fBm signal is (Y (i)?) =

(0 /(H + 1)?)i*H+Y) [14]. Finally, using equations (A.2) and (A.5), it can be easily shown
that equation (A.3) can be written as follows:

([F*(s.0)]), = Cust*D, (A6
where Cy is
Cor o2 - 40°
T 0QH+3)H+1)? [(H+1)(H+2)
2 2
_ 120 . 120 (A.7)

(H+1)(H+3)]? (H+1)2H+2)(H+3)

Therefore the standard DFA1 exponent for a non-stationary signal is related to its
Hurst exponent as h(q =2) = H + 1.
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