
data and time series.1–3 Many of these physiological time se-
ries seem to be highly chaotic, represent nonstationary data,
and fluctuate in an irregular and complex manner. One hy-
pothesis is that the seemingly chaotic structure of physio-
logical time series arises from external and intrinsic
perturbations that push the system away from a homeostatic
set point. An alternative hypothesis is that the fluctuations
are due, at least in part, to the system’s underlying dynamics. 

In this review, we describe new computational ap-
proaches—based on new theoretical concepts—for analyz-
ing physiological time series. We’ll show that the application
of these methods could potentially lead to a novel diagnos-
tic tool for distinguishing healthy individuals from those
with congestive heart failure (CHF).

Physiological Time Series
Recent research suggests that physiological time series can
possess fractal and self-similar properties, which are charac-
terized by the existence of long-range correlations (with the
correlation function being a power-law type). However, until
recently, the analysis of such fluctuations’ fractal properties
was restricted to computing certain characteristics based on
the second moment of the data, such as the power spectrum
and the two-point autocorrelation function. These analyses
indicated that the fractal behavior of healthy, free-running
physiological systems could be characterized, at least in some
cases, by 1/f-like scaling of the power spectra over a wide range
of time scales.4,5 A time series that exhibits such long-range
correlations with a power-law correlation function and is also

homogeneous (different parts of the series have identical sta-
tistical properties) is called a monofractal series. 

However, many physiological time series are inhomoge-
neous in the sense that distinct statistical and scaling prop-
erties characterize different parts of the series. In addition,
there is some evidence that physiological dynamics can ex-
hibit nonlinear properties.6–12 Such features are often as-
sociated with multifractal behavior—the presence of
long-range power-law correlations in the higher moments
of the time series—which, unlike monofractals, are non-
linear functions of the second moment’s scaling expo-
nents.13 Up until recently, though, robust demonstration
of multifractality of nonstationary time series was ham-
pered by problems related to significant bias in the esti-
mates of the data’s singularity spectrum, due to the time
series’ diverging negative moments. A new wavelet-based
multifractal formalism helps address such problems.13

Among physiological time series, the study of the statisti-
cal properties of heartbeat interval sequences has attracted
much attention.14–17 The interest is at least partly due to the
facts that

• the heart rate is under direct neuroautonomic control;
• interbeat interval variability is readily measured by non-

invasive means; and 
• analysis of heart-rate dynamics could provide important

diagnostic and prognostic information.

Thus, extensive analysis of interbeat interval variability rep-
resents an important quantity for elucidating possibly non-
homeostatic physiological variability. 

Figure 1 shows examples of cardiac interbeat time series
(the output of a spatially and temporally integrated neu-
roautonomic control system) for healthy individuals and
those with CHF. In the conventional approaches to analyz-
ing such data, we would assume the apparent noise has no
meaningful structure, so we wouldn’t expect to gain any un-
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derstanding of the underlying system through the study of
such fluctuations. Conventional studies that focus on aver-
aged quantities therefore usually ignore these fluctuations—
in fact, they’re often labeled as noise to distinguish them
from the true time series of interest.

However, by adapting and extending methods developed
in modern statistical physics and nonlinear dynamics, the
physiological fluctuations in Figure 1 can be shown to ex-
hibit an unexpected hidden scaling structure.5,10,13,18,19

Moreover, the fluctuation dynamics and associated scaling
features can change with pathological perturbation. These
discoveries have raised the possibility that understanding the
origin of such temporal structures and their alterations
through disease could elucidate certain basic aspects of
heart-rate control mechanisms and increase the potential for
clinical monitoring.

But despite this considerable progress, several interest-

ing features must still be analyzed and interpreted. The
theoretical concepts we discuss here are based on the pos-
sible Markov properties of the time series; a cascade of in-
formation from large time scales to small ones that are built
based on increments in the time series; and the extended self-
similar properties of the beat-to-beat fluctuations of healthy
subjects as well as those with CHF. The method we de-
scribe uses a set of data for a given phenomenon that con-
tains a degree of stochasticity and numerically constructs a
relatively simple equation that governs the phenomenon.
In addition to being accurate, this method is quite general,
can provide a rational explanation for complex features of
the phenomenon under study, and requires no scaling fea-
ture or assumption.

As we analyze cardiac interbeat intervals, we’ll also look
at new methods for computing the Kramers-Moyal (KM)
coefficients for the increments of interbeat intervals fluctu-
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Figure 1. Cardiac interbeat time series. The (a) interbeat fluctuations of healthy subjects and (b) those with congestive
heart failure differ greatly (note the erratic fluctuations and patchiness).
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ations, �x(�) = [x(t + �) – x(t)]/�� , where �� is the standard
deviation of increments in the interbeat data. Whereas the
first and second KM coefficients (representing the drift and
diffusion coefficients in a Fokker-Planck [FP] equation)
have well-defined values, the third- and fourth-order KM
coefficients might be small. If so, we can numerically con-
struct an FP evolution equation for the probability density
function (PDF), P(�x, �), which, in turn, can be used to gain
information on the PDF’s evolution as a function of the
time scale �.20–23

Regeneration of Stochastic Processes
Let’s start by examining the computations that lead to the
numerical construction of a stochastic equation. This equa-
tion describes the phenomenon that generates the data set,
which is then used to reconstruct the original time series.
Two basic steps are involved in the numerical analysis of the
data and their reconstruction.

Data Examination
We must first examine the data to see whether they follow a
Markov chain and, if so, we estimate the Markov time scale
tM. As is well known, a given process with a degree of sto-
chasticity can have a finite or an infinite Markov time scale,
which is the minimum time interval over which the data can
be considered to be a Markov process.20,24 To determine the
Markov scale tM, we note that a complete characterization
of the stochastic fluctuations of x(t) requires the numerical
evaluation of the joint PDF Pn(x1, t1 ; … ; xn, tn) for an arbi-
trary n, which is the number of data points in the time series
x(t). If this time series is a Markov process, we can make an
important simplification because Pn, the n-point joint PDF,
is generated by the product of the conditional probabilities
P(xi+1, ti+1|xi, ti) for i = 1, …, n – 1. A necessary condition for
x(t) to be a Markov process is that the Chapman-
Kolmogorov (CK) equation,

P(x2, t2|x1, t1) = � d(x3)P(x2, t2|x3, t3)P(x3, t3|x1, t1), (1)

holds for any value of t3 in the interval t2 < t3 < t1. We can
check the CK equation’s validity for various x1 by
comparing the directly computed conditional probability
distributions P(x2, t2|x1, t1) with the ones computed ac-
cording to the right side of Equation 1. The simplest way
to determine tM for stationary or homogeneous data is the
numerical computation of the quantity S = |P(x2, t2|x1, t1)
– � dx3 P(x2, t2|x3, t3)P(x3, t3|x1, t1)| for a given x1 and x2, in
terms of, for example, t3 – t1 (taking into account the possi-

ble numerical errors in estimating S). Then, tM = t3 – t1 for
that value of t3 – t1, for which S vanishes or is nearly zero
(achieves a minimum).

Numerical Construction
Numerical construction of an effective stochastic equation
that describes the fluctuations of the quantity x(t), repre-
senting the time series, constitutes the second step. The CK
equation yields an evolution equation for the PDF P(x, t)
across the scales t. The CK equation, when formulated in
differential form, yields a master equation that takes the
form of an FP equation:

. (2)

We can compute the drift and diffusion coefficients, 
D(1)(x, t) and D(2)(x, t), directly from the data and the mo-
ments M(k) of the conditional probability distributions

, (3)

. (4)

Note that the FP formulation is equivalent to the following
Langevin equation:

, (5)

where f(t) is a random force with zero mean and Gaussian sta-
tistics, �-correlated in t—that is, � f (t)f (t�)� = 2� (t – t�). Note
that the numerical reconstruction of a stochastic process
doesn’t imply that the data don’t contain any correlations or
that Equations 2 through 5 ignore the correlations.

Equation 5 enables us to reconstruct a stochastic time se-
ries x(t), which is similar to the original one in the statistical
sense. The stochastic process x(t) is regenerated by iterating
Equation 5, which yields a series of data without memory.
To compare the regenerated series with the original x(t), we
must take the temporal interval in the numerical discretiza-
tion of Equation 5 to be unity (or renormalize it to unity, if
need be). However, the Markov time is typically greater than
unity, so we correlate the data over the Markov time scale
tM, for which there are several methods.21,22,25 A new tech-
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nique that we’ve used in our own studies, which we refer to
as the kernel method, considers a kernel function K(u) that
satisfies the condition

, (6)

such that the data are determined, or reconstructed, by

, (7)

where h is the window width. One of the most accurate ker-
nels is the standard normal density function, K(u) =
(2�)–1/2exp(–1/2u2). In essence, the kernel method represents
the time series as a sum of “bumps” placed at the “observa-
tion” points, with its kernel determining the shape of the
bumps and its window width h fixing their width. It’s evident
that, over the scale h, the kernel method correlates the data.

Analysis of Fluctuations in Human Heartbeats
To show how the reconstruction method is used in prac-
tice, we’ve applied the method to reconstruct the fluctua-
tions found in the heartbeats of both healthy and ill human
subjects by taking h � tM. Recent studies5,19,26,27 reveal that
under normal conditions, beat-to-beat fluctuations in heart
rates might display extended correlations of the type typi-
cally exhibited by dynamical systems far from equilibrium.
Some have argued,26 for example, that the various stages
of sleep might be characterized by extended correlations
of heart rates separated by a large number of beats. Al-
though the existence of extended correlations in the fluc-
tuations of human heartbeats is an interesting and
important result, we argue that the Markov time scale tM
and the associated drift and diffusion coefficients of the in-
terbeat fluctuations of healthy subjects and those with
CHF can help us better distinguish the two classes of sub-
jects, particularly in the early stages of the disease, because
these quantities have completely different behaviors for the
two classes of patients.

We’ve used this method to analyze both daytime (12:00
p.m. to 18:00 p.m.) and nighttime (12:00 a.m. to 6:00 a.m.)
heartbeat time series of healthy subjects, and the daytime
records of patients with CHF.28,29 The database included 10
healthy subjects (seven females and three males aged be-
tween 20 and 50, with an average age of 34.3 years) and 12
subjects with CHF (three females and nine males aged be-

tween 22 and 71, with an average age of 60.8 years). Figure
1 presents the typical data.

As the first step of the analysis, we compute the data’s
Markov time scale tM. From the daytime data for healthy
subjects, tM = 3, 3, 3, 1, 2, 3, 3, 2, 3, and 2 (all values are mea-
sured in units of the average time scale for each subject’s
beat-to-beat times). The corresponding values for the night-
time records are 3, 3, 1, 3, 3, 2, 3, 3, 2, and 3, respectively,
comparable to those for daytime. However, for CHF pa-
tients’ daytime records, the computed Markov time scales
are 151, 258, 760, 542, 231, 257, 864, 8, 366, 393, 385, and
276. Therefore, the healthy subjects are characterized by
much smaller tM values than those of the CHF patients, giv-
ing us an unambiguous quantity for distinguishing the two
classes of patients.

Next, we check the CK equation’s validity for describing
the phenomenon for several x1-triplets by comparing the di-
rectly computed conditional probability distributions P(x2,
t2|x1, t1) with the ones computed according to the right side
of Equation 1. Here, x is the interbeat, and we define, x � (x
– )/� for all samples, where and � are the interbeat
data’s mean and standard deviations. Figure 2 compares the
two PDFs computed by the two methods. Assuming the sta-
tistical errors to be the square root of the number of events
in each bin, the two PDFs are statistically identical.

Figure 3 shows the corresponding drift and diffusion co-
efficients, D(1)(x) and D(2)(x), demonstrating that in addition
to the Markov time scale tM, the two coefficients provide an-
other important indicator for distinguishing the ill subjects
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from the healthy ones. For the healthy subjects, the drift D(1)

and the diffusion coefficients D(2)(x) follow (approximately)
linear and quadratic functions of x, respectively, whereas the
corresponding coefficients for patients with CHF follow
(approximately) third- and fourth-order equations in x.
Thus, for the healthy subjects,

D(1)(x) = –0.12x, (8)

D(2)(x) = (5 – 4.2x + 7x2) � 10–2, (9)

whereas for the patients with CHF,

D(1)(x) = –(26x + 18x2 + 7x3) � 10–4, (10)

D(2)(x) = (6 – 7x + 5x2 + 3x3 + 2x4) � 10–4, (11)

which Kuusela also obtained.29 For other databases mea-
sured for other patients, the functional dependence of D(1)

and D(2)(x) would be the same, but with different numer-
ical coefficients, and the coefficients’ order of magnitude
would be the same for all healthy subjects and likewise for
those with CHF.20 Moreover, if we analyze different parts
of the time series separately, we find practically the same
Markov time scale for different parts of the time series, but
with some differences in the numerical values of the drift
and diffusion coefficients. These coefficients have the
same functional forms, but with different coefficients in
equations such as Equations 8 through 11. Hence, we can
distinguish the data for nighttime from those patients
when they are awake.

There is yet another important difference between the
heartbeat dynamics of the two classes of subjects: compared
with the healthy subjects, the drift and diffusion coefficients
for CHF patients are very small, reflecting, in some sense,
their large Markov time scale tM. Large Markov times im-
ply longer correlation lengths for the data, and it’s well
known that the diffusivity in correlated system is smaller
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than those in random ones. Hence, we can use the Markov
time scales—and the dependence of the drift and diffusion
coefficients on x, as well as their comparative magnitudes—
to characterize the dynamics of human heartbeats and their
fluctuations, and to distinguish healthy subjects from those
with CHF.

But how accurate is the reconstruction method? Figure 4
shows a comparison between the original time series x(n)
and those reconstructed by the Langevin equation (using,
for example, Equations 5, 8, and 9) and the kernel method.
Although both methods generate series that look similar to
the original data, the kernel method appears to better mimic
the original data’s behavior. To demonstrate Equation 7’s ac-
curacy, Figure 5 compares the second moment of the sto-
chastic function, C2(m) = �[x(0) – x(m)]2�� for both the
measured and reconstructed data by using the kernel
method. The agreement between the two is excellent, but
such agreement isn’t sufficient for proving a reconstruction
method’s accuracy, so we also checked the accuracy of the
reconstructed higher-order structure function, Sn = �|x(t1)
– x(t2)|n�.28,29 We found the agreement between Sn for the
original and reconstructed time series for n 	 5 to be excel-
lent while the difference between higher-order moments of
the two times series increases.

A Cascade of Information
We could argue that if long-range, nondecaying correlations ex-
ist in the time series, we might not be able to use the recon-
struction method for analyzing them because the correlations
in a Markov process decay exponentially. Aside from the fact
that the method we’ve described provides an unambiguous
way of distinguishing healthy subjects from those with CHF
in such cases, which we believe is more effective than simply
analyzing the data to see what type of correlations might exist
in the data, we argue that nondecaying correlations do not, in
fact, pose any limitations to the reconstruction method’s fun-
damental ideas and concepts.

The reason why is that even if the reconstruction method
fails to describe long-range, nondecaying correlations in the
data, we can still use the same method to analyze the data by
invoking an important result recently pointed out by several
groups.20,21,23–25 They studied the evolution of the PDF of
several stochastic properties for turbulent free jets along
with rough surfaces. They argued that the conditional PDF
of a stochastic field’s increments, such as the increments in
the turbulent flow’s velocity field or a rough surface’s height
fluctuations, satisfies the CK equation even if the velocity
field or the height function itself contains long-range, non-

decaying correlations. This enabled them to derive an FP
equation for describing the systems under study, giving us a
way of analyzing correlated stochastic time series or data in
terms of the corresponding FP and CK equations. We now
describe the conditions under which such a formulation can
be used.

In such cases, we compute the KM coefficients for the in-
crements of the interbeat intervals’ fluctuations, �x(�) = 
x(t + �) – x(t), rather than the time series x(t) itself. We then
check whether the first and second KM coefficients that rep-
resent the drift and diffusion coefficients in an FP equation
have well-defined and finite values when the third- and
fourth-order KM coefficients are small. According to
Pawula’s theorem,24 the KM expansion,

, (12)

can be truncated after the second (diffusive) term, provided
that the third- and fourth-order coefficients D(4) vanishes,
or are very small compared with the first two coefficients. If
so—and this is often the case—the KM expansion, Equation
12, reduces to an FP evolution equation. In this case, an FP
equation is numerically constructed by computing its drift
and diffusion coefficients for the PDF P(�x, �), which, in
turn, is used to gain information on the PDF shape’s evolu-
tion as a function of the time scale �. In essence, if the first
two KM coefficients have numerically meaningful values
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(that is, they aren’t very small), and the third and higher co-
efficients are small compared to the first two coefficients, we
can use the previously described reconstruction method—
Equations 2 through 5—for the increments of the times se-
ries, rather than the time series itself.

Therefore, performing the same type of computations as
described earlier but for the increments �x(t), we can com-
pute the following results for the healthy subjects,28

D(1)(�x, �) = –(3�x + 0.46) � 10–2, (13)

D(2)(�x, �) = [(1 + 11� –1)(�x)2 + (5.7 + 28.7� –1)] � 10–2, (14)

whereas for the CHF patients, we obtain

D(1)(�x, �) = –(1.3�x + 0.18) � 10–2, (15)

D(2)(�x, �) = [(5 + 5� –1)(�x)2 + (13 + 66� –1)] � 10–3. (16)

Estimates of these coefficients are less accurate for large val-
ues of �x; we also compute the average of the coefficients
D(1) and D(2) for the entire set of healthy subjects, as well as
those with CHF. Moreover, D(4) is approximately 1/10D(2)

for the healthy subjects and roughly 1/20D(2) for those with
CHF. Therefore, the KM expansion can indeed be truncated
beyond the second term, and the FP formulation is numer-
ically justified.

Equations 13 through 16 state that the drift coefficients
for the healthy subjects and those with CHF have the same
order of magnitude, whereas the diffusion coefficients for
the given � and �x differ by roughly one order of magni-
tude. This points to a relatively simple way of distinguish-
ing the two classes of subjects. Moreover, the �-dependence
of the diffusion coefficient for the healthy subjects is
stronger than that of those with CHF (in the sense that the
numerical coefficients of � –1 are larger for the healthy sub-
jects; see Figures 7 and 8). Note that these results are con-
sistent with those presented earlier for the time series x(t)
itself—that is, they distinguish the two classes of patients
through their different drift and diffusion coefficients. Fig-
ure 6 compares the directly computed PDFs with those ob-
tained using Equation 1.

The healthy subjects’ strong �-dependence in the diffu-
sion coefficient D(2) indicates that the nature of the PDF of
their increments �x for given �—that is, P(�x, �)—is inter-
mittent and that its shape should change strongly with �.
However, for CHF patients, the PDF isn’t so sensitive to the
change of the time scale �, thus indicating that the incre-
ments’ fluctuations for these patients aren’t intermittent.

Extended Self-Similarity of Interbeat Intervals
Let’s look at another computational method for distin-
guishing healthy subjects from CHF patients. The method
is based on the concept of extended self-similarity (ESS) of a
time series. This concept is particularly useful if the time se-
ries for interbeat fluctuations (or other types of time series)
don’t, as is so often the case, exhibit scaling over a broad in-
terval. In such cases, the time interval in which the structure
function of the time series,

Sq(�) = �|x(t + �) – x(t)|q�, (17)

behaves as

Sq(�) ~ � � q, (18)

is small, in which case the existence of scale invariance in
the data can be questioned. Instead of rejecting outright the
existence of scale invariance, we must first explore the pos-
sibility of the data having scale invariance via the concept
of ESS.

The ESS is a powerful tool for checking data’s non-
Gaussian properties,30–32 and researchers have used it ex-
tensively in turbulent-flow studies. Indeed, when analyzing
the interbeat time series for human subjects (and other types

C O M P U T E R S I M U L A T I O N S

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(
Δ 2

x|
Δx

1)

Δx2

Figure 6. Test of Chapman-Kolmogorov equation for �x1 =
–0.42, �x1 = 0, and �x1 = 0.42. The solid and open symbols
represent the directly evaluated probability density
function (PDF) and the one obtained from Equation 1. The
PDFs are shifted in the horizontal directions for clarity.
Values of �x are measured in units of the standard
deviation of the increments, and the time scales �1, �2, and
�3 are 10, 30, and 20.



MARCH/APRIL 2006 61

of time series), we can, in addition to the structure function’s
�-dependence, compute a generalized form of scaling using
the ESS concept. In many cases, when the structure func-
tions Sq(�) are plotted against a specific order’s structure
function—say, S3(�)—we find an extended scaling
regime:31,32

Sq(�) ~ S3(�)�q. (19)

Clearly, meaningful results are restricted to the regime in
which S3 is monotonic. For any Gaussian process, the expo-

nents �q follow a simple equation:

�q = 1/3q. (20)

Therefore, systematic deviation from the simple scaling
relation, Equation 20, should be interpreted as deviation
from Gaussianity. An additional remarkable property of
the ESS is that it holds rather well, even when the ordi-
nary scaling doesn’t exit or can’t be detected due to the
small scaling range, which is the case for the data analyzed
here.
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heart failure, they follow roughly linear and quadratic behavior, respectively.
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Using the ESS concept, we analyzed33 the fluctuations in
human heartbeat rates of healthy subjects and those with
CHF that we looked at earlier with the reconstruction
method. Figure 9 shows the results. For a typical healthy
subject, the ESS indicates an improved scaling behavior of
the time series. In Figure 10, the structure functions’ com-
puted scaling exponents �q are plotted against the order q.
A monofractal time series corresponds to linear dependence
of �q on q, whereas a multifractal time series �q depends

nonlinearly on q. The constantly changing curvature of the
computed �q for the healthy subjects suggests multifractal-
ity of their corresponding time series. In contrast, �q is es-
sentially linear for CHF patients, indicating mono- or
simple fractal behavior.

It is well known that the moments with q < 1 and q > 1 are
related to frequent and rare events, respectively, in the time
series.30,31 Thus, for the data considered here, we might also
be interested in the frequent events in the interbeats. Figure
11 shows the results for the moment q = 0.1 against a third-
order structure function for healthy subjects and those with
CHF. The figure has two interesting features. First, the
starting point of S0.1(�) versus S3(�) differs for the healthy
subject and CHF patient data. To determine the distance
form the origin, we define34

T(� = 1) = [S2
0.1(� = 1) + S2

3(� = 1)]1/2. (21)

The figure’s second important feature is the well-defined
� * beyond which the plot of S0.1(�) versus S3(�) is multival-
ued. We can estimate � * by checking when S3(�) > S3(� + 1).
Moreover, if we define T(� *) by

T(� *) = [S2
0.1(� *) + S2

3(� *)]1/2, (22)

we get a time scale � * such that the third moment’s values
before and after � * are almost the same. Thus, the quantity
� * plays the role of a local mirror on the time axis. In other
words, locally, S3(�) for � < � * and � > � * have almost the
same value. In Figure 11, we show the time scale � * and in-
dicate that the interbeat fluctuation values of T(� = 1) and
T(� *) for healthy subjects and CHF patients differ.

Table 1 presents the computed values of T1 = T(� = 1)
for both healthy subjects and those with CHF. To compute
the results, we first rescaled the data sets by their standard
deviation, so that the T1 values are dimensionless. The av-
erage value of T1 for the healthy subjects is (� = 1) �
0.5848, with its standard deviations being � � 0.065. The
corresponding values for the CHF patients’ daytime
records are (� = 1) � 0.5077 and � � 0.03, respectively.
Therefore, on average, healthy subjects possess T1 values
that are greater than those patients with CHF. Note that
the T1 values for various data sets don’t have large enough
differences to be able to distinguish the data sets unam-
biguously. Indeed, as Table 1 indicates, three of the data
sets overlap (two belong to two healthy subjects’ daytime
records and one belongs to one of those subject’s night-
time records).
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Figure 9. Generalized scaling analysis of a typical healthy
subject. The structure functions Sq are displayed versus S3
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linearly with q for subjects with congestive heart failure, but
has a nonlinear dependence on q for the healthy subjects.
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To develop a more definitive criterion for distinguishing
the data for various subjects, we can compute values of T(� *).
Table 2 shows the results. In this case, it’s evident that the
data sets have no overlap. Indeed, the healthy subjects’ T(� *)
values are larger than CHF patients, by a factor of about 3,
thus providing an unambiguous way of distinguishing the
data sets for healthy subjects and those with CHF.

Comparison with other Methods
Stanley and colleagues5,13,19,26,27 and other researchers35–38

have used different methods to analyze the type of data we
consider in this review. Their analyses indicate that long-
range correlations could exist in the data, characterized by
self-affine fractal distributions such as the fractional Brown-
ian motion, the power spectrum of which is given by

S( f ) ~ f –(2H+1), (23)

where H is the Hurst exponent that characterizes the type
of correlations in the data. Thus, healthy subjects are dis-
tinguished from those with CHF in terms of the type of cor-
relations that might exist in the data: negative or
antipersistent correlations in the increments for H < 1/2, as
opposed to positive or persistent correlations for H > 1/2,
and Brownian motion for H = 1/2. Although this is an im-
portant and interesting result, it can also be ambiguous and
not very precise. Suppose the analysis of two time series
yields two values of H, one slightly larger and the second
slightly smaller than 1/2. It’s thus difficult to state with con-
fidence that the two times series are really distinct.

The reconstruction method described earlier analyzes
the data in terms of the Markov processes’ properties. As a
result, it distinguishes the data for healthy subjects from
those with CHF in terms of the differences between an FP
equation’s drift and diffusion coefficients. Such differences
are typically significant and thus provide (in our view) an
unambiguous way of understanding the differences be-
tween the two groups of subjects, including for those se-
ries for which the Hurst exponents are only slightly
different. In addition, the computational approach de-
scribed here provides an unambiguous way of reconstruct-
ing the data, hence it provides a means of predicting the
data’s behavior over periods of time that are on the order
of their Markov time scales.

Although it remains to be tested, we believe that, together,
all the computational methods we’ve described here are
more sensitive to small differences in the data for the two
groups and thus might eventually provide a diagnostic tool
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Figure 11. Plot of S0.1 against S3(�) for a healthy subject
and one with congestive heart failure (CHF). The results
indicate that the starting points differ for healthy subjects
and those with CHF. Moreover, both data sets have a well-
defined � * at which S3(�) > S3(� + 1).

Healthy CHF

0.658 0.557
0.672 0.565
0.614 0.539
0.605 0.526
0.583 0.512
0.581 0.493
0.576 0.492
0.558 0.481
0.494 0.469
0.480 0.443

Table 1. Values of T1 for healthy patients and those with
congestive heart failure (CHF).

Healthy CHF 

3.08 0.741
2.68 0.714 
2.34 0.685
1.92 0.681
1.86 0.675
1.42 0.632
1.40 0.573
1.22 0.728
1.20 0.552
1.15 0.465

Table 2. Values of the T(� *) for healthy patients and for
those with congestive heart failure (CHF).
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for early detection of CHF in patients. The computational
approaches described here are quite general and could be
used for analyzing times series that represent the dynamics
of completely unrelated phenomena. We’ve already used the
Markov process concept and extended self-similarity to de-
velop34 a method for providing short-term alerts for mod-
erate and large earthquakes, as well as making predictions
for the price of oil.39
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