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Abstract. We introduce a non-perturbative two-scale Kirchhoff theory, in the
context of light scattering by a rough surface. This is a two-scale theory which
considers the roughness both in the wavelength scale (small scale) and in scales
much larger than the wavelength of the incident light (large scale). The theory
can precisely explain the small peaks which appear at certain scattering angles.
These peaks cannot be explained by one-scale theories. The theory was assessed
by calculating the light scattering profiles using atomic force microscope (AFM)
images, as well as surface profilometer scans of a rough surface, and comparing the
results with experiments. The theory is in good agreement with the experimental
results.
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1. Introduction

Wave scattering by rough surfaces has been extensively studied both analytically and
experimentally. For analytical approaches two methods have been generally considered:
rigorous electromagnetic theory and approximate methods. The Kirchhoff theory is among
the electromagnetic theories and is known as a ‘tangent plane theory’. This theory is most
widely used to calculate the distribution of the specular and diffuse parts of the reflected
light. The Kirchhoff theory treats any point on a scattering surface as a part of an
infinite plane, parallel to the local surface tangent. The theory is therefore exact for an
infinite, smooth and planar scatterer, but is approximate for scatterers that are finite
sized, non-planar or with rough surfaces [1]. Due to the computational limitations, most
studies have been done for one-dimensional data of the surfaces. There are only a few
cases of the analysis of two-dimensional surface data. One- and two-dimensional exact
approaches have been successfully applied to dielectric, metallic or perfectly conducting
surfaces [2, 3], deterministic surfaces [4, 5], dielectric films on a glass substrate [6] and
dielectric films [7, 8]. Such exact calculations have been compared with experimental
results and approximate models [6, 9]. Also some authors have studied wave scattering
from random layers with rough interfaces [10, 11].

The joint probability density function (PDF) of surface slopes and heights P (∂xh, h)
is a key function in the estimation of the main parameters of wave scattering by a rough
surface [12]–[16]. This is more obvious in a geometrical optics approach, when the angular
distribution of the scattered power is proportional to the specular reflecting slope PDF.
The slope PDF has also been introduced in [12, 15, 16] in the context of Bragg scattering.
They have shown that the Bragg scattering results must be averaged by the proper slope
PDF of the rough surface. This is also true for the estimation of the thermal emission
from rough surfaces at small grazing angles [15, 16].

In the present paper, we introduce a non-perturbative two-scale Kirchhoff theory. The
theory is applied to explain the small peaks observed in the scattering profile of a rough
surface, at certain scattering angles. The theory employs the data obtained from the
rough surface in two different scales. To check the theory we have measured the scattered
light intensity as a function of the scattering angle, I(θ), using a setup consisting of a He–
Ne laser (632.8 nm), a photo-multiplier tube (PMT) detector and a computer-controlled
micro-stepper rotation stage. The resolution of the micro-stepper was 0.5 min. Alumina
sheets were used as the rough samples. The surface topography of the alumina samples

doi:10.1088/1742-5468/2005/04/P04013 2

http://dx.doi.org/10.1088/1742-5468/2005/04/P04013


J.S
tat.M

ech.
(2005)

P
04013

Two-scale Kirchhoff theory: comparison of experimental observations with theoretical prediction

0 2 4 µm

0.0

0.1

0.2

0.3

0.4
µm

Figure 1. AFM image of the alumina surface in the length scale 5 µm × 5 µm
(small scale).

in small scale (<5 µm) was obtained using an atomic force microscope (AFM) (Park
Scientific Instruments). The images in small scale were collected in a constant force mode
and digitized into 256×256 pixels. A commercial standard pyramidal Si3N4 tip was used.
A variety of scans, each with size L, were recorded at random locations on the surface.
The large-scale (<5 mm) morphology line scans of the alumina samples were recorded
using a surface profilometer (Taylor Hobson). Figures 1 and 2 show typical AFM image
and surface profile data with resolutions of about 20 nm and 0.25 µm, respectively.

2. Non-perturbative two-scale Kirchhoff theory

The Kirchhoff theory is based on three major assumptions [1]:

(a) The surface is observed from far field.

(b) The surface is regarded as flat, and the optical behaviour is locally identical at any
given point on the surface. Therefore the Fresnel laws can be locally applied.

(c) The amplitude of the reflection coefficient, R0, is independent of the position on the
rough surface.

The field scattered by the rough surface, ψsc(r), is obtained by an integration over
the mean reference plane SM [1] (the geometry is displayed in figure 3),

ψsc(r) =
ik exp(ikr)

4πr

∫ ∫
sM

(
a

∂h

∂x0

+ b
∂h

∂y0

− c

)
exp(ik(Ax0 + By0 + Ch(x0, y0))) dx0 dy0

(1)
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Figure 2. Profilometer scans of the alumina surface with resolution 0.25 µm
(large scale).

Figure 3. The geometry of the scattering angles θ1, θ2 and θ3.

where

A = sin θ1 − sin θ2 cos θ3,

B = − sin θ2 sin θ3,

C = −(cos θ1 + cos θ2),

a = sin θ1(1 − R0) + sin θ2 cos θ3(1 + R0),

b = sin θ2 sin θ3(1 + R0),

c = cos θ2(1 + R0) − cos θ1(1 − R0).
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Figure 4. Two-scale observation model of alumina surface.

In the derivation of the equation (1), it is assumed that the incident wave ψin is a
plane wave with a wavevector k as ψin(r) = exp(ik · r).

In most cases, the wave scattering models from rough surfaces implicitly assume that
the surface is rough on a single scale. However, in practice all surfaces are rough on
several scales, ranging from the atomic scale to the scale determined by the length of the
surface. Nevertheless, only a finite range of scales is important in scattering of waves
from a surface, i.e. the range covering the wavelength of the incident radiation. Models
have been developed for describing surfaces that consist of high-frequency fluctuations
superimposed on a slowly varying roughness [1]. These models use perturbation theories
to describe the scattering from the high-frequency roughness, and this is modified in
some manner by the low-frequency component [17]. All of the perturbative methods deal
with the effect of the large-scale fluctuations as perturbation to the small-scale height
fluctuations. Here, we intend to observe the surface in two scales with nanometre and
micrometre resolutions. Figure 4 shows schematically the modulation of small-scale height
fluctuations by large-scale variations. Various statistical parameters such as the joint
height and height gradient PDF, surface roughness σ, correlation function C(R), and
correlation length τ , were measured in two scale.

In what follows, we are going to describe the non-perturbative two-scale Kirchhoff
theory. We first calculate the contributions of the coherent and the diffuse fields by the
Kirchhoff theory in small scale. The coherent field with a Gaussian height distribution
will be [1]:

〈ψsc〉〈ψsc〉∗ = I0 exp(−g) (2)

where g = k2σ2C2. Also k, σ and I0 are the norm of the wavevector, surface roughness
in small scale and the scattered reflected intensity of the corresponding smooth surface.
For isotropic surface and for samples with sizes much larger than the correlation length
L � τ (and for a slightly rough surface i.e. g � 1), the diffuse field intensity for Gaussian
height distribution will be given by [1]:

〈Id〉 =
k2F 2τ 2

4πr2
g exp(−g)AM exp

(
−k2(A2 + B2)τ 2

4

)
(3)

where F = 1
2
(Aa/C + Bb/C + C) and AM is the effective area of the rough surface which

experiences the incident radiation. Therefore, the overall scattered intensity is written
as [1]:

〈I〉 = I0 exp(−g) + 〈Id〉. (4)
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Figure 5. Definition of the height field in terms of h′
s and hl. The field h′

s can be
found from the field hs via Euler matrices.

So far, we have expressed the results of the light scattering from the surface in small
scale. Now we divide the whole surface into many small pieces (meshes), the length of
which is smallest scale of our observation. In each mesh we can apply one-scale (small-
scale) Kirchhoff theory. Therefore for each mesh we have a similar expression for the
coherent field to equation (2), but with different angles which depend on the positions of
the small mesh. In the small scale, we denote the height field in position xs and ys with
hs. Therefore, one can write the height field in any position, �x, as follows:

h = hl + h′
s

x = xl + x′
s

y = yl + y′
s.

(5)

The subscripts l and s denote the large and small scales, respectively. The vector (x′
s,

y′
s) is the position of h′

s in the small-scale coordinates. In figure 5 we have shown (h′
s, x

′
s, y

′
s)

and (hs, xs, ys), schematically. We note that the AFM images will give us hs(xs, ys) and
via the large scale topography we will find hl(xl, yl). The vectors (h′

s, x
′
s, y

′
s) and (hs, xs, ys)

can be related to each other, via a rotational Euler matrix, with three rotational angles
α, β and γ, i.e. A(α, β, γ) = Rh(γ)Ry(β)Rx(α).

The local angles (θ1, θ2, θ3) are defined by the average plane in the small scale.
Therefore, all a, b, c, A, B, C are constant for all points within the small piece. In each
small-scale element hl is fixed so that ∂hl/∂xs = 0. Hence, the total scattered field has
the following expression:

ψsc(r) =
∑
xl,yl

[
ik exp(ikr)

4πr

∫ ∫
sM

(
as

∂h′
s

∂x′
s

+ bs
∂h′

s

∂y′
s

− cs

)

× exp ik(Asx
′
s + Bsy

′
s + Cs(h

′
s(x

′
s, y

′
s))) dx′

s dy′
s

]
exp ik(Alxl + Blyl + Clhl)

=
∑
xl,yl

ψsc
s (r) exp(ik(Alxl + Blyl + Clhl)). (6)

We note that ∂h′/∂x′
s = ∂h/∂xs and the summation is over the small-scale samples

modulated by the large-scale fluctuations. If we assume that the joint PDF of heights
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and its slope of two scales are independent, then the average of the field scattered in any
direction will be given by:

〈ψsc
−e(r)〉 = N

∑
hl,∂xhl

∑
xl,yl

〈ψsc
s (r)〉 exp(ikClhl) exp(ik(Alxl + Blyl))P (hl, ∂xhl)

= N
∑

hl,∂xhl

〈ψsc
s (r)〉 exp(ik(Clhl))P (hl, ∂xhl)

∑
xl,yl

exp((ik(Alxl + Blyl)))

= N
sin(kLx)

kLx

sin(kLy)

kLy
AM

∑
hl,∂xhl

〈ψsc
s (r)〉 exp(ikClhl)P (hl, ∂xhl). (7)

The subscript (−e) denotes scattering from the surface without the edge terms. The
rough surface has been assumed to be rectangular with extent −X ≤ x0 ≤ X,−Y ≤
y0 ≤ Y . Also Lx and Ly are length scales in the scattering area (the effective area of
light incidence), and SM = (sin(kLx)/kLx)(sin(kLy)/kLy)AM is the constant term in all
observation angles. The quantity NP (hl, ∂xhl) is the number of points with height h and
slope ∂xhl. It is noted that for a homogeneous surface p(h, x) is independent of position
along the surface, x. In order to perform analytical calculations, it is necessary to assume
that the edge effects are non-stochastic, i.e. 〈ψe〉 = ψe [1]. Based on this assumption, the
coherent part becomes:

〈Icoh〉 = 〈ψsc〉〈ψsc〉∗ = N2
∑

h1,∂xh1,h2,∂xh2

|〈ψsc
s 〉|2P (h1, ∂xh1)P (h2, ∂xh2) exp(ik(C(h2 − h1)))

(8)

where ψsc = ψe + ψ−e. It is noted the non-stochastic assumption of the edge effect leads
to the cancellation of all terms containing edge effects. In cylindrical coordinates, for an
isotropic surface, the substitutions x2 − x1 = R cos θ and y2 − y1 = R sin θ can be made.
Since the heights PDF and the heights difference PDF are independent (we will confirm
this assumption in the next section), i.e. P (h1, ∂xh1) = P (h1)P (∂xh1), and defining

∑
h1,h2

dh1 dh2 exp(ik(C(h2 − h1)))P (h1)P (h2) = χ(kC,−kC, R)

we then find:

〈Icoh〉 = S2
M

∣∣∣∣
∑
∂xh1

NP (∂xh1)〈ψsc
s 〉

∣∣∣∣
2

χ(kC,−kC, R). (9)

It is known that the total average scattered field in small scale is 〈ψsc
s 〉 = χ(kCs)ψ

sc
0 .

For a Gaussian height distribution, the one- and two-dimensional characteristic
function is given by:

χ(kCs) =
1

σs

√
2π

∫ +∞

−∞
exp

(
− h2

2σ2
s

)
exp(ikCshs) dhs = exp(−k2C2

s σ
2
s /2), (10)
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Figure 6. Joint PDF versus P (h)P (∂xh), that shows that the height and slope
PDFs are almost independent.

and

χ(kC,−kC, R) = exp(−k2C2σ2
l (1 − C(R))), (11)

where C(R) = 〈h(r)h(r + R)〉/σ2
l is the surface correlation function in the large scale.

Also the average of total intensity are given by:

〈Itot〉 = 〈ψscψsc∗〉
= N

∑
h1,∂xh1

∑
x0,y0

∑
x1,y1

P (h1, ∂xh1)〈ψsc
s ψsc∗

s 〉 exp(ik(A(x2 − x1) + B(y2 − y1))).

(12)

Performing the summation, we find
∑

hl
= N , where N is the number of points on

the surface. So, the average total intensity becomes:

〈Itot〉 = S2
MN

∑
∂xh1

N(∂xh1)〈ψsc
s ψsc∗

s 〉. (13)

Finally, the diffuse field intensity is obtained as:

〈Id〉 = 〈Itot〉 − 〈Icoh〉. (14)
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Figure 7. Comparison of theoretical prediction via two-scale Kirchhoff theory
and experimental results for scattered field (bold symbols).

3. Comparison with experiments

Here we test the non-perturbative two-scale Kirchhoff theory with experiment. For this
purpose, we obtain the height profile of alumina sheets as the rough samples, using the
profilometer in large scale and the AFM images in small scales. Indeed we intend to
observe the surface in two scales: nanometre and micrometre. To use the two-scale theory
the surface must possess two conditions. First, the PDF of the height and its slope must
be independent at small and large scales, i.e. P (hl, ∂xhl, hs, ∂xhs) = P (hl, ∂xhl)P (hs, ∂xhs).
The homogeneous rough surfaces possess this condition. Indeed the statistical parameters
in small scale (roughness, exponents, etc) are similar at any point of the sample (large
scale). This means that the two PDFs are independent. The second condition is that
the height and height gradient fluctuation must be independent in the large scale. This
means that the joint PDF of the height and height gradients can be decomposed as
P (hl, ∂xhl) = P (hl)P (∂xhl). This assumption needs confirmation. In figure 6, we have
plotted the joint PDF P (hl, ∂xhl) versus P (hl)P (∂xhl). It is obvious that the joint PDF
versus multiplication of single PDFs fits with a line with slope one. Considering its
statistical error we observe that the height and height gradient PDFs are independent. For
large values of h and ∂xh, our assumption becomes poor, and thus uncertainty increases.

To compare the experimental observation with those of the theoretical prediction, we
need to estimate the several types of PDFs in small and large scales. In equation (8),
we need to evaluate the quantity 〈ψsc

s ψsc∗
s 〉 in the small scale and the PDF of the

height gradients in the large scale. To evaluate the intensity 〈ψsc
s ψsc∗

s 〉, we have to use
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Figure 8. The PDF of height gradient in large scale.

equation (2), where the averaging is done in the small scale. Therefore we need the PDF
of height fluctuation in the small scale. Also we need other statistical quantities, such
as the surface roughness σ, correlation function C(R), correlation length τ , in small and
large scales. We evaluate the height–height correlation function 〈h(x + R)h(x)〉 versus
radial distance R for large-scale fluctuations. We find the following expressions for the
alumina surface: C(R) = 2.14 exp(−R2/608) and 1.27 exp(−0.58R), for small and large
scales, respectively. Also the roughness exponent, variance and scaling length for the
small (large) scale have been found as 0.85 (0.85, 031), 0.31 µm (1.33 µm) and 1.5 µm
(19.4 µm), respectively. It is found that the height PDFs in the two scales are almost
Gaussian. Indeed we checked that the fourth moment is related to the second moment via
〈(h−h̄)4〉 � 3〈(h−h̄)2〉2. The equality holds for the Gaussian height fields. The estimated
statistical quantities enable us to predict the average total intensity. In figure 7, we have
plotted the experimental observation and theoretical prediction of total intensity. It is
evident that the theoretical prediction fits with the experimental observation. We observe
that the theory is able to predict the small peak at angle �18◦ in the variation of the
total intensity versus angle scale θ2. We note that if one plots the PDF of the height
gradient, one finds that the PDF also has small peaks at angle scale tan−1(∂xh) � 9◦.
This means that the gradient PDF is responsible to have a small peak in the variation
of the total intensity in terms of angle scale (we note that the slope α = tan−1(∂xh)
produces 2α contribution in the reflection of the light from the surface). In figure 8, the
behaviour of the slope PDF (∂xl

hl) in terms of ∂xl
hl has been given. Also, as shown in

figure 7, the two-scale Kirchhoff theory is able to predict the small peak in the variation
of the total intensity in terms of angle scale. As we observe, there are other peaks in
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figure 7, where the theory cannot predict the peaks for large angle scales. Indeed for these
angle scales we should take into account the shadowing effect [15, 16]. In [12], the validity
range of geometrical shadow functions has been investigated for a randomly rough surface
for which the shadowed Kirchhoff approximation has been shown to give good results
for the scattered intensity distribution. We will discuss the modification of the two-scale
Kirchhoff theory by the shadowing effect elsewhere.
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