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Abstract. We propose a novel inverse method that utilizes a set of data to construct a simple equation that
governs the stochastic process for which the data have been measured, hence enabling us to reconstruct
the stochastic process. As an example, we analyze the stochasticity in the beat-to-beat fluctuations in the
heart rates of healthy subjects as well as those with congestive heart failure. The inverse method provides a
novel technique for distinguishing the two classes of subjects in terms of a drift and a diffusion coefficients
which behave completely differently for the two classes of subjects, hence potentially providing a novel
diagnostic tool for distinguishing healthy subjects from those with congestive heart failure, even at the
early stages of the disease development.

PACS. 05.10.Gg Classical ensemble theory – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 05.45.Tp Time series analysis

1 Introduction

Many natural or man-made phenomena, as well as the
morphology of numerous physical systems, are character-
tized by a degree of stochasticity. Turbulent flows, fluctu-
ations in the stocks prices, seismic recordings, the internet
traffic, pressure fluctuations in chemical reactors, and the
surface roughness of many materials and rock [1,2] are
but a few examples of such phenomena and systems. A
long standing problem has been the development of an ef-
fective reconstruction method for such phenomena. That
is, given a set of data for certain characteristics of a phe-
nomenon, one would like to develop an effective equation
that can reproduce the data with an accuracy comparable
to the measured data. If such a method can be developed,
one may utilize it to, (1) reconstruct the original process
with similar statistical properties, and (2) understand the
nature and properties of the stochastic process.

In this paper we use a novel method to address this
general problem. The proposed method utilizes a set of
data for a phenomenon which contains a degree of stochas-
ticity and constructs a simple equation that governs the
phenomenon. As we show below, in addition to being
highly accurate, the method is quite general; it is capa-
ble of providing a rational explanation for complex fea-
tures of the phenomenon; it requires no scaling feature,
and it enables us to accomplish the tasks listed above. As
an example, we apply the method to analyze cardiac in-
terbeat intervals which normally fluctuate in a complex
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manner. We show that the application of the method to
the analysis of interbeat fluctuations in the heart rates
may potentially lead to a novel method for distinguishing
healthy subjects from those with congestive heart failure
(CHF).

2 The method

We begin by describing the steps that lead to the develop-
ment of a stochastic equation, based on the (stochastic)
data set, which is then utilized to reconstruct the origi-
nal data, as well as an equation that describes the phe-
nomenon.

(1) As the first step we check whether the data fol-
low a Markov chain and, if so, estimate the Markov time
(length) scale tM . As is well-known, a given process with a
degree of randomness or stochasticity may have a finite or
an infinite Markov time (length) scale. The Markov time
(length) scale is the minimum time interval over which
the data can be considered as a Markov process [3–6]. To
determine the Markov scale tM , we note that a complete
characterization of the statistical properties of stochastic
fluctuations of a quantity x in terms of a parameter t re-
quires the evaluation of the joint probability distribution
function (PDF) Pn(x1, t1; · · · ; xn, tn) for an arbitrary n,
the number of the data points. If the phenomenon is a
Markov process, an important simplification can be made,
as the n-point joint PDF, Pn, is generated by the prod-
uct of the conditional probabilities p(xi+1, ti+1|xi, ti), for
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i = 1, · · · , n − 1. A necessary condition for a stochastic
phenomenon to be a Markov process is that the Chapman-
Kolmogorov (CK) equation [7],

p(x2, t2|x1, t1) =
∫

d(x3) p(x2, t2|x3, t3) p(x3, t3|x1, t1),

(1)

should hold for any value of t3 in the interval t2 < t3 < t1.
One should check the validity of the CK equation for
different x1 by comparing the directly-evaluated condi-
tional probability distributions p(x2, t2|x1, t1) with the
ones calculated according to right side of equation (1).
The simplest way to determine tM for stationary or homo-
geneous data is the numerical calculation of the quantity,
S = |p(x2, t2|x1, t1) −

∫
dx3p(x2, t2|x3, t3) p(x3, t3|x1, t1)|,

for given x1 and x2, in terms of, for example, t3 − t1
and considering the possible errors in estimating S. Then,
tM = t3 − t1 for that value of t3 − t1 for which S vanishes
or is nearly zero (achieves a minimum).

(2) Deriving an effective stochastic equation that de-
scribes the fluctuations of the quantity x(t) constitutes the
second step. The CK equation yields an evolution equa-
tion for the change of the distribution function P (x, t)
across the scales t. The CK equation, when formulated in
differential form, yields a master equation which takes the
form of a Fokker-Planck equation:

d
dt

P (x, t) =
[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
P (x, t).

(2)
The drift and diffusion coefficients, D(1)(x, t) and
D(2)(x, t), are estimated directly from the data and the
moments M (k) of the conditional probability distribu-
tions:

D(k)(x, t) =
1
k!

lim∆t→0M
(k),

M (k) =
1

∆t

∫
dx′(x′ − x)kp(x′, t + ∆t|x, t). (3)

We note that this Fokker-Planck equation is equivalent to
the following Langevin equation (8):

d
dt

x(t) = D(1)(x) +
√

D(2)(x) f(t) , (4)

where f(t) is a random force with zero mean and Gaussian
statistics, δ-correlated in t, i.e., 〈f(t)f(t′)〉 = 2δ(t − t′).
Note that such a reconstruction of a stochastic process
does not imply that the data do not contain any correla-
tions, or that the above formulation ignores the correla-
tions.

(3) Regeneration of the stochastic process constitutes
the last step. Equation (4) enables us to regenerate a
stochastic quantity which is similar to the original one
in the statistical sense. The stochastic process is regener-
ated by iterating equation (4) which yields a series of data
without memory. To compare the regenerated data with
the original ones, we must take the spatial (or temporal)

interval in the numerical discretization of equation (4) to
be unity (or renormalize it to unity). However, the Markov
length or time is typically greater than unity. Therefore,
we should correlate the data over the Markov length or
time scale. There are a number of methods to correlate the
generated data in this interval [8–12]. Here, we propose a
new technique which we refer to as the kernel method,
according to which one considers a kernel function K(u)
that satisfies the condition that,

∫ ∞

−∞
K(u)du = 1, (5)

such that the data are determined by

x(t) =
1

nh

n∑
i=1

x(ti)K
(

t − ti
h

)
, (6)

where h is the window width. For example, one of the
most useful kernels is the standard normal density func-
tion, K(u) = (2π)−1/2 exp(− 1

2u2). In essence, the kernel
method represents the data as a sum of ‘bumps’ placed
at the observation points, with its function determining
the shape of the bumps, and its window width h fixing
their width. It is evident that, over the scale h, the kernel
method correlates the data to each other.

3 Application to fluctuations in human
heartbeats

We now apply the above method to reconstruction of the
fluctuations in the human heartbeats of both healthy and
ill subjects by taking h � tM . Recent studies [13–18] reveal
that under normal conditions, beat-to-beat fluctuations in
the heart rate might display extended correlations of the
type typically exhibited by dynamical systems far from
equilibrium. It has been shown [14], for example, that the
various stages of sleep may be characterized by extended
correlations of heart rates separated by a large number
of beats. We show that the Markov time scale tM , and
the drift and diffusion coefficients of the interbeat fluc-
tuations of healthy subjects and patients with congestive
heart failure (CHF) have completely different behaviour,
when analyzed by the method we propose in this paper,
hence helping one to distinguish the two groups of the
subjects.

We analyze both daytime (12:00 pm to 18:00 pm) and
nighttime (12:00 am to 6:00 am) heartbeat time series
of healthy subjects, and the daytime records of patients
with CHF. Our data base includes 10 healthy subjects
(7 females and 3 males with ages between 20 and 50, and
an average age of 34.3 years), and 12 subjects with CHF,
with 3 females and 9 males with ages between 22 and 71,
and an average age of 60.8 years). Figure 1 presents the
typical data.

We first estimate the Markov time scale tM of the
data for the interbeat fluctuations. For the healthy sub-
jects we find the Markov time scale for the daytime data
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Fig. 1. Interbeats fluctuations of healthy subjects (top), and
those with congestive heart failure (bottom).

to be (all the values are measured in units of the aver-
age time scale for the beat-to-beat times of each subject),
tM = 3, 3, 3, 1, 2, 3, 3, 2, 3 and 2. The corresponding results
for the nighttime records are, tM are 3, 3, 1, 3, 3, 2, 3, 3, 2
and 3, respectively, comparable to those for the daytime.
On the other hand, for the daytime records of the pa-
tients with CHF, the estimated Markov time scales are,
tM = 151, 258, 760, 542, 231, 257, 864, 8, 366, 393, 385, and
276. Therefore, the healthy subjects have tM values that
are much smaller than those of the patients with CHF,
hence providing an unambiguous quantity for distinguish-
ing the two.

We then check the validity of the CK equation for sev-
eral x1 triplets by comparing the directly-evaluated con-
ditional probability distributions p(x2, t2|x1, t1) with the
ones calculated according to right side of equation (1).
Here, x is the interbeat and for all the samples we define,
x ≡ (x − x̄)/σ, where x̄ and σ are the mean and stan-
dard deviations of the interbeats data. In Figure 2, the
two differently-computed PDFs are compared. Assuming
the statistical errors to be the square root of the num-
ber of events in each bin, we find that the two PDFs are
statistically identical.

The corresponding drift and diffusion coefficients
D(1)(x) and D(2)(x) are displayed in Figure 3. We find
that, in addition to the Markov time scale tM , the two co-
efficients provide another important indicator for distin-
guishing the ill from the healthy subjects: for the healthy
subjects the drift D(1) and the diffusion coefficient D(2)(x)
are, respectively, a linear and a quadratic function of x,

x2
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Fig. 2. Test of Chapman-Kolmogorov equation for x1 = −5,
x1 = 0 and x1 = 5. The bold and open symbols represent,
respectively, the directly-evaluated PDF and the integrated
PDF. The PDFs are shifted in the vertical directions for better
presentation. Values of x are measured in units of the standard
deviation.
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Fig. 3. The drift and diffusion coefficients D(1)(x) and D(2)(x),
estimated by equation (3). For the healthy subjects (triangles)
D(1)(x) and D(2)(x) follow linear and quadratic behavior in x,
while for patients with CHF (squares) they follow third- and
fourth-order behavior in x.

whereas the corresponding coefficients for patients with
CHF follow a third- and fourth-order equations in x. The
analysis of the data yields the following approximants for
the healthy subjects,

D(1)(x) = −0.12x ,

D(2)(x) = 0.05 − 0.042x + 0.07x2 , (7)
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whereas for the patients with CHF we find that,

D(1)(x) = −0.0026x− 0.0018x2 − 0.0007x3 ,

D(2)(x) = 0.0006− 0.0007x + 0.0005x2

+0.0003x3 + 0.0002x4 . (8)

Equations (7) and (8) present the drift and diffusion co-
efficients for a typical healthy subject and one with CHF.
We note that the final result for the Langevin equation
is the same as the results obtained in reference [18]. For
other data measured for other patients the functional de-
pendence of D(1) and D(2)(x) would be the same but with
different numerical coefficients. The order of magnitude of
the coefficients is the same for all the healthy subjects, and
likewise for those with CHF (see also Ref. [19]). Moreover,
if we analyze different parts of the time series separately,
we find, (1) almost the same Markov time scale for differ-
ent parts of the time series, but with some differences in
the numerical values of the drift and diffusion coefficients,
and (2) that the drift and diffusion coefficients for different
parts of the time series have the same functional forms,
but with different coefficients in equations such as (7) and
(8). Hence, one can distinguish the data for sleeping times
from those for when the subjects are awake [20].

We also find another important difference between the
heartbeat dynamics of the two classes of subjects: com-
pared with the healthy subjects, the drift and diffusion co-
efficients for the patients with CHF are very small (reflect-
ing, in some sense, the large Markov time scale tM ). Hence,
we suggest that one may use the Markov time scales, the
dependence of the drift and diffusion coefficients on x, as
well as their comparative magnitudes, for characterizing
the dynamics of human heartbeats and their fluctuations,
and to distinguish healthy subjects from those with CHF.
To our knowledge, this proposal is novel. Given its relative
simplicity, it would be most interesting to study whether
this proposal can be developed into a diagnostic tool for
early detection of congestive heart failure. Work in this
direction is in progress.

We compare in Figure 4 the original time series x(n)
with those reconstructed by the Langevin equation (by, for
example, using Eqs. (4) and (7)) and the kernel method.
While both methods generate series that look similar to
the original data, the kernel method appears to better
mimic the behavior of the original data. To demonstrate
the accuracy of equation (6), we compare in Figure 5
the second moment of the stochastic function, C2(m) =
〈[x(0)−x(m)]2〉, for both the measured and reconstructed
data using the kernel method. The agreement between
the two is excellent. However, it is well-known that the
agreement between the second moments of a stochastic
time series and its reconstructed version is not sufficient
for proving the accuracy of the reconstruction method.
Hence, we have also checked the accuracy of the higher-
order structure function, Sn = 〈|x(t1) − x(t2)|n〉 [21]. We
find that the agreement between Sn for the original and
reconstructed time series for n ≤ 5 is excellent, while the
difference between higher-order moments of the two times
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Fig. 4. The curves show, from top to bottom, the actual in-
terbeat data (for a healthy subject), the regenerated data us-
ing the corresponding Langevin equation, and the regenerated
data using the kernel method. The time series are shifted in
the vertical directions for better presentation.

m

C
2

5 10 15 20

0.002

0.004

0.006

Fig. 5. Logarithmic plot of the second moment of the height-
difference versus m, for the actual data (circles) and the sam-
ples regenerated by the kernel method (squares). The corre-
sponding time series are plotted in Figure 4.

series, which are related to the tails of the PDF of the
x−increments, increases.

4 Summary

We have analyzed the interbeat fluctuations in the heart
rates of healthy subjects, as well as those with conges-
tive heart failure, by an inverse method for reconstruction
of the stochastic process that governs the fluctuations.
The method, which is quite general and can regenerate
a stochastic process with high precision, is based on uti-
lizing measured data to estimate a drift and a diffusion
coefficients to be used in a Fokker-Planck, or an equivalent
Langevin, equation that describes the stochastic process.
The analysis of the times series for human heartbeat dy-
namics using the new method, for both healthy subjects
and those with CHF, not only demonstrates the accuracy
of the method, but also potentially provides a novel tech-
nique for distinguishing the heartbeat dynamics of the two
classes of subjects.

We should point out that Stanley and co-
workers [13,15–17,20,21] analyze the type of data we
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considered in this paper by a method different from
what we present in the present paper. Their analysis
indicates that there may be long-range correlations in the
data, which might be characterized by self-affine fractal
distributions, such as the fractional Brownian motion
or other types of stochastic processes that give rise to
such correlations. They distinguish healthy subjects from
those with CHF in terms of the type of correlations that
might exist in the data (negative as opposed to positive
correlations). The method proposed in the present paper
is different from that of Stanley and co-workers in that, we
analyze the data in terms of Markov processes. Although
our analysis does indicate the existence of correlations in
the data but, as is well-known in the theory of Markov
processes, such correlations, though extended, eventually
decay. We distinguish the healthy subjects from those
with CHF in terms of the differences between the drift
and diffusion coefficients of the Fokker-Plank equation
which, in our view, provides a clearer and more physical
way of understanding the differences between the two
groups of the subjects. In addition, our method provides
an unambiguous way of reconstructing the data, hence
providing a means to predict the behavior of the data
over periods of time that are on the order of the Markov
time scale. Although it remains to be tested, we believe
that our method is more sensitive to small differences
between the data for the two groups of the subjects and,
therefore, might eventually provide a diagnostic tool for
early detection of CHF in humans.

We would like to thank Armin Bunde for useful comments on
the manuscript.
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