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Intermittency of height fluctuations in stationary state of the Kardar-Parisi-Zhang equation
with infinitesimal surface tension in 1+1 dimensions
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The Kardar-Parisi-ZhangKPZ) equation with infinitesimal surface tension, dynamically develops sharply
connected valley structures within which the height derivative is not continuous. We discuss the intermittency
issue in the problem of stationary state forced KPZ equation in 1+1 dimensions. It is proved that the moments
of height increment<C,=(|h(x;) —h(x,)|2) behave agx;—x,|% with &=a for length scalegx;—x,|<o. The
length scaler is the characteristic length of the forcing term. We have checked the analytical results by direct
numerical simulation.
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I. INTRODUCTION relationships with other areas of statistical physics. It is

. . shown that there is a mapping between the equilibrium sta-
The growth, formation, and morphology of interfaces igiical mechanics of a two-dimensional smedidiquid

have been one of the recent interesting fields of study bec'rystal onto the nonequilibrium dynamics of thig+1)-
cause of its high technical and rich theoretical advantagesjimensional stochastic KPZ equatipri. It has been shown
On account of the disorder nature embedded in the surfagg Ref. [8] that, one can map the kinetics of the annihilation
growth, stochastic differential equations have been used asgtocessA+B—0 with driven diffusion onto the(1+1)-
suitable tool for understanding the behavior of variousgimensional KPZ equation. Also the KPZ equation is closely
growth processes. Such equations typically describe the ingjated to the dynamics of a sine-Gordon chg®, the
terfaces at large length scales, which means that the shagtiven-diffusion equation[10,11, high-T, superconductor
length scale details has been neglected in order to derive [@2), directed paths in the random medi8—2§ and charge
continuum equation by focusing on the coarse grained propdensity wave$27], dislocations in disordered soligi3], for-
erties. A great deal of recent theoretical modeling has beemation of large-scale structure in the unive[28—31, Bur-
started with the work of Edward and Wilkinson describing gers turbulenc¢32—6Q, and etc.

the dynamics of height fluctuations by a simple linear sto- |t js useful to rescale the KPZ equation 's=h/hy, r’
chastic equatiofl-5]. By adding a new term proportional to =r/ry, andt'=t/t,. If we let hy=(Do/»)¥2 and to:f(z)/ v,

the square of the height gradient, Kardar, Parisi, and Zhangherer, is a characteristic length, all of the parameters can
(KPZ) made an approp_nate Qescrlptlon for lateral m_terfgceoe eliminated, except the coupling constat(a?Dy)/ 1.
growth [6]. The (1+1)-dimensional forced KPZ equation is Tne |imit g— o (or zero tension limity— 0), is known as

written as the strong-coupling limit/60]. Phase diagram information
a extracted from the renormalization group flow indicates that
h(X,t) = =(h)? + vhy + f(x,t), (1) d=2 plays the role of a lower critical dimension. Fa« 2,
2 the Gaussian fixed pointae=0) is infrared unstable, and
wherea=0 andf(x,t) is a zero-mean, statistically homoge- there is a crossover to the stable strong-coupling fixed point.

neous, white in time random force with covariance For d>2, a third fixed point exists, which represents the
roughening transition. It is unstable and appears between the
(Fx,Of(x',t')) = 2DD(x = x") &(t - t). (20 Gaussian and strong-coupling fixed points which are now

both stable. Only the critical indices of the strong-coupling
regime(g— < or v—0) are known in 1+1 dimensions and
their values in higher dimensions as well as properties of the
roughening transition have been known only numerically
(x=x")? [61-67, and the various approximation schenié8—74.
(mz)l,zexp<— o2 ) ©) For finite o, in the strong-coupling limitv— 0) nonlinear
term in the KPZ equation will dominate. The nonlinearity of
where o is much less than the system sikgi.e., c<L, the KPZ equation in this limit includes the possibility of
which represents a short range character for the random forgingularity formations in a finite time as a result of the local
ing. The KPZ equation has made famous the “Ising model'minima instability. Meaning that there is a competition be-
of nonequilibrium physics. It is indeed the simplest equationtween the diffusion smoothing effe¢the Laplacian term
nevertheless capturing the main determinants of the growthnd the enhancement of nonzero slopes. In one spatial di-
dynamics i.e., nonlinearity, stochasticity, and locality. Themension the sharp valleys are developed in a finite time. As
theoretical richness of the KPZ model is partly due to closeindicated in Figs. 1 and 2, the geometrical picture consists of

Typically the spatial correlation of the forcing is consid-
ered to be & function, mimicking the short length correla-
tion. Here the spatial correlation is considered as

D(x-x') =
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FIG. 1. Different snapshots of the time evolution of the height, FIG. 2. Different snapshots of the time evolution of the height,
with correlation lengthss~L/10 for the random periodic force, with correlation lengthsr~L/100 for the random periodic force,
until the time that the system finally reaches its stationary state. Thantil the time that the system finally reaches its stationary
average distance between the sharp valleys is of the order of state.

[56,57.
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a collection of sharp valleys intervening a series of hills intion in 1+1 dimensions with white in time and space forcing.

the stationary statgr7]. Indeed the limitc— 0 is considered in Eq2). In this limit
The main difficulty with the KPZ equation is that it is Eq. (2) can be written as follows:

controlled, in all dimensions, by a strong disorder strong

coupling fixed point and efficient tools are missing to cal- (F DX, t')) = 2Dgdx = X) 8t = t'). (4)

culate the exponents and other universal properties, e.g., , ) ~ .

scaling functions, amplitudes, etc. Despite the fact that in or this type of forcingII[h(x,t)] the probability func-

one dimension, the exponents are known, but many propetional of h(x,t)=h(x,t)—¢h) satisfies the functional Focker-

ties, including the probability density functia’DF) of the  Planck equatioril,2]

height of a growing interface have been so far measured only

in numerical simulations. d 6 a
In this article, we investigate the statistical properties of EH :f dx%(x)[<E(Vh)2+ VV2h>H]
the KPZ equation in the strong-coupling linfit— 0). This
limit is singular, which means that the surface develops sharp q
valleys in a finite time. So starting with a flat surface after a + DOJ d Xéﬁz(x)n’ (5)

finite time scalet.= (m)Y8Dyta?30>3 [77], sharp valley

singularities are dynamically developed. In the singularwhere its solution in the 1+1 dimensions is

points spatial derivative of the fielx,t) is not continuous.

One of the main problem in this area is the scaling behavior = eXp{— Lf dx(h )2}_ (6)

of moments of height increments,=(|h(x;) —h(x,)[®) and 2D, X

the PDF ofsh=h(x;) —h(x,), that is,P(sh). Inspired by the ) ) =

methods proposed recently by Weinan and Vanden Eijnden Therefore if one introduceG(x-x")=(h(x)h(x")) as a

[47], a statistical method is developed to describe the moGreeq’s function, then it satisfies the following differential

ments of the height and height-gradient increments. We dekquation:

rive a master equation for joint PDF of the height and its D

gradient increments ifiL+1) dimensions. It is shown that in O G(X—X") = - —Ob‘(x -X'), (7)

the stationary state where the sharp valleys are fully devel- v

oped, the relaxation term with infinitesimal surface tensionsO that<~h(x)~h(0)>=—(D /v)|x. Now we can write the second

leading to an unclosed term in the PDF’s equation. Howevanoment of height inc?ements for smalk as

it is shown that the unclosed term can be expressed in terms 9

of statistics of some quantities defined on the sharp valleys. o _ 2Dg

We identify each sharp valley in positigg with three quan- (lh(9) = h(0)[*) = T|X|- (8)

tities, namely, the gradients bfin the positionsyg+, yo- and

its height from theh. The dynamics of these quantities are _ In @ similar way it can be seen that the higher moments,

given in Ref.[77]. Here it is proved that to leading order, {N(X)=h(0)|*) scale withx as[x|*?, which means that for the

when|x,—x,| <o, fluctuation of the height field is not inter- length scalec<[x;-x,| <L, the exponents, are equal to

mittent. The analytic form of the amplitudes of the structure@/2.

functions is also given. The absence of the intermittency There are a few comments on the result obtained for the

means thaC,=(|h(x,) —h(x,)|?) scales a$x; —x,|%, where¢, funct?onal PDF, E_q.(6). It _is evi_dent_ that the probability

is a linear function ofa. It is proved that for length scales density functionalin 1+1 dimensionkis independent of the

[x,=X;| <o, the exponents, are equal tca. coefficient of the nonlinear term, i.ex, so the result is in-
The paper is organized as follows. In Sec. II, we presenflependent of the strength of the coupling constant. If one

the known results for the moments of height increme@ys ~ considers the random force with smooth spatial correlation,

=(|h(x,) —h(x,)[3), for length scalesx;—x,|>o. In Sec. 1ll,  the problem changes to a more complicated one and there is

the master equation for the joint PDF of height and its gra-no any cIosed_ solution for the functional PDF. In_ the. next

dient increments has been derived for given surface tension Se¢tions we will show that the moments of the height incre-

and for the length scalelg;—x,|<o. It is shown that the ments for the length scql¢>sl—x2|<o has the scaling expo-

surface tension term makes the PDF’s equation unclosed. fi€NiSéa=aand the amplitude of the moments depend on the

Sec. IV we will consider the limit ofr— 0 of the master coefficient of the nonlinear term.

equation and derive the scaling exponents of height incre-

ments moments. Also a comparison between the analytical

results and direct numerical simulation are given. Details of

calculations are presented in Appendixes A and B.

Ill. THE MASTER EQUATION GOVERNING
THE PROBABILITY DENSITY FUNCTION
OF THE HEIGHT-DIFFERENCE

ll. SCALING EXPONENTS OF HEIGHT-DIFFERENCE AND GRADIENT-DIFFERENCE
MOMENTS FOR FORCED KPZ EQUATION FOR GIVEN SURFACE TENSION

AND FOR THE LENGTH SCALES [x;~x,|> ¢ In this section, considering the+1)-dimensional KPZ

In this section we review the known results for the scalingequation and its corresponding Burgers equation, the master
exponent of height increments moments for the KPZ equaequation describing the evolution of the joint two-point
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PDF, P(h(x,) —h(x,),u(x;) —u(x,)) is derived. The(1+1)-
dimensional KPZ equation can be written as

O = 205 + o+ D), )

wherea= 0 andf(x,t) is a zero-mean, statistically homoge-

PHYSICAL REVIEW E 70, 031101(2004)

F==in(f10) —iNx(f20) +ipi(F1, O) +iuxf 0),  (16)

g= iM1V<u1xx> + iM2V<U2xx®>-

In Eqg. (15) the termsF and G are the only terms which
are not closed with respect & Indeed the tern¥ can be

neous, white in time random force. Its covariance is given by’!SO closed according to Novikov's theorem,

Eqg. (2). Using the map #h=u, the corresponding Burgers
equation also can be written as

U = — aUUy, + vUy, — f(X1). (10

Defining the two-point generating function
Z(Nq,\g, g, Mo, X1, %0,1) =(0O), where® is defined as

0 := eXF(_i)\hl_i)\hz_ilu/lul_i,LLzUz). (11)

The fieldsh, andh, are the heights of the surface at points

X, and x,, respectively. The fieldsulz—ﬁxlhl and u,

as

F=(-(\F+\3)K(0) - 2\ ,K(x))Z
+ (= (3 + pdK(0) = 203 11,K (X)) Z,

whereK(x)=2DyD(x) and x=x;—X,. S0 G is the only term

17

preventing Eq(15) to be closed which can be referred to a

sort of dissipative anomaly.

The PDFP(hy,hy,uq,Uy,X1,X%,1) is defined as the two-
point joint PDF at the pointx; and x, with their related
heightsh, andh,, and their gradients, andu,. The PDF can

be constructed by Fourier transforming the generating func-

:—5x2h2 are related to the corresponding height gradients. A, 7
it is seen the generating function is the ensemble average of

®. The time evolution oZ will be
Z;= = iN(hy®) = iNx(h2®) = i 1{UyO) = i ux(Ux®).
(12)

Using Egs.(9) and (10) and noting that, in Eq(12), hy,
h,, u;, and u, can be substituted by, —i(d/d\), h,
— (9l INy), uy—1(d/ duq), andu,—i(d/ du,), the time evo-
lution of Z can be rewritten as

. a)\l . a)\2 J
Zt - IT<®>M1M1 + |7<®>M2M2 - aﬂlﬁ_m<ulxl®>

d . . .
- CWZ&_MZ<U2XZ®> =N (f10) —iIN(F20) +ipy(F15 O)

+ipa(f2,0) +iN1{Usy O) +iN52{Upy, O) = i g UpO)
— i1 Uz @), (13

Now using

(U0 = (@), + M@y, j=12 (14
M b ]

the equation governing can be written as

. a)\ ) a)\z
Z=1750) 0, 1=, (O)

Mot

1%

- am&—('—<®>xl + M<®>M)
Mg\

a (i
- a,uz&—ﬂz<;<@>x2 + 7\z<®>ﬂz>

‘ ixlv(i—<®>xl+xl<>ﬂl)
M1

+ ixzv(i—<®>xz+ x2<®>ﬂz) +F+G. (15
M2

Here F and G stand for

dhy dA, dusy dity
21 27 27 27

X eX[Xi)\hl + |)\h2 + i,LLlul

P(hla th ul! u21X11X21t) = f

+ipoUp) Z(N g, g, a1, fo, X, Xo, 1)

Fourier transformation of Eq(15) gives the following
equation for the PDF:

g a ad 9 d, , ad d I,
- P=-s (P - s (uP)
dUq d Uy 290hiduidu, 2dhy,dugdu,
o b el p_al P P
- @ - —(u
“ou, < “ou, X “ohyau, ©
Jd d Jd d
~ a——~—(UP) ~ a————(usP
ahzaul( 2P) aulauz( 1P

Jd d
+ aa_ul&_uz(uZPX) + L g poF) + L1 12G)

(18

where x=Xp=X;, Y=(X1+%)/2, dy ==d,+3d, and d,=dy
+24,. The termsL(uiupF) and L{uyu,G) are the Fourier
transformations of Eqg16) and (17), multiplied in u; and
Mo, where for L(uqusF) is
i)P
ah3
Jd d

Jd 0
-2k(X)————P
duyduy,dhydh,

g 9 [ &F &
- kxx(o) 2 + 2 P
dupdu\ gus  gus

g [ P
L F)=-k(0)——| — +
(kg7 ( )aulau2<ah§

&# &
- 2kxx(X) ) F P

19

and L(uiu,G) is defined as
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L(puG) = — V{<u1x1xl|hlrh2’ulvu2’X>P}ululu2 tesimal surface tensignone can find exact scaling expo-
nents of the moments|h(x;)—h(xy)[qu(x,) —u(xp)|?). It
= WUz, N1 02, U, U2 0Py, (200 ghould be noted that thefield satisfying the Burgers equa-
tion, for finite o’s, develops discontinues or shock solutions
in the limit v— 0. Consequently for finiter the height field
G := G(hy,hy,up,up, X, 1) + G(hy, hp,up, U, = X,1),  (21)  shows up as a set of sharp valleys at the positions where the
shocks are located, continuously connected by some hill con-
figurations, as indicated in Figs. 1 and 2. As mentioned, each
G(hy,Uq,Uq,Up, X, 1) = — v{(ulxlxl|h1,h2,ul,uz,x>P}ul. sharp valley in positiory, is identified by three quantities,
namely, the gradients d¢fin positionsyg+, Yo-, and its height
from h. It is evident that the term lig,yvu,, is zero at the
are the averages diy, and Uy, conditional that the positions where no sharp valley exists. Therefore in the limit
heights and velocities (1)f1 fields b‘ézhz uy, andu, with a v_—>0, only smgll |nterve_1ls around thg sharp valleys will con-
e Y tribute to the integral in Eq(24). Within these intervals,

spatial differencex. Now we are interested in writing an boundary layer analysis can be used for obtaining an accu-
evolution equation for the PDF’s of height and its gradients yiay y 9

difference. We change the variables, h,, u;, andu, with ~ rate approximation ofi(x, t) Jh(x,t)=h-h. Generally, bound-
u;=u-(w/2), u,=u+(w/2), hy=h—-(&/2), andh,=h+(&/2).  ary layer analysis deals with those problems in which pertur-
Integrating overu and h the PDF of the height and height- bations are operative over very narrow regions where the

For later use we defin€ as

where

Also we can simply substitut®(uqu,G) with Gy, In
Eq. (20), <u1X1Xl|h1,h2,u1,u2,x) and (u2x2X2|h1,h2,u1,u2,x)

gradient difference is obtained dependent variables undergo very rapid changes across them.
These narrow regionsharp valley layepsfrequently adjoin
5 _ ¢ £ o 2] the boundaries of the domain of interest, owing the fact that
P& @x) —fdhduF<h 2’h+ 2'u 2’U+ 2’X’t)' a small parametefv in the present probleyjmultiplies the

22) highest derivative. A powerful method for treating the
boundary layer problems is the method of matched
Finally using Eq(18), the master equation can be written asymptotic expansions. The basic idea underlying this

as method is that an approximate solution to a given problem is
sought not as a single expansion in terms of a single scale
P’ =—2aP? - a(wP?d),, + 2(k(0) —k(x))P? but as two or more separate expansions in terms of two or
wot Xw X/ ww wwéé . . S .
s s more scales each of which is valid in part of the domain. The
+ 2(k(0) = Ked¥)) Py + G (23)  scales are chosen, so that the expansion as a whole, covers

the whole domain of interest and the domains of validity of
neighboring expansions overlap. In order to handle the rapid
variations in the sharp valley layers, a suitable magnified or
s B stretched scale and expand the functions in terms of it in the
G§wxt)= | dhduG (24) sharp valley regions is defined. For this purpose, we split
andh into a sum of inner solution near the sharp valleys and
an outer solution away from the sharp valleys, and use sys-
A it is proved that for finitec and in the limit ofv—0, G° )iemfamc matcheg asymptotics 1o constr.uct uniform approm
can be written in terms of the quantities which are defined Oﬁnatlon_ofu _and h'_ It ShOl."Id be empha5|_zed that at poygt
singularities. the he_lght itself is continuous and helght gradléanrre-_
sponding Burgers velocijyis not continuous. At these sin-
gular points the meaning afi, is that u.(yp,t) =u(ygs,t).
Keeping in mind thatu_>u,, the shock strengtks and the
shock velocityu are defined as=u,-u_ andU:%(uﬁu_).
In Appendixes A and B, using the boundary layer method
As shown in the preceding section, the presence of surmand the master equation, we have proved analytically that the
face tensiorv makes the master equation unclosed. Howevejoint moments of the height and the corresponding gradient
in the limit v— 0O (that is, the KPZ equation with an infini- difference for anya=0 will be

where by considering the definition @& in Eq. (21), G°
would be

It is clear that theG? which is proportional to surface
tensionv, makes the master equation unclosed. In Appendi

IV. CALCULATION OF THE MOMENTS
AND NUMERICAL SIMULATION

X2 7702 77| if0<b<1
(|onfalulPy = 3 X 7l 7y + Bplsl((us |2+ [uf®)) if b=1 : (25)
X323 p([51P(|us 2 + [u_[?)) if1<b
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wheresh=h(x;) —h(xy), Su=u(x;) —u(X,), andx=x;—x,. The  order of period of the given periodic function. To generate

guantities 7, and 7, are the regular parts of,h and du,  this type of forcing we use the kicking method which re-

respectively. Fom=0, our result will recover the known re- cently has been used in R¢b1], to simulate the Burgers

sults for Burgers equation with infinitesimal viscosj#/7]. turbulence. The basic idea is that the random force can be
To prove Eq.(25), we have used the fact that the length decomposed as follows:

scaleo is finite andx is let to approach zero. This means that

we are dealing with the scaling behavior of the moments f(x,t) = > f;(0at-1), (27)

(|oh[3|sul®) for length scale$x, —x,| <o. It is evident that in i

these length scales the height increments fluctuations is NQfnhere 5 is the Dirac distribution and where both the “im-
intermittent. Indeed we find the exponefjt=a for any mo- pulses™f;(x) and the “kicking times'; are prescribeddeter-
ments. , , .. ministic or randor The kicking times are ordered and form
The moments of the height and height-gradient incre finite or infinite sequence. In this article the impulses are
ments, i.e.{|(xy)~h(x,)|* and(|u(x) ~u(x)|) are also cal- always taken smooth and acting only at length scates
culated numerically as a function pff=|x,—x,| for different  Newman and McKang80] have used similar kicking, in a
a's andb's. To simulate the problem, the KPZ equation is context where the forced Burgers equation is used for the
discretized in space and time with scal@arsld dt, respec-  study of directed polymers. Kraichn#48] has considered a
tively. The time scaleit is related tos asdt=; 6/uy,, where  simple model in which there are nonsmooth impulses creat-
Un is the maximum of the height gradient in each time steping directly saw-tooth profiles in the velocity in Burgers tur-
[78,79. At each time step the differenct);=|u(x+1)  pulence. Here the time intervals are equal to the time steps of
-u(x)| is checked for every poinf’s. For Uj's that the algorithms run.
U;>|48*3, we can determine the positions that the height In Figs. 1 and 2, we illustrate different snapshots of the
field develop a sharp vallgp7]. Indeed this is a criterion for  time evolution of the height, considering different correlation
creation of a sharp valley in positiag=y;. At points that lengthso for the random periodic force, until the time that
U;<[48*? the fieldsu(x;) and h(x;) belong to the smooth the system finally reaches to its stationary state. The follow-
part. Therefore the height field¥x;) will fall into two re-  ing type of kicking force is used:
gimes, points far from the sharp valleys poitsand the -
points in its neighborhoods. For the points which the height F(x,1) = A codkx— ¢(1)) + 3sin(kx— ¢(1))],  (28)
field is regular or smooth, the height fields and its corre- . . . . . .
vhereA is a white Gaussian random variable in time, which

sponding gradients evolve under the KPZ and Burgers equg"

tion by setting the surface tension zero. Otherwise it is in theS the noise amplitude ang is a homogeneous random

singularity or sharp valley region. As mentioned in the intro—phase' Choosing different values farleads to different val-

duction, every sharp valiey can be characterized by four pa]lies foro. The length scale is of the order of the period of

— _ . : ) F. In Fig. 3, the log-linear plot of the moments of height
r.a-meterss, U Y, andh(y;). Th? time evo_Iutlon.of these quan increments are sketched numerically fa=0.7, 5, and 7,
tities are given by the following equatiofig7]:

respectively. We have found the exponeéisra+q, where
r=1.00£0.01 anaj=-0.0012+0.0002. The scaling behavior

d_yl:ag of the moments of height-gradient increments for length
dt scalesx<¢ is also checked. The result implies that with a

good precision(|sul®) scales withx with exponent 1 forb’s
d . larger than one, and scales withwith exponentst,=b, for
—u(Y;) = =S(Nuyy = hog) = Ty b's smaller than one with precision +0.001. The behavior of
dt " 4 &, versusb is also pl in Fi
b plotted in Fig. 3.
In summary, we study the problem of nonequilibrium sur-
d N face growth described by the forced KPZ equation in 1+1
—S(yj) = o S(huy+ oy, dimensions. The forcing is a white in time Gaussian noise
dt 2 but with a Gaussian correlation in space with variaace
Modeling a short range correlated noise, we restrict our study
d- o to the case when the correlation length of the forcing is much
—h(yj,t):——(4U2—32)+f— v, (26) smaller than the system size. Investigating the stationary
dt 8 state, a general expression of the mixed correlations of
. height-difference and height-gradient difference at any order,
wherey=h,. in terms of the length scalg;—x,| and quantities which
To calculate numerically the scaling behavior of momentscharacterize the sharp valley singular structures is given.
with x whenx< o, a periodic one-dimensional substrate con-Through a careful analysis being done over the behavior of
sisting a discreteN-point height field with the length of the sharp valley environment, we decipher the intermittency
10 000 is used. Starting with a flat initial condition the heightexponent of an arbitrargth moment, i.e.{|h(x;) —h(x,)|®. It
and its gradient fields evolve in time. We consider the randis proved that the height increments fluctuations are not in-
dom force as a white in time, smooth and periodic in spaceermittent and itsath moments for length scalés,—x,| < o
random function, which its spatial correlation length is of thescales agx;—x,|%, where &,=a. In the present paper the
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limiting of »— 0 is taken into account only for finite. Still

the forcing correlation length is much smaller than the sys-
tem size and height correlation length. But the liait- 0 is

a singular limit in our calculations, and moreover, it is aot
priori clear that the limits oi»— 0 ando— 0 commute at all.
Using stochastic equations which are governed over the dy-
namics of quantities characterizing the sharp valleys we
simulate directly the problem and check the exponents. We
have generate the forcing using the kicking method. Our
simulation confirms the analytical results. We believe that the
analysis followed in this paper is quite suitable for the zero
temperature limit in the problem of directed polymer in the
random potential with short-range correlatiof&l]. The
same method applied to KPZ equation in higher dimensions
would be definitely one of the consequent goals of the
present work. The main message which might be encoded in
the present work is the importance of the statistical proper-
ties of the geometrical singular structures for understanding
the strong-coupling regime of Kardar-Parisi-Zhang equation.
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APPENDIX A

In this appendix we are going to prove that tRgerm in
Eqg. (24) has a finite value in the limiv— 0. As shown in

Sec. Il theG term can be written as
G = G(hy,ug, hy,up,x,t) + G(hy,up, hy,up, — X 1), (A1)

Here we prove that in the vanishing surface tension limit,
the G term can be written as

G(hq,uq,hy,Up, X, 1)
uy-s/2

0 _
:p(f ds S dU(ul_mT(hLUvsthuleut)) ’

Up+s/2 U

(A2)

whereT(hy,U,s,h,, Uy, X, 1) is the PDF of

(M1, T(Yo,1), S(Yort), hal(Yo + X, 1), Ua(Yo + X, 1))

conditional ony, being a sharp valley position.

Let us now prove Eq(A2). Assuming spatial ergodicity,
for example, the average of one of the term&Ginwhich is
proportional tov, can be expressed as

V<Uixixi|h1' hy, Uy, g, )P
= V<uixixi(xat) AUy — Uy(xy,1))
X 8(Uy = Up(Xp, 1)) 8(hy = hy(Xy,1))

FIG. 3. In the upper graph the log-linear plot @ii(0) —h(x)|®)
vs X, for momentsa=0.7, 5, and 7 are demonstrated. In the middle
figure the corresponding scaling exponégpffor height increments
are plotted. Thé&, has a linear dependence anin the lower figure
the scaling exponeng, for the moments of the height gradients
increments are shown.
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X 8(h, = hy(xx,1)))

L/2
=vlim ——f dxiuixixi(xi,t)

L—oo L N -L/2

X 8(u; = ui(x;,1)) 8(h; = hi(x;,1). (A3)
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Clearly, in the limit asv— 0 only small intervals around W Uiy . |N1, Nz, Uy, U, X)P
the sharp valleys will contribute to the integral. In these in- o 1
tervals, boundary layer analysis can be used to obtain an o NL in _in
accurate approximation af(x,t) andh;(x,t). The basic idea B VL“_,nl L |\|Ei 0 d)(‘uixixi(xi’t) AU = (%, 1)
is to splity; andh; into the sum of an inner solution near the '
sharp valleys and an outer solution away from the singular . N1
point, and using systematic matched asymptotic to construct §(h; — h"(y;,t)) = vlim —=>,
uniform approximation ofi; andh; (for details see, e.g., Ref. L—ee L N5
[77]). For the outer solution, we look for an approximation in
the form of a series in,

dzuz, 8u; — U'(z,1)

- Nig [ |
8y = h(y;,0) = vlim 1> | dzvfiziz"a(u ~v))
L—soo i

h = h*"'=h? + vh! + O(1?), s
u = u =l + wul + O(A). x 8(hy = hi"(y;, 1), (A7)
Thenu? andh? satisfy where(); is a layer centered at with width >0O(»). Going
to the stretched variable=(x;-y;)/ v, and using Eq(A6),
o
ho - E(‘?Xih?)z =f, we have
v
dZ}O 77— dl)o 0 ZZ: adl)o(l)o _Uj .
U + alluly =~ fy., (A4) Vo ¢

i.e., Burgers and KPZ equations without the surface tensiorp© PY taking the limit as —cc, thez integral can be evalu-
terms. In order to deal with the inner solution around thedted exactly

singularity, lety;=y;(t) be the position of a shock and define WUz | Mg, iy Ug, U, X)P

the stretched variablg=(x;-y;)/ v and let 1

0
= apf dij dST(h]_,Ul,Sj_,hz,Uz,X;t)

. X — Vi
u(x,t) = vi<'—y' + 5,t> :
14 _
uy—sy/2
where § is a perturbation of the sharp valley position to be X f dv9(v? - Uy 8(uy - v9). (A8)
determined later. Thenw; satisfies Ur+s/2
Wit + alvi = Ui + vY)vi; = Vi + 0, (as)  Here (hyUp,s;,hp,0p, 1) is the PDF - of (hy(ys,0),

_ Uy(y1,1),S(y1, 1), oy +X,1),Us(y; +X,1)) conditional ony;
whereu;=dy:/dt, y=dé/dt and, toO(+?), vf can be evalu- being a sharp valley location and the spatial difference of the
ated atx;=y; and can thus be considered as a functiort of heightsh; andh, be x. Hence,

only. h h P
We study Eq.(A5) by regular perturbation analysis. We 0 (Ui M1, Nz, U, Uy X0
look for a solution in the form fo J»ul—slz _
=—q dss du(u; — u)T(hy,u,s,hy, Uy, X, t).
v = Ui0+ Vl)il + O(VZ). P —0 up+s/2 ! ! 22
To leading order, from EqAS5) we get forv? the follow- (A9)
ing equation:

For late use we note that ti@ term can be written in a
0 0 _.0 i
(=W, =vf,,. (A6)  Mmore convenient manner as

0
The boundary condition for this equation arises from the G(hl,ul.hz,uzyxyt)=2f ds s(T(Fl,ul—E',s,hz,uz,x,t)
matching condition witru®'=u’+»u!+0(12), 2) 2

. — S
lim v = lim W’ =1+ 3, +T<h1,u1+—.s,hz,u2,x,t))
Z—ieo Xi—Yi 2 2
wheres =s(t) is the sharp valley strength. It is understood + fllz dﬁfo ds S'I(F u
that for small v matching takes place for small values of P 112 . b
x;—yi| and large values oz|=|x;—V;|/ v. This gives
% =il 9 ofiz| =[x -yl g - 88,8 Mot ). (AL0)
v =1 - itan%%)
2 4 APPENDIX B
These results show that, ©(v), Eqg. (A3) can be esti- In this appendix we calculate the mixed moments
mated as {|oh[3 dulPy by using the master equation, which is derived in
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Sec. II. As we will see the ter® has an essential role in the (e,s(yp,t), h.(X,Yo,t), SU.(X,Yo,t)) conditional ony, being
results being to obtain the moments. Using E@) and  a sharp valley position. The@° can be expressed as
(22), it can be shown thaB? can be written as 5 5

G(& w1 = Gié 0 + G wxt),  (B4)

Gﬁ(g,a),x,t) :f dhduG(h— é,h+ §'u_ 9,u+ 2,X,t> where
? 2 2 2 Gg(é,w,x,t)
¢ & o o 0
+fdhdUG<h+§7h‘§’U+E:U—E,—x,t)- :agf dsgU, (e,s,5gnx)& - €,sgrx)w — S,X,t)
(B1) B

0 1
+ U.(€,s,50nx) €, sgnx)w,x,t) | — dssf dgpuU.
As shown in Appendix A, theG term can be written as (8,504, sgrexj,x.0) apf_oo 0 AVs

follows:
x(e,s,sgr{x)g—f,sgr(x)w—,Bs,x,t). (B5)
G(hy,uq,hy,us,%,1) 2

0 Uy-s/2 _ We are interested in scaling behavior of mixed moments in
= ap(j ds sf du(u; —uwT(hy,u,s, hz,uz,x,t)) , small length scale. In the limitx— 0 it should be noted that
- u

Ug+s/2 P? can be decomposed into two parts as
(B2 P2(€,w,%,1) = prd X, ) P(&,w,X,tjno sharp valley
— _ + (1 - ppd X, 1) P2(£, w,x, t|sharp valley,
whereT(h;,u,s,h,,u,,x,t) is the PDF of (2= Prolx D)P(& @, x tisharp y
(B6)
(E,U(yo,t),S(YO,t)-hz(YO +%,1), Us(Yo + X, 1)) wherep,JX,t) is the probability that there is no sharp valley

in [y,y+x) and P%&, w,x,t|no sharp valley is the PDF of

conditional ony,, being a sharp valley position. It should be SU(,¥,t) and éh(x,y,t) conditional on the property that
emphasized that when we sgyis a singular point, we mean thére is no sharp valley in [y,y+x). Also
that however the height itself is continuousygtthe height ~P°(é,@.x,tsharp valley is the PDF of du(x,y,t) and
gradient(corresponding Burgers velocjtis not continues at  sh(X,y,t) conditional on the property that there is at least
these points. At these singular points the meaning,ofs ~ one sharp valley iy,y+x). Since by definition of number
thatu,(yo,t) =u(+x,t) keeping in mind thati_>u,, while the  density of sharp valleyp we have

singularity strengths andu are defined as=u,—u_ andu

:%(u++u_). We defineh,(yo,t) andh,(y,,t) as Pns=1-plx| +0(x), ®7)

P(&,o,x,t|sharp valley = R(¢,w,x,t) + O(1), (B8)

- €
h.(yo.t) = h(yo) + > (B3)  whereR(¢,s,x,1) is the PDF ofé=h(y,+X)—h(yo), S(Yo,1),
andx, conditional thatyy be a shock position,

P X, )P2(&, w,,tino sharp valley

§,3 >+o(x). (B9)
X

— €

h_(yo,t) = h(yo) - >
't

X

1
=(1 —P|X|);Q<
Due to the continuity oh the limit e— 0 is not singular.

Now let us rewrite th&5® in a manner to be more convenient HereQ(7,, 7,,t) is the PDF of,(x,t) and 7,(x, 1), the regu-

for the rest of the calculations. For this purpose let lar part of the velocity and the velocity gradient, respectively.
Indeed we have considered the case0. The cas&<0 can
8UL(X,Yo,1) = (Yo + [X[,1) = U (Yo, 1), be treated similarly. We note that, in the limit> 0, because
of dealing with regular points, we have
2P0,
&J_(X,yo,t) = u_(yolt) — u(yo — |X|,t), xP (X"’lhlxﬂu,X,t) - Q("’lh' Wu't) .
It implies that
8h,(x,Yo,1) = h(yo + [x|,t) = hy(yo,1), P& w,%,t) = 8(w) 8(é) +o(1).
Define
8h_(x,Yo,t) = h_(yo,t) = h(yo = [X,1), A ot = Iirrz)X‘l(P‘*(f,w,x,t) - dw)8(§)) = Iirrg) P& wXt).
X— X—
and define U.(e,s, dh,,du,,x,t) be the PDFs of (B10)

031101-9
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Taking the limit asx— 0 in the equation foP? [Eq. (23)] regular and singular parts as
and considering that the system has reached the stationary

state, it follows thatA satisfies hy(X, 1) = 7,(x,t) + E ey D)3y - ;)
i

0=-awA- ZaI do'H(w,— ')A o’ X 1) + B(&w,t),
and

(B11)

Uy (x,t) = n,(x,t) + Loy -vy:).
where we have used limo(K(0)-K(x))=0 and also we de- (X0 = 7D Ejs(y’ Joy =)

fined

. So if we letf%w,x,t) be defined as
B(¢ 1) = ImG%(£ w,x,1).
X—0

1l (¢éw
2 - — - 2
To evaluateB note that ax— 0 féoxy =01 P|X|)XQ<X* X 't> * [XpR(€ @, x,1)

AU (X,Yo,t) — 0. then we can write

This implies that, ax—0
P& w,x,t) = (& w,x,t) + 0(X). (B15)

U.(s,§,0,x1) — S(s,t)d(w)d(§), (B12) Now we can prove Eq25) for 0<b<1 and an arbitrary

whereS(s,t) is the PDF ofs(y,,t) conditional ony, being a value ofa. The proof for the other values bfis similar. Let

sharp valley location. Hence, from the expressionG8y

1 (éw
(& m,x1) = (1 - = (—,—,t) R(¢ w,x,1),
B(& w,t) = apoS ,t)8(&) + ap(s)S(w) 5(£) (EoxD=( p|X|)X2Q X X * MeR(E w000

+2apd do’'S(w’,t) - 2apH(w)8(§),
o (g)L o' Sw’.t) = 2apH(w) A¢) 07(¢, 0.0 = [80) ~ W(pd(w) + (§)50) - pS(w,0)] 8.
(B13) Because the sharp valley points have contribution in large
’'s we can write forM >0
whereH(+) is the Heaviside function and we us&s,t)=0
for s>0 sinces(yp,t)<0. Inserting this expression in Eq.

(B11), the solution of this equation is dédw| €% w|°(Z°- 19)

J dedo]golb(Z - ) = f

w|<M

Al§ 0,1) = (= 8(w) + p()8'(w) + pS(w,1) ().

Do o azlgopz- ).
Here 6'(w)=dd(w)/dw and w used the identityws'(w) lo|>M
=-8(w). Using the fact thaip(s)=—(7,) [47], we can be (B16)

restatedA(¢, w,t) as ] ] .
Because of EqB14), the first term at the right-hand side

of Eq. (B16) is o(x). To estimate the second term, note that
for M large enough

Al¢,0,1) = (= 8w) = (17,)8"(w) + pS(@,1) 8(8).

Hence, combining the above results, we have

P& w,x,0) =[8w) = X(8(w) +(7,)6"(w) — pS(w,1))]8(é)
+0(X). (B14)

| aeulgriopz?
|w|>M

Which is correct forx>0. We reorganize this expression as
P& w,%1) =[(1 = pX)(8(@) = X{(1,) 8" (@)) +XpS(w,1)]8()
+ 0(X)

and then we use the identity

1 w
8w) = X(n) 6" (w) = ;Q(i;t) +0(X).

Now we decompose the fielthsandu in terms of the their

031101-10

< f dédw|Pw?Z?
|w|>M

< f dédw|éPw?(2°-gd) | + f dédw|€Pw’g®
|w|>M
=000+l | | detolePsionag
w|>M
=0(X). (B17)

Because the singular part @dfis canceled byg, the first
term should be of the order afx),
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. dition that £=h(yo+|x))—h(yo) and =h(y,+[x|)—h(yo), re-
dédo|é | °f spectively. Wherx— 0 we can write¢, =u,|x.
lul>M SinceM can be made arbitrarily large, we get

=|X*P(1 - [x|p) d A7) 702 7P Q1,70 1)
[74/>M1x

+ |X|pf dédw| £ w|PR(& w,x,t) = 0(x**P). f dédw|g?w](2° - %) < o(x**®) + 540(x),
w>M

We can writeR(£,w,x,t) as 3R(&,, o,[x],0)+3R(E, o, _
~|x|,t), where forR(¢,,w,|X|,t) andR(£_, w,|X|,t) with con- ~ Wheredy —0 asM— +o. Noting that

X242 0[] 7" ifo<b<1
dédo| &7 w[*f°= : (B18)
J aeorete (e + (il ) i b= 1.

We obtain Eq(25) for 0O<b=1. Forb>1 the leading term in our calculation will be the second term of(B48) with the
order ofo(x**). The leading term igp(|s|(Ju,|2+|u_|?)).

Also there is an alternative method to prove Ezp) for the situation thab>1. The method is based on the calculation of
the mixed moment(|h(x,) —h(x,))|?(u(xy) —u(x,))|®) for integer orders whildo=1, directly from the PDF's Eq(23) by
integrating over twaw's, i.e.,

P = - awPl - 2a f do'H(e' = 0)PI(£ 0’ ,X,1) + 2(K(0) = Ky (X)) P2, + 2(K(0) = K(X)Pg, + G(£ w,x,t).  (B19)

In the limit x— 0, keeping ther finite, and in stationary state, it will be simplified to

0=-awP]- Zaf do'H(w' - 0)PY£, 0" 1) + GY& 0,x1). (B20)

The termfdédw|€"w|"G%(£, w,x,t) should be calculated in the— +0 limit. This can be done by using the relatit®5).
Note that

f dédw| " 0| "G2(£, w,x,t) = ag<s|(5u+ +sgr(x)s)|™(sh, + sgr(x)e)|") + a§<s| U, oh,|™ = ap
+a(sl(au_+ sgrix)9)| " (oh- + sgrix)a)") + aZ(slau"on.|" - ap

n>. (B21)

If we go back and look carefully to the definitiofu,, we see thath,=u.|x|=0(x) and du,=0(x) asx— 0. While it
should be realized that the sharp valley strerggthof the order ofO(1) ase— 0, so in the limitx— 0, the result of the integral
would be simplified as

1
Xf dB<S|(&J++Bsgr(X)S)Im (cﬂﬂﬁsgr(X)g)
0

1
Xfo dB<S|(bU_+,8 sgn(x)s)|™ <5h-+sgr(X)§>

-1
[ seoignorermn = 2 22

Finally multiplying the terms of Eq(B19) in |£" and|w|™ and integrating over the variablésand » we have

Joicsm g+ .

(&™) = o™ K™ (|uy "+ [ulD) if m=ne N, (B22)
where the result coincides perfectly with E5) which is the general form of EqB22).

031101-11



TABEI et al. PHYSICAL REVIEW E 70, 031101(2004)

[1] A.-L. Barabasi and H. E. Stanleffractal Concepts in Surface (1996.

Growth (Cambridge University Press, New York, 1995 [36] A. Chekhlov and V. Yakhot, Phys. Rev. B1, R2739

[2] T. Halpin-Healy and Y. C. Zhang, Phys. Rezb4, 218(1995); (1995.

J. Krug Adv. Phys.46, 139 (1997). [37] A. Polyakov, Phys. Rev. 52, 6183(1995.

[3]J. Krug and H. Spohn]n Solids Far From Equilibrium  [38] E. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebedev,
Growth, Morphology and Defectsedited by C. Godreche JETP Lett.61, 1012(1995; Phys. Rev. Lett.78, 1452(1997).
(Cambridge University Press, New York, 1990 [39] G. Falkovich and V. Lebedev, e-print chao-dyn/9708002.

[4] P. Meakin, Fractals, Scaling and Growth Far from Equilib- [40] V. Gurarie and A. Migdal, Phys. Rev. B4, 4908(1996.
rium (Cambridge University Press, Cambridge, 1998 [41] J. P. Bouchaud and M. Mezard, Phys. Re\b& 5116(1996.

[5] Mehran Kardar, Physica 281, 295 (2000. [42] T. Gotoh and R. H. Kraichnan, e-print chao-dyn/9803037.

[6] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. L&, [43] S. Boldyrev, Phys. Rev. K5, 6907(1997).

889 (1986. [44] S. Boldyrev, e-print hep-th/9707255; e-print hep-th/9805100.

[7] L. Golubovic and Z. G. Wang, Phys. Rev. 49, 2567(1994). [45] V. Yakhot, Phys. Rev. E57, 1737 (1997); e-print chao-dyn/

[8] I. Ispolatov, P. L. Krapirsky, and S. Redner, Phys. Re\6E 9904016; e-print chao-dyn/9909017; e-print chao-dyn/
2540(1995. 0001027.

[9] J. Krug and H. Spohn, Europhys. LeB, 219(1989. [46] K. Khanin, A. Mazel, and Ya. G. Sinai, Phys. Rev. Lefi,

[10] H. Van Beijeren, R. Kutner, and H. Spohn, Phys. Rev. Lett. 1904 (1997).
54, 2026(1985. [47] E. Weinan and E. Vanden Eijnden, Phys. Rev. L&8, 2572
[11] H. k. Janssen and B. Schmittmann, Z. Phys. B: Condens. Mat-  (1999; e-print chao-dyn/9901006; e-print chao-dyn/9904028;
ter 63, 517(1986. e-print chao-dyn/9901029.
[12] G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, [48] R. H. Kraichnan, Phys. Fluid41, 3738(1999.
and V. M. Vinokur, Rev. Mod. Phys66, 1125(1994). [49] T. Gotoh and R. H. Kraichnan, Phys. Fluids 3 445 (1993,
[13] D. A. Huse, C. |. Henley, and D. S. Fisher, Phys. Rev. L&§,. Phys. Fluids10, 2859(1998.
2924(1985. [50] J. Bec and U. Frisch, e-print cond-mat/9906047; J. Bec, e-print
[14] M. Kardar and Y. C. Zhang, Phys. Rev. Letg8 2087 nlin.CD/0103029.
(1987. [51] J. Bec, U. Frisch, and K. Khanin, e-print chao-dyn/9910001.
[15] D. S. Fisher and D. A. Huse, Phys. Rev. B3, 10728 [52] D. Bernard and K. Gawedzki, e-print chao-dyn/9805002.
(1991). [53] M. Bauer and D. Bernard, e-print chao-dyn/9812018.
[16] R. D. Kamien, P. Le. Doussal, and D. R. Nelson, Phys. Rev. A[54] L. Frachebourg and Ph. A. Martin, e-print cond-mat/9905056.
45, 8727(1992. [55] S. N. Gurbatov, e-print chao-dyn/9912011.
[17] H. C. Fogedby, A. B. Ericksson, and L. V. Mikheev, Phys. [56] F. Hayot and C. Jayaprakash, e-print nlin.CD/0005050; e-print
Rev. Lett. 75, 1883(1995. chao-dyn/9901026.
[18] L. Balents, J.-P. Bouchaud, and M. Mezard, e-print cond-mat{[57] U. Frisch and J. Bec, e-print nlin.CD/0012033.
9601137. [58] D. Bernard, e-print cond-mat/0007106.
[19] R. Bundschuh and M. Lassig, e-print cond-mat/9602045. [59] J. Davoudi, A. A. Masoudi, M. R. Rahimi Tabar, A. R. Raste-
[20] G. Parisi and F. Slanina, e-print cond-mat/9712208. gar, and F. Shahbazi, Phys. Rev.68, 056308(200)).
[21] D. A. Gorokhov and G. Blatter, Phys. Rev. Le#2, 2705 [60] H. C. Fogedby, e-print cond-mat/0201168.
(1999. [61] L. H. Tang and H. Leschorn, Phys. Rev.45, 7162(1992.
[22] P. Delos Rios, Phys. Rev. LetB2, 4236(1999. [62] T. Ala-Nissila, T. Hielt, J. M. Kosterlitz, and O. Venalainen, J.
[23] A. Basu, Phys. Rev. B2, 4675(2000. Stat. Phys.72, 207 (1993.
[24] E. Brunet and B. Derrida, Phys. Rev. @&, 6789(2000. [63] J. M. Kim, Phys. Rev. Lett80, 888(1998.
[25] E. Perlsman and S. Havlin, Phys. Rev. &, 010102R) [64] C. S. Chin and M. den Nijs, e-print cond-mat/9810083.
(2001). [65] M. Prahofer and H. Spohn, e-print cond-mat/9912264.
[26] R. Mohayaee, A. L. Stella, and C. Vander Zande, e-print cond{66] M. K. Verma, Physica A277, 359(2000.
mat/0101091. [67] E. Marinari, A. Pagnani, and G. Parisi, J. Phys.38, 8181
[27] M. V. Feigelman, Sov. Phys. JETB2, 555(1980 [zZh. Eksp. (2000.

Teor. Fiz. 79, 1095(1980)]. [68] M. A. Moore et al, Phys. Rev. Lett.74, 4257 (1995.
[28] S. F. Shandarin and Ya. B. Zeldovich, Rev. Mod. Phg§, [69] T. J. Newman and H. Kallabis, e-print cond-mat/9512104.
185(1989. [70] T. J. Newman and A. J. Bray, e-print cond-mat/9604071.
[29] M. Vergassola, B. Dubrulle, U. Frisch, and A. Noullez, Astron. [71] S. Stepanow, Phys. Rev. &5, R4853(1997).
Astrophys. 280, 325 (1994). [72] M. Lassig, Nucl. Phys. B448 559(1998.
[

[30] S. F. Shandarin, e-print astro-ph/9507082. 73] C. Castellano, M. Marsili, and L. Pietronero, Phys. Rev. Lett.

[31] U. Frisch, J. Bec, and B. Villone, e-print cond-mat/9912110. 80, 3527(1998.

[32] J. P. Bouchaud, M. Mezard, and G. Parisi, Phys. RebZ  [74] C. Castellano, A. Gabrielli, M. Marsili, M. A. Munoz, and L.
3656(1995. Pietronero, Phys. Rev. B8, R5209(1998.

[33] M. Mezard, e-print cond-mat/9801029. [75] C. Castellano, M. Marsili, M. A. Munoz, and L. Pietronero,

[34] H. C. Fogedby, Phys. Rev. k7, 2331(1998); Phys. Rev. Lett. e-print cond-mat/9904434.
80, 1126 (1998; Phys. Rev. E57, 4943 (19998; 59, 5065 [76] H. K. Janssen, U. C. Taeuber, and E. Frey, Eur. Phys. 9, B
(1999; 60, 4950(1999. 491 (1999.

[35] V. Yakhot and A. Chekhlov, Phys. Rev. Lett77, 3118 [77] A. A. Masoudi, F. Shahbazi, J. Davoudi, and M. Reza Rahimi

031101-12



INTERMITTENCY OF HEIGHT FLUCTUATIONS IN.. PHYSICAL REVIEW E 70, 031101(2004)

Tabar, Phys. Rev. 65, 026132(2002. ing Particles(IOP Publishing, Bristol, 1992
[78] R. Peyret,Computational Fluid MechanicéAcademic, New [80] T. J. Newman and A. J. McKane, Phys. Rev5g 165(1997.
York, 2000. [81] J. M. Kim, M. A. Moore, and A. J. Bray, Phys. Rev. A4,
[79] R. W. Hockney and J. W. Eastwoo@pmputer Simulation Us- 2345(1991).

031101-13



