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The Kardar-Parisi-Zhang(KPZ) equation with infinitesimal surface tension, dynamically develops sharply
connected valley structures within which the height derivative is not continuous. We discuss the intermittency
issue in the problem of stationary state forced KPZ equation in 1+1 dimensions. It is proved that the moments
of height incrementsCa=kuhsx1d−hsx2dual behave asux1−x2uja with ja=a for length scalesux1−x2u!s. The
length scales is the characteristic length of the forcing term. We have checked the analytical results by direct
numerical simulation.
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I. INTRODUCTION

The growth, formation, and morphology of interfaces
have been one of the recent interesting fields of study be-
cause of its high technical and rich theoretical advantages.
On account of the disorder nature embedded in the surface
growth, stochastic differential equations have been used as a
suitable tool for understanding the behavior of various
growth processes. Such equations typically describe the in-
terfaces at large length scales, which means that the short
length scale details has been neglected in order to derive a
continuum equation by focusing on the coarse grained prop-
erties. A great deal of recent theoretical modeling has been
started with the work of Edward and Wilkinson describing
the dynamics of height fluctuations by a simple linear sto-
chastic equation[1–5]. By adding a new term proportional to
the square of the height gradient, Kardar, Parisi, and Zhang
(KPZ) made an appropriate description for lateral interface
growth [6]. The s1+1d-dimensional forced KPZ equation is
written as

htsx,td =
a

2
shxd2 + nhxx + fsx,td, s1d

whereaù0 and fsx,td is a zero-mean, statistically homoge-
neous, white in time random force with covariance

kfsx,tdfsx8,t8dl = 2D0Dsx − x8ddst − t8d. s2d

Typically the spatial correlation of the forcing is consid-
ered to be ad function, mimicking the short length correla-
tion. Here the spatial correlation is considered as

Dsx − x8d =
1

sps2d1/2expS−
sx − x8d2

s2 D , s3d

where s is much less than the system sizeL, i.e., s!L,
which represents a short range character for the random forc-
ing. The KPZ equation has made famous the “Ising model”
of nonequilibrium physics. It is indeed the simplest equation
nevertheless capturing the main determinants of the growth
dynamics i.e., nonlinearity, stochasticity, and locality. The
theoretical richness of the KPZ model is partly due to close

relationships with other areas of statistical physics. It is
shown that there is a mapping between the equilibrium sta-
tistical mechanics of a two-dimensional smectic-A liquid
crystal onto the nonequilibrium dynamics of the(111)-
dimensional stochastic KPZ equation[7]. It has been shown
in Ref. [8] that, one can map the kinetics of the annihilation
processA+B→0 with driven diffusion onto the(111)-
dimensional KPZ equation. Also the KPZ equation is closely
related to the dynamics of a sine-Gordon chain[9], the
driven-diffusion equation[10,11], high-Tc superconductor
[12], directed paths in the random media[13–26] and charge
density waves[27], dislocations in disordered solids[3], for-
mation of large-scale structure in the universe[28–31], Bur-
gers turbulence[32–60], and etc.

It is useful to rescale the KPZ equation ash8=h/h0, r 8
=r / r 0, and t8= t / t0. If we let h0=sD0/nd1/2 and t0=r0

2/n,
wherer0 is a characteristic length, all of the parameters can
be eliminated, except the coupling constantg=sa2D0d /n3.
The limit g→` (or zero tension limit,n→0), is known as
the strong-coupling limit[60]. Phase diagram information
extracted from the renormalization group flow indicates that
d=2 plays the role of a lower critical dimension. Fordø2,
the Gaussian fixed pointsa=0d is infrared unstable, and
there is a crossover to the stable strong-coupling fixed point.
For d.2, a third fixed point exists, which represents the
roughening transition. It is unstable and appears between the
Gaussian and strong-coupling fixed points which are now
both stable. Only the critical indices of the strong-coupling
regime(g→` or n→0) are known in 1+1 dimensions and
their values in higher dimensions as well as properties of the
roughening transition have been known only numerically
[61–67], and the various approximation schemes[68–76].

For finites, in the strong-coupling limitsn→0d nonlinear
term in the KPZ equation will dominate. The nonlinearity of
the KPZ equation in this limit includes the possibility of
singularity formations in a finite time as a result of the local
minima instability. Meaning that there is a competition be-
tween the diffusion smoothing effect(the Laplacian term),
and the enhancement of nonzero slopes. In one spatial di-
mension the sharp valleys are developed in a finite time. As
indicated in Figs. 1 and 2, the geometrical picture consists of
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FIG. 1. Different snapshots of the time evolution of the height,
with correlation lengthss,L /10 for the random periodic force,
until the time that the system finally reaches its stationary state. The
average distance between the sharp valleys is of the order ofs
[56,57].

FIG. 2. Different snapshots of the time evolution of the height,
with correlation lengthss,L /100 for the random periodic force,
until the time that the system finally reaches its stationary
state.
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a collection of sharp valleys intervening a series of hills in
the stationary state[77].

The main difficulty with the KPZ equation is that it is
controlled, in all dimensions, by a strong disorder(or strong
coupling) fixed point and efficient tools are missing to cal-
culate the exponents and other universal properties, e.g.,
scaling functions, amplitudes, etc. Despite the fact that in
one dimension, the exponents are known, but many proper-
ties, including the probability density function(PDF) of the
height of a growing interface have been so far measured only
in numerical simulations.

In this article, we investigate the statistical properties of
the KPZ equation in the strong-coupling limitsn→0d. This
limit is singular, which means that the surface develops sharp
valleys in a finite time. So starting with a flat surface after a
finite time scale,tc.spd1/6D0

−1a−2/3s5/3 [77], sharp valley
singularities are dynamically developed. In the singular
points spatial derivative of the fieldhsx,td is not continuous.
One of the main problem in this area is the scaling behavior
of moments of height incrementsCa=kuhsx1d−hsx2dual and
the PDF ofdh=hsx1d−hsx2d, that is,Psdhd. Inspired by the
methods proposed recently by Weinan and Vanden Eijnden
[47], a statistical method is developed to describe the mo-
ments of the height and height-gradient increments. We de-
rive a master equation for joint PDF of the height and its
gradient increments in(111) dimensions. It is shown that in
the stationary state where the sharp valleys are fully devel-
oped, the relaxation term with infinitesimal surface tension
leading to an unclosed term in the PDF’s equation. However
it is shown that the unclosed term can be expressed in terms
of statistics of some quantities defined on the sharp valleys.
We identify each sharp valley in positiony0 with three quan-
tities, namely, the gradients ofh in the positionsy0+, y0− and

its height from theh̄. The dynamics of these quantities are
given in Ref. [77]. Here it is proved that to leading order,
when ux1−x2u!s, fluctuation of the height field is not inter-
mittent. The analytic form of the amplitudes of the structure
functions is also given. The absence of the intermittency
means thatCa=kuhsx1d−hsx2dual scales asux1−x2uja, whereja

is a linear function ofa. It is proved that for length scales
ux1−x2u!s, the exponentsja are equal toa.

The paper is organized as follows. In Sec. II, we present
the known results for the moments of height incrementsCa
=kuhsx1d−hsx2dual, for length scalesux1−x2u@s. In Sec. III,
the master equation for the joint PDF of height and its gra-
dient increments has been derived for given surface tensionn
and for the length scalesux1−x2u!s. It is shown that the
surface tension term makes the PDF’s equation unclosed. In
Sec. IV we will consider the limit ofn→0 of the master
equation and derive the scaling exponents of height incre-
ments moments. Also a comparison between the analytical
results and direct numerical simulation are given. Details of
calculations are presented in Appendixes A and B.

II. SCALING EXPONENTS OF HEIGHT-DIFFERENCE
MOMENTS FOR FORCED KPZ EQUATION

AND FOR THE LENGTH SCALES zx1−x2zšs

In this section we review the known results for the scaling
exponent of height increments moments for the KPZ equa-

tion in 1+1 dimensions with white in time and space forcing.
Indeed the limits→0 is considered in Eq.(2). In this limit
Eq. (2) can be written as follows:

kfsx,tdfsx8,t8dl = 2D0dsx − x8ddst − t8d. s4d

For this type of forcing,Pfh̃sx,tdg the probability func-

tional of h̃sx,td=hsx,td−khl satisfies the functional Focker-
Planck equation[1,2]

]

] t
P =E ddx

d

dh̃sxd
FSa

2
s¹hd2 + n¹2hDPG

+ D0E ddx
d2

dh̃2sxd
P, s5d

where its solution in the 1+1 dimensions is

P = expF−
n

2D0
E dxshxd2G . s6d

Therefore if one introduceGsx−x8d=kh̃sxdh̃sx8dl as a
Green’s function, then it satisfies the following differential
equation:

]xxGsx − x8d = −
D0

n
dsx − x8d, s7d

so thatkh̃sxdh̃s0dl=−sD0/nduxu. Now we can write the second
moment of height increments for smallx’s as

kuhsxd − hs0du2l =
2D0

n
uxu. s8d

In a similar way it can be seen that the higher moments,
kuhsxd−hs0dual scale withx asuxua/2, which means that for the
length scales! ux1−x2u!L, the exponentsja are equal to
a/2.

There are a few comments on the result obtained for the
functional PDF, Eq.(6). It is evident that the probability
density functional[in 1+1 dimensions] is independent of the
coefficient of the nonlinear term, i.e.,a, so the result is in-
dependent of the strength of the coupling constant. If one
considers the random force with smooth spatial correlation,
the problem changes to a more complicated one and there is
no any closed solution for the functional PDF. In the next
sections we will show that the moments of the height incre-
ments for the length scalesux1−x2u!s has the scaling expo-
nentsja=a and the amplitude of the moments depend on the
coefficient of the nonlinear terma.

III. THE MASTER EQUATION GOVERNING
THE PROBABILITY DENSITY FUNCTION

OF THE HEIGHT-DIFFERENCE
AND GRADIENT-DIFFERENCE

FOR GIVEN SURFACE TENSION

In this section, considering the(111)-dimensional KPZ
equation and its corresponding Burgers equation, the master
equation describing the evolution of the joint two-point
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PDF, P(hsx1d−hsx2d ,usx1d−usx2d) is derived. Thes1+1d-
dimensional KPZ equation can be written as

htsx,td =
a

2
hx

2 + nhxx + fsx,td, s9d

whereaù0 and fsx,td is a zero-mean, statistically homoge-
neous, white in time random force. Its covariance is given by
Eq. (2). Using the map −]xh=u, the corresponding Burgers
equation also can be written as

ut = − auux + nuxx − fxsx,td. s10d

Defining the two-point generating function as
Zsl1,l2,m1,m2,x1,x2,td=kQl, whereQ is defined as

Q ª exps− ilh1 − ilh2 − im1u1 − im2u2d. s11d

The fieldsh1 andh2 are the heights of the surface at points
x1 and x2, respectively. The fieldsu1=−]x1

h1 and u2

=−]x2
h2 are related to the corresponding height gradients. As

it is seen the generating function is the ensemble average of
Q. The time evolution ofZ will be

Zt = − il1kh1tQl − il2kh2tQl − im1ku1tQl − im2ku2tQl.

s12d

Using Eqs.(9) and (10) and noting that, in Eq.(12), h1,
h2, u1, and u2 can be substituted byh1→ is] /]l1d, h2

→ is] /]l2d, u1→ is] /]m1d, andu2→ is] /]m2d, the time evo-
lution of Z can be rewritten as

Zt = i
al1

2
kQlm1m1

+ i
al2

2
kQlm2m2

− am1
]

] m1
ku1x1

Ql

− am2
]

] m2
ku2x2

Ql − il1kf1Ql − il2kf2Ql + im1kf1x1
Ql

+ im2kf2x2
Ql + il1nku1x1

Ql + il2nku2x2
Ql − im1nku1xxQl

− im2nku2xxQl. s13d

Now using

kujxQl =
i

m j
kQlxj

+
il j

m j
kQlm j

, j = 1,2 s14d

the equation governingZ can be written as

Zt = i
al1

2
kQlm1m1

+ i
al2

2
kQlm2m2

− am1
]

] m1
S i

m1
kQlx1

+ l1kQlm1
D

− am2
]

] m2
S i

m2
kQlx2

+ l2kQlm2
D

+ il1nS i

m1
kQlx1

+ l1kQlm1
D

+ il2nS i

m2
kQlx2

+ l2kQlm2
D + F + G. s15d

HereF andG stand for

F = − il1kf1Ql − il2kf2Ql + im1kf1x1
Ql + im2kf2x2

Ql, s16d

G = im1nku1xxQl + im2nku2xxQl.

In Eq. (15) the termsF andG are the only terms which
are not closed with respect toZ. Indeed the termF can be
also closed according to Novikov’s theorem,

F = „− sl1
2 + l2

2dKs0d − 2l1l2Ksxd…Z

+ „− sm1
2 + m2

2dKs0d − 2m1m2Ksxd…Z, s17d

whereKsxd=2D0Dsxd and x=x1−x2. So G is the only term
preventing Eq.(15) to be closed which can be referred to a
sort of dissipative anomaly.

The PDFPsh1,h2,u1,u2,x1,x2,td is defined as the two-
point joint PDF at the pointsx1 and x2 with their related
heightsh1 andh2, and their gradientsu1 andu2. The PDF can
be constructed by Fourier transforming the generating func-
tion Z,

Psh1,h2,u1,u2,x1,x2,td =E dl1

2p

dl2

2p

dm1

2p

dm2

2p

3 expsilh1 + ilh2 + im1u1

+ im2u2dZsl1,l2,m1,m2,x1,x2,td.

Fourier transformation of Eq.(15) gives the following
equation for the PDF:

−
]

] u1

]

] u2
Pt = −

a

2

]

] h1

]

] u1

]

] u2
su1

2Pd −
a

2

]

] h2

]

] u1

]

] u2
su2

2Pd

− a
]

] u2
Px + a

]

] u1
Px − a

]

] h1

]

] u2
su1Pd

− a
]

] h2

]

] u1
su2Pd − a

]

] u1

]

] u2
su1Pxd

+ a
]

] u1

]

] u2
su2Pxd + Lsm1m2Fd + Lsm1m2Gd,

s18d

where x=x2−x1, y=sx1+x2d /2, ]x1
=−]x+ 1

2]y and ]x2
=]x

+ 1
2]y. The termsLsm1m2Fd and Lsm1m2Gd are the Fourier

transformations of Eqs.(16) and (17), multiplied in m1 and
m2, where forLsm1m2Fd is

Lsm1m2Fd = − ks0d
]

] u1

]

] u2
S ]2

] h1
2 +

]2

] h2
2DP

− 2ksxd
]

] u1

]

] u2

]

] h1

]

] h2
P

− kxxs0d
]

] u1

]

] u2
S ]2

] u1
2 +

]2

] u2
2DP

− 2kxxsxd
]2

] u1
2

]2

] u2
2P s19d

andLsm1m2Gd is defined as
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Lsm1m2Gd ª − nhku1x1x1
uh1,h2,u1,u2,xlPju1u1u2

− nhku2x2x2
uh1,h2,u1,u2,xlPju1u2u2

. s20d

For later use we defineG as

Gª Gsh1,h2,u1,u2,x,td + Gsh1,h2,u1,u2,− x,td, s21d

where

Gsh1,u1,u1,u2,x,td = − nhku1x1x1
uh1,h2,u1,u2,xlPju1

.

Also we can simply substituteLsm1m2Gd with Gu1u2
. In

Eq. (20), ku1x1x1
uh1,h2,u1,u2,xl and ku2x2x2

uh1,h2,u1,u2,xl
are the averages ofu1x1x1

and u2x2x2
conditional that the

heights and velocities of fields beh1, h2, u1, andu2 with a
spatial differencex. Now we are interested in writing an
evolution equation for the PDF’s of height and its gradients
difference. We change the variablesh1, h2, u1, andu2 with
u1=u−sv /2d, u2=u+sv /2d, h1=h−sj /2d, andh2=h+sj /2d.
Integrating overu and h the PDF of the height and height-
gradient difference is obtained

Pdsj,v,x,td =E dhduPSh −
j

2
,h +

j

2
,u −

v

2
,u +

v

2
,x,tD .

s22d

Finally using Eq.(18), the master equation can be written
as

Pvvt
d = − 2aPxv

d − asvPx
ddvv + 2„ks0d − ksxd…Pvvjj

d

+ 2„kxxs0d − kxxsxd…Pvvvv
d + Gvv

d , s23d

where by considering the definition ofG in Eq. (21), Gd

would be

Gdsj,v,x,td =E dhduG. s24d

It is clear that theGd, which is proportional to surface
tensionn, makes the master equation unclosed. In Appendix
A it is proved that for finites and in the limit ofn→0, Gd

can be written in terms of the quantities which are defined on
singularities.

IV. CALCULATION OF THE MOMENTS
AND NUMERICAL SIMULATION

As shown in the preceding section, the presence of sur-
face tensionn makes the master equation unclosed. However
in the limit n→0 (that is, the KPZ equation with an infini-

tesimal surface tension), one can find exact scaling expo-
nents of the momentskuhsx1d−hsx2duauusx1d−usx2dubl. It
should be noted that theu-field satisfying the Burgers equa-
tion, for finite s’s, develops discontinues or shock solutions
in the limit n→0. Consequently for finites the height field
shows up as a set of sharp valleys at the positions where the
shocks are located, continuously connected by some hill con-
figurations, as indicated in Figs. 1 and 2. As mentioned, each
sharp valley in positiony0 is identified by three quantities,
namely, the gradients ofh in positionsy0+, y0−, and its height

from h̄. It is evident that the term limn→0nuxx is zero at the
positions where no sharp valley exists. Therefore in the limit
n→0, only small intervals around the sharp valleys will con-
tribute to the integral in Eq.(24). Within these intervals,
boundary layer analysis can be used for obtaining an accu-

rate approximation ofusx,td ,h̃sx,td=h− h̄. Generally, bound-
ary layer analysis deals with those problems in which pertur-
bations are operative over very narrow regions where the
dependent variables undergo very rapid changes across them.
These narrow regions(sharp valley layers) frequently adjoin
the boundaries of the domain of interest, owing the fact that
a small parameter(n in the present problem) multiplies the
highest derivative. A powerful method for treating the
boundary layer problems is the method of matched
asymptotic expansions. The basic idea underlying this
method is that an approximate solution to a given problem is
sought not as a single expansion in terms of a single scale
but as two or more separate expansions in terms of two or
more scales each of which is valid in part of the domain. The
scales are chosen, so that the expansion as a whole, covers
the whole domain of interest and the domains of validity of
neighboring expansions overlap. In order to handle the rapid
variations in the sharp valley layers, a suitable magnified or
stretched scale and expand the functions in terms of it in the
sharp valley regions is defined. For this purpose, we splitu

andh̃ into a sum of inner solution near the sharp valleys and
an outer solution away from the sharp valleys, and use sys-
tematic matched asymptotics to construct uniform approxi-

mation ofu and h̃. It should be emphasized that at pointy0
the height itself is continuous and height gradient(corre-
sponding Burgers velocity) is not continuous. At these sin-
gular points the meaning ofu± is that u±sy0,td=usy0±,td.
Keeping in mind thatu−.u+, the shock strengths and the
shock velocityū are defined ass=u+−u− and ū= 1

2su++u−d.
In Appendixes A and B, using the boundary layer method

and the master equation, we have proved analytically that the
joint moments of the height and the corresponding gradient
difference for anyaù0 will be

kudhuauduubl = 5uxua+bkuhhuauhuubl if 0 ø b , 1

uxua+1skuhhuauhuul + 1
2rkususuu+ua + uu−uadld if b = 1

uxua+11
2rkusubsuu+ua + uu−uadl if 1 , b

6 , s25d
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wheredh=hsx1d−hsx2d, du=usx1d−usx2d, andx=x1−x2. The
quantitieshh and hu are the regular parts of]xh and ]xu,
respectively. Fora=0, our result will recover the known re-
sults for Burgers equation with infinitesimal viscosity[47].

To prove Eq.(25), we have used the fact that the length
scales is finite andx is let to approach zero. This means that
we are dealing with the scaling behavior of the moments
kudhuauduubl for length scalesux1−x2u!s. It is evident that in
these length scales the height increments fluctuations is not
intermittent. Indeed we find the exponentja=a for any mo-
ments.

The moments of the height and height-gradient incre-
ments, i.e.,kuhsx1d−hsx2dual andkuusx1d−usx2dubl are also cal-
culated numerically as a function ofuxu= ux1−x2u for different
a’s and b’s. To simulate the problem, the KPZ equation is
discretized in space and time with scalesd and dt, respec-
tively. The time scaledt is related tod asdt= 3

4d /um, where
um is the maximum of the height gradient in each time step
[78,79]. At each time step the differenceUj = uusxj +1d
−usxjdu is checked for every pointj ’s. For Uj’s that
Uj . udu1/3, we can determine the positions that the height
field develop a sharp valley[57]. Indeed this is a criterion for
creation of a sharp valley in positionxj =yj. At points that
Uj , udu1/3 the fieldsusxjd and hsxjd belong to the smooth
part. Therefore the height fieldshsxjd will fall into two re-
gimes, points far from the sharp valleys pointsyj and the
points in its neighborhoods. For the points which the height
field is regular or smooth, the height fields and its corre-
sponding gradients evolve under the KPZ and Burgers equa-
tion by setting the surface tension zero. Otherwise it is in the
singularity or sharp valley region. As mentioned in the intro-
duction, every sharp valley can be characterized by four pa-
rameterss, ū, yj, andhsyjd. The time evolution of these quan-
tities are given by the following equations[77]:

dyj

dt
= aū,

d

dt
usyjd =

a

4
ssh+xx − h−xxd − fx,

d

dt
ssyjd =

a

2
ssh+xx + h−xxd,

d

dt
h̃syj,td = −

a

8
s4ū2 − s2d + f − g, s26d

whereg= h̄t.
To calculate numerically the scaling behavior of moments

with x whenx!s, a periodic one-dimensional substrate con-
sisting a discreteN-point height field with the length of
10 000 is used. Starting with a flat initial condition the height
and its gradient fields evolve in time. We consider the ran-
dom force as a white in time, smooth and periodic in space
random function, which its spatial correlation length is of the

order of period of the given periodic function. To generate
this type of forcing we use the kicking method which re-
cently has been used in Ref.[51], to simulate the Burgers
turbulence. The basic idea is that the random force can be
decomposed as follows:

fsx,td = o
j

f jsxddst − tjd, s27d

where d is the Dirac distribution and where both the “im-
pulses”f jsxd and the “kicking times”tj are prescribed(deter-
ministic or random). The kicking times are ordered and form
a finite or infinite sequence. In this article the impulses are
always taken smooth and acting only at length scaless.
Newman and McKane[80] have used similar kicking, in a
context where the forced Burgers equation is used for the
study of directed polymers. Kraichnan[48] has considered a
simple model in which there are nonsmooth impulses creat-
ing directly saw-tooth profiles in the velocity in Burgers tur-
bulence. Here the time intervals are equal to the time steps of
the algorithms run.

In Figs. 1 and 2, we illustrate different snapshots of the
time evolution of the height, considering different correlation
lengthss for the random periodic force, until the time that
the system finally reaches to its stationary state. The follow-
ing type of kicking force is used:

Fsx,td = Astdfcos„kx− wstd… + 1
3sin„kx− wstd…g , s28d

whereA is a white Gaussian random variable in time, which
is the noise amplitude andw is a homogeneous random
phase. Choosing different values fork, leads to different val-
ues fors. The length scales is of the order of the period of
F. In Fig. 3, the log-linear plot of the moments of height
increments are sketched numerically fora=0.7, 5, and 7,
respectively. We have found the exponentsja=ra+q, where
r =1.00±0.01 andq=−0.0012±0.0002. The scaling behavior
of the moments of height-gradient increments for length
scalesx!s is also checked. The result implies that with a
good precisionkuduubl scales withx with exponent 1 forb’s
larger than one, and scales withx with exponentsjb=b, for
b’s smaller than one with precision ±0.001. The behavior of
jb versusb is also plotted in Fig. 3.

In summary, we study the problem of nonequilibrium sur-
face growth described by the forced KPZ equation in 1+1
dimensions. The forcing is a white in time Gaussian noise
but with a Gaussian correlation in space with variances.
Modeling a short range correlated noise, we restrict our study
to the case when the correlation length of the forcing is much
smaller than the system size. Investigating the stationary
state, a general expression of the mixed correlations of
height-difference and height-gradient difference at any order,
in terms of the length scaleux1−x2u and quantities which
characterize the sharp valley singular structures is given.
Through a careful analysis being done over the behavior of
the sharp valley environment, we decipher the intermittency
exponent of an arbitraryath moment, i.e.,kuhsx1d−hsx2dual. It
is proved that the height increments fluctuations are not in-
termittent and itsath moments for length scalesux1−x2u,s
scales asux1−x2uja, where ja=a. In the present paper the
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limiting of n→0 is taken into account only for finites. Still
the forcing correlation length is much smaller than the sys-
tem size and height correlation length. But the limits→0 is
a singular limit in our calculations, and moreover, it is nota
priori clear that the limits ofn→0 ands→0 commute at all.
Using stochastic equations which are governed over the dy-
namics of quantities characterizing the sharp valleys we
simulate directly the problem and check the exponents. We
have generate the forcing using the kicking method. Our
simulation confirms the analytical results. We believe that the
analysis followed in this paper is quite suitable for the zero
temperature limit in the problem of directed polymer in the
random potential with short-range correlations[81]. The
same method applied to KPZ equation in higher dimensions
would be definitely one of the consequent goals of the
present work. The main message which might be encoded in
the present work is the importance of the statistical proper-
ties of the geometrical singular structures for understanding
the strong-coupling regime of Kardar-Parisi-Zhang equation.
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APPENDIX A

In this appendix we are going to prove that theG term in
Eq. (24) has a finite value in the limitn→0. As shown in
Sec. II theG term can be written as

G = Gsh1,u1,h2,u2,x,td + Gsh2,u2,h1,u1,− x,td. sA1d

Here we prove that in the vanishing surface tension limit,
the G term can be written as

Gsh1,u1,h2,u2,x,td

= rSE
−`

0

ds sE
u1+s/2

u1−s/2

dūsu1 − ūdTsh̄1,ū,s,h2,u2,x,tdD
u1

,

sA2d

whereTsh̄1,ū,s,h2,u2,x,td is the PDF of

„h̄1,ūsy0,td,ssy0,td,h2sy0 + x,td,u2sy0 + x,td…

conditional ony0 being a sharp valley position.
Let us now prove Eq.(A2). Assuming spatial ergodicity,

for example, the average of one of the terms inG, which is
proportional ton, can be expressed as

nkuixixi
uh1,h2,u1,u2,xlP

= nkuixixi
sx,tdd„u1 − u1sx1,td…

3d„u2 − u2sx2,td…d„h1 − h1sx1,td…

3d„h2 − h2sx2,td…l

= n lim
L→`

N

L

1

N
E

−L/2

L/2

dxiuixixi
sxi,td

3d„ui − uisxi,td…d„hi − hisxi,td…. sA3d

FIG. 3. In the upper graph the log-linear plot ofkuhs0d−hsxdual
vs x, for momentsa=0.7, 5, and 7 are demonstrated. In the middle
figure the corresponding scaling exponentja for height increments
are plotted. Theja has a linear dependence ona. In the lower figure
the scaling exponentjb for the moments of the height gradients
increments are shown.
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Clearly, in the limit asn→0 only small intervals around
the sharp valleys will contribute to the integral. In these in-
tervals, boundary layer analysis can be used to obtain an
accurate approximation ofuisx,td andhisx,td. The basic idea
is to splitui andhi into the sum of an inner solution near the
sharp valleys and an outer solution away from the singular
point, and using systematic matched asymptotic to construct
uniform approximation ofu1 andhi (for details see, e.g., Ref.
[77]). For the outer solution, we look for an approximation in
the form of a series inn,

hi = hi
out = hi

0 + nhi
1 + Osn2d,

ui = ui
out = ui

0 + nui
1 + Osn2d.

Thenui
0 andhi

0 satisfy

hit
0 −

a

2
s]xi

hi
0d2 = f ,

uit
0 + aui

0ui xi

0 = − fxi
, sA4d

i.e., Burgers and KPZ equations without the surface tension
terms. In order to deal with the inner solution around the
singularity, letyi =yistd be the position of a shock and define
the stretched variablezi =sxi −yid /n and let

ui
insx,td = viSxi − yi

n
+ d,tD ,

whered is a perturbation of the sharp valley position to be
determined later. Then,vi satisfies

nvit + asvi − ūi + ngdviz = vizizi
+ nf , sA5d

where ūi =dyi /dt, g=dd /dt and, toOsn2d, nf can be evalu-
ated atxi =yi and can thus be considered as a function oft
only.

We study Eq.(A5) by regular perturbation analysis. We
look for a solution in the form

vi = vi
0 + nvi

1 + Osn2d.

To leading order, from Eq.(A5) we get forvi
0 the follow-

ing equation:

asvi
0 − ūidvi zi

0 = vi zizi

0 . sA6d

The boundary condition for this equation arises from the
matching condition withui

out=ui
0+nui

1+Osn2d,

lim
zi→±`

vi
0 = lim

xi→yi

ui
0 ; ūi ±

si

2
,

wheresi =sistd is the sharp valley strength. It is understood
that for smalln matching takes place for small values of
uxi −yiu and large values ofuziu= uxi −yiu /n. This gives

vi
0 = ūi −

si

2
tanhSsizi

4
D .

These results show that, toOsnd, Eq. (A3) can be esti-
mated as

nkuixixi
uh1,h2,u1,u2,xlP

= n lim
L→`

N

L

1

No
i
E

Vi

dxiuixixi

in sxi,tdd„ui − ui
insxi,td…

d„hi − hi
insyi,td… = n lim

L→`

N

L

1

No
i
E

−`

`

dziuizizi

in d„ui − ui
inszi,td…

d„hi − hi
insyi,td… = n lim

L→`

N

L

1

No
i
E

−`

`

dzivi
0izizi

indsui − vi
0d

3d„hi − hi
insyi,td…, sA7d

whereVi is a layer centered atyi with width @Osnd. Going
to the stretched variablezi =sxi −yid /n, and using Eq.(A6),
we have

dzv0 zz= dv0

v0 zz

v0 z
= adv0sv0 − ūd.

So by taking the limit asL→`, thez integral can be evalu-
ated exactly

nku1x1x1
uh1,h2,u1,u2,xlP

= arE dūE
−`

0

dsTsh1̃,ū1,s1,h2̃,u2,x;td

3 E
ū1+s1/2

ū1−s1/2

dv1
0sv1

0 − ū1ddsu1 − v1
0d. sA8d

Here sh1,ū1,s1,h2,u2,x; td is the PDF of (h1sy1,td ,
ū1sy1,td ,ssy1,td ,h2sy1+x,td ,u2sy1+x,td) conditional on y1

being a sharp valley location and the spatial difference of the
heightsh1 andh2 be x. Hence,

vku1x1x1
uh1,h2,u1,u2,xlP

= − arE
−`

0

ds sE
u1+s/2

u1−s/2

dūsu1 − ūdTsh̄1,ū,s,h2,u2,x,td.

sA9d

For late use we note that theG term can be written in a
more convenient manner as

Gsh1,u1,h2,u2,x,td =
r

2
E

−`

0

ds sXTSh̄1,u1 −
s

2
,s,h2,u2,x,tD

+ TSh̄1,u1 +
s

2
,s,h2,u2,x,tDC

+ rE
−1/2

1/2

dbE
−`

0

ds sTsh̄1,u1

+ bs,s,h2,u2,x,td. sA10d

APPENDIX B

In this appendix we calculate the mixed moments
kudhuauduubl by using the master equation, which is derived in
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Sec. II. As we will see the termG has an essential role in the
results being to obtain the moments. Using Eqs.(21) and
(22), it can be shown thatGd can be written as

Gdsj,v,x,td =E dhduGSh −
j

2
,h +

j

2
,u −

v

2
,u +

v

2
,x,tD

+E dhduGSh +
j

2
,h −

j

2
,u +

v

2
,u −

v

2
,− x,tD .

sB1d

As shown in Appendix A, theG term can be written as
follows:

Gsh1,u1,h2,u2,x,td

= arSE
−`

0

ds sE
u1+s/2

u1−s/2

dūsu1 − ūdTsh̄1,ū,s,h2,u2,x,tdD
u1

,

sB2d

whereTsh̄1,ū,s,h2,u2,x,td is the PDF of

„h̄1,ūsy0,td,ssy0,td,h2sy0 + x,td,u2sy0 + x,td…

conditional ony0 being a sharp valley position. It should be
emphasized that when we sayy0 is a singular point, we mean
that however the height itself is continuous aty0 the height
gradient(corresponding Burgers velocity) is not continues at
these points. At these singular points the meaning ofu± is
thatu±sy0,td=us±x,td keeping in mind thatu−.u+, while the
singularity strengths and ū are defined ass=u+−u− and ū
= 1

2su++u−d. We defineh+sy0,td andh+sy0,td as

h+sy0,td = h̄sy0d +
e

2
, sB3d

h−sy0,td = h̄sy0d −
e

2
.

Due to the continuity ofh the limit e→0 is not singular.
Now let us rewrite theGd in a manner to be more convenient
for the rest of the calculations. For this purpose let

du+sx,y0,td = usy0 + uxu,td − u+sy0,td,

du−sx,y0,td = u−sy0,td − usy0 − uxu,td,

dh+sx,y0,td = hsy0 + uxu,td − h+sy0,td,

dh−sx,y0,td = h−sy0,td − hsy0 − uxu,td,

and define U±se ,s,dh± ,du± ,x,td be the PDF’s of

(e ,ssy0,td ,dh±sx,y0,td ,du±sx,y0,td) conditional ony0 being
a sharp valley position. ThenGd can be expressed as

Gdsj,v,x,td = G+
dsj,v,x,td + G−

dsj,v,x,td, sB4d

where

G±
dsj,v,x,td

= a
r

2
E

−`

0

dssfU±„e,s,sgnsxdj − e,sgnsxdv − s,x,td

+ U±se,s,sgnsxdj,sgnsxdv,x,t…g − arE
−`

0

dssE
0

1

dbU±

3Se,s,sgnsxdj −
e

2
,sgnsxdv − bs,x,tC . sB5d

We are interested in scaling behavior of mixed moments in
small length scalex. In the limit x→0 it should be noted that
Pd can be decomposed into two parts as

Pdsj,v,x,td = pnssx,tdPdsj,v,x,tuno sharp valleyd

+ „1 − pnssx,td…Pdsj,v,x,tusharp valleyd,

sB6d

wherepnssx,td is the probability that there is no sharp valley
in fy,y+xd and Pdsj ,v ,x,tuno sharp valleyd is the PDF of
dusx,y,td and dhsx,y,td conditional on the property that
there is no sharp valley in fy,y+xd. Also
Pdsj ,v ,x,tusharp valleyd is the PDF of dusx,y,td and
dhsx,y,td conditional on the property that there is at least
one sharp valley infy,y+xd. Since by definition of number
density of sharp valleysr we have

pns= 1 −ruxu + osxd, sB7d

Pdsj,v,x,tusharp valleyd = Rsj,v,x,td + Os1d, sB8d

whereRsj ,s,x,td is the PDF ofj=hsy0+xd−hsy0d, ssy0,td,
andx, conditional thaty0 be a shock position,

pnssx,tdPdsj,v,x,tuno sharp valleyd

= s1 − ruxud
1

x2QS j

x
,
v

x
,tD + osxd. sB9d

HereQshh,hu,td is the PDF ofhhsx,td andhusx,td, the regu-
lar part of the velocity and the velocity gradient, respectively.
Indeed we have considered the casex.0. The casex,0 can
be treated similarly. We note that, in the limitx→0, because
of dealing with regular points, we have

x2Pdsxhh,xhu,x,td → Qshh,hu,td.

It implies that

Pdsj,v,x,td = dsvddsjd + os1d.

Define

Asj,v,td = lim
x→0

x−1
„Pdsj,v,x,td − dsvddsjd… = lim

x→0
Px

dsj,v,x,td.

sB10d
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Taking the limit asx→0 in the equation forPd [Eq. (23)]
and considering that the system has reached the stationary
state, it follows thatA satisfies

0 = −avA − 2aE dv8Hsv,− v8dAsj,v8,x,td + Bsj,v,td,

sB11d

where we have used limx→0(Ks0d−Ksxd)=0 and also we de-
fined

Bsj,v,td = lim
x→0

Gdsj,v,x,td.

To evaluateB note that asx→0

du±sx,y0,td → 0.

This implies that, asx→0

U±ss,j,v,x,td → Sss,tddsvddsjd, sB12d

whereSss,td is the PDF ofssy0,td conditional ony0 being a
sharp valley location. Hence, from the expression forGd,

Bsj,v,td = arvSsv,tddsjd + arksldsvddsjd

+ 2ardsjdE
−`

v

dv8Ssv8,td − 2arHsvddsjd,

sB13d

whereHs·d is the Heaviside function and we usedSss,td=0
for s.0 sincessy0,tdø0. Inserting this expression in Eq.
(B11), the solution of this equation is

Asj,v,td = „− dsvd + rksld1svd + rSsv,td…dsjd.

Here d1svd=ddsvd /dv and v used the identityvd1svd
=−dsvd. Using the fact thatrksl=−khul [47], we can be
restatedAsj ,v ,td as

Asj,v,td = „− dsvd − khuld1svd + rSsv,td…dsjd.

Hence, combining the above results, we have

Pdsj,v,x,td = fdsvd − x„dsvd + khuld1svd − rSsv,td…gdsjd

+ osxd. sB14d

Which is correct forx.0. We reorganize this expression as

Pdsj,v,x,td = fs1 − rxd„dsvd − xkhuld1svd… + xrSsv,tdgdsjd

+ osxd

and then we use the identity

dsvd − xkhuld1svd =
1

x2QS j

x
,
v

x
,tD + osxd.

Now we decompose the fieldsh andu in terms of the their

regular and singular parts as

hxsx,td = hhsx,td + o
j

esyj,tddsy − yjd

and

uxsx,td = husx,td + o
j

ssyj,tddsy − yjd.

So if we let fdsv ,x,td be defined as

fdsj,v,x,td = s1 − ruxud
1

x
QS j

x
,
v

x
,tD + uxurRsj,v,x,td

then we can write

Pdsj,v,x,td = fdsj,v,x,td + osxd. sB15d

Now we can prove Eq.(25) for 0øbø1 and an arbitrary
value ofa. The proof for the other values ofb is similar. Let

fdsj,v,x,td = s1 − ruxud 1

x2QS j

x
,
v

x
,tD + uxurRsj,v,x,td,

gdsj,v,x,td = fdsvd − uxu„rdsvd + kjld1svd − rSsv,td…gdsjd.

Because the sharp valley points have contribution in large
v’s we can write forM .0

E djdvujuauvubsZd − fdd =E
uvuøM

djdvujuauvubsZd − fdd

+E
uvu.M

djdvujuauvubsZd − fdd.

sB16d

Because of Eq.(B14), the first term at the right-hand side
of Eq. (B16) is osxd. To estimate the second term, note that
for M large enough

E
uvu.M

djdvujuauvubZd

ø E
uvu.M

djdvujuav2Zd

ø UE djdvujuav2sZd − gddU +E
uvu.M

djdvujuav2gd

= osxd + uxurE
uvu.M

djdvujuav2Ssv,tddsjd

= osxd. sB17d

Because the singular part ofZ is canceled byg, the first
term should be of the order ofosxd,
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E
uvu.M

djdvujuauvubfd

= uxua+bs1 − uxurdE
uhuu.M/x

dhhdhuuhhuauhuubQshh,hu,td

+ uxurE
v.M

djdvujuauvubRsj,v,x,td = osxa+bd.

We can writeRsj ,v ,x,td as 1
2Rsj+,v , uxu ,td+ 1

2Rsj−,v ,
−uxu ,td, where forRsj+,v , uxu ,td andRsj−,v , uxu ,td with con-

dition that j=hsy0+ uxud−hsy0d and j=hsy0+ uxud−hsy0d, re-
spectively. Whenx→0 we can writej±=u±uxu.

SinceM can be made arbitrarily large, we get

E djdvujuauvubsZd − fdd ø osxa+bd + dMOsxd,

wheredM→0 asM→ +`. Noting that

E djdvujuauvubfd = Huxua+bkuhhuauhuubl if 0 ø b , 1

uxua+1
„kuhhuauhuul + 1

2rkususuu+ua + uu−uadl… if b = 1.
sB18d

We obtain Eq.(25) for 0øbø1. Forb.1 the leading term in our calculation will be the second term of Eq.(B18) with the
order ofosxa+1d. The leading term is12rkususuu+ua+ uu−uadl.

Also there is an alternative method to prove Eq.(25) for the situation thatb.1. The method is based on the calculation of
the mixed momentk(uhsx1d−hsx2d)uau(usx1d−usx2d)ubl for integer orders whilebù1, directly from the PDF’s Eq.(23) by
integrating over twov’s, i.e.,

Pt
d = − avPx

d − 2aE dv8Hsv8 − vdPx
dsj,v8,x,td + 2„Kxxs0d − Kxxsxd…Pvv

d + 2„Ks0d − Ksxd…Pjj
d + Gdsj,v,x,td. sB19d

In the limit x→0, keeping thes finite, and in stationary state, it will be simplified to

0 = −avPx
d − 2aE dv8Hsv8 − vdPx

dsj,v8,x,td + Gdsj,v,x,td. sB20d

The termedjdvujunuvumGdsj ,v ,x,td should be calculated in thex→ ±0 limit. This can be done by using the relation(B5).
Note that

E djdvujunuvumGdsj,v,x,td = a
r

2
ksusdu+ + sgnsxdsdumusdh+ + sgnsxdedunl + a

r

2
ksudu+unudh+unl − ar

3E
0

1

dbKsu„du+ + b sgnsxds…umUSdh+ + sgnsxd
e

2
DUnL

+ a
r

2
ksu„du− + sgnsxds…umu„dh− + sgnsxde…unl + a

r

2
ksudu−umudh−unl − ar

3E
0

1

dbKsu„du− + b sgnsxds…umUSdh− + sgnsxd
e

2
DUnL . sB21d

If we go back and look carefully to the definitiondu±, we see thatdh± .u±uxu.osxd and du± .osxd as x→0. While it
should be realized that the sharp valley strengths is of the order ofOs1d ase→0, so in the limitx→0, the result of the integral
would be simplified as

E djdvujunuvumGdsj,v,x,td .
a

2
Sm− 1

m+ 1
Druxun+1kusum+1suu+un + uu−undl.

Finally multiplying the terms of Eq.(B19) in ujun and uvum and integrating over the variablesj andv we have

kujunuvum+1l = 1
2ruxun+1kusum+1suu+un + uu−undl if mù n P N, sB22d

where the result coincides perfectly with Eq.(25) which is the general form of Eq.(B22).
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