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Abstract

Itis known that discrete scale invariance leads to log-periodic corrections to scaling. We investigate
the correlations of a system with discrete scale symmetry, discuss in detail possible extension of this
symmetry such as translation and inversion, and find general forms for correlation functions.
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1. Introduction

Log-periodicity is a signature afiscrete scale invariance (DSI) [1]. DSl is a symmetry
weaker than (continuous) scale invariance. This latter symmetry manifests itself as the
invariance of a correlata®(x) as a function of theontrol parameter, under the scaling
x — e*x for arbitrary. This means, there exists a numbgp) such that

Ox) = f(,u)O(e“x). (1)
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The solution to (1) is simply a power la®@(x) = x*, with & = —(log f)/u«, which can

be directly verified. In a system having DSI, correlators obey scale invariance, only for
discrete values of the magnification factpr=nu1, wheren is integer andes is fixed. 1

is the period of the resulting log-periodicity [1]. This property can be qualitatively seen to
encode dacunarity of the fractal structure. The most general solution to (1) wits nu1

is

O(x) =x°‘P(|n—x>, (2)
“i

where P(y) is an arbitrary periodic function of period 1, hence the name log-periodicity.

Expanding it in Fourier seriels - c, exp2nmi(Inx)/u1], we see tha®(x) becomes

a sum of power laws with the exponents = « + (2nxi/n1), wheren is an arbitrary

integer. So there is an infinite set of discrete complex exponents. Specifically, it has been

established that for financial bubbles prior to large crashes, a first order representation of

(),
1(t) = A+ B(te — 1)’ + C(tc — 1) coqwIn(t, — 1) — ), 3)

captures well the behaviour of the market price) prior to a crash or large correction at
atime~t [2,3].

There are many mechanisms known to generate log-periodicity [1]. Let us stress that
various dynamical mechanisms generate log-periodicity, without relying on a pre-existing
discrete hierarchical structure. Thus, DSI may be produced dynamically (see in particular
the recent nonlinear dynamical model introduced in [4]) and does not need to be pre-
determined by, e.g., a geometrical network. This is because there are many ways to break
a symmetry, the subtlety here being to break it only partially. Thus, log-periodicity per se
is not a signature of a critical point. Only within a well-defined model and mechanism can
it be used as a potential signature.

Scale-invariance is a subgroup of a larger transformation group, the conformal group.
In any conformal field theory, the system shows invariance under translation, rotation,
dilatation, and special conformal transformation [5]. Conformal invariance is sufficient
to determine the general form of simple correlation functions. It is known that generally
the correlation functions in ordinary conformal field theories are in the form of scaling
functions. This is the case, when the matrix of the weights is diagonalizable. There are,
however, cases when this matrix is nondiagonalizable, and has a Jordanian form, that is
the weight matrix is the sum of a diagonalizable matrix, and a nilpotent one (the latter
commuting with the former). These theories are known as logarithmic conformal field
theories (LCFTs). In these theories, there exist at least one partner for a primary field.
The general form of one-, two-, and three-point functions in LCFTs have been obtained in
[6-11].

Recently, people have become more interested in systems with discrete scale invariance.
There does not exist, however, a complete study of general properties of such systems.
In this paper we want to study the general form of correlation functions of systems
with discrete scale invariance. In Section 2, subgroups of the conformal transformations
are investigated, which contain discretmt( full) scale transformations. In Section 3,
the general form of the correlators of systems possessing discrete scale invariance are
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obtained. In Sections 4 and 5, the same is done for the systems possessing discrete scale
invariance plus translation- or special conformal transformation-invariance, respectively.
Both ordinary and logarithmic cases are studied.

2. Subgroups of the conformal group

Consider the transformations

To:z—> 27+, translation

Suiz— ez, scaling-rotation

Cpiz— 1 Zaz, special conformal transformatipn (4)
in the complex plane. The group of transformations constructed by the above transforma-
tions, is that subgroup of the conformal group, the central extension of which is trivial. It is
well known that this group is isomorphic to SIC). Let us call this group SCT. Through-
out this section, we consider only those subgroups of SCT, whicboanglete, by which
itis meant that if a convergent sequence of group-elements of SCT are in the subgroup, the
limit of that sequence is also in the subgroup.

First consider subgroups of translations. Any subgroup of translations, consists of
translationsly,, with

a=xp+p, (5)

wheres and 8’ are two fixed nonzero complex numbers, a)B’ is not real.x andy,
each may take only real values, only integer values, or only zero.

A similar argument holds for the subgroups of special conformal transformations, as
these transformations are in fact translations faf 1

For the subgroups of scaling-rotations too, a similar argument holds. However, as a
rotation by 2r (S, with u = 27i) is equal to identity and hence should be in the subgroup,
one concludes that any subgroup of scaling-rotations consists of the transfornfgtjons
with

w=xv+y, (6)

wherev is pure imaginaryy’ is not pure imaginaryy, andv’ are fixed. The values and

y can take, are as in the subgroups of translations, except tla&es integer values only

if v is rational multiple of Zi. In this case, ifv = (27i)n/m, wheren andm are integers
prime with respect to each other amdis positive, then those values ofwhich result in
distinct group-elements are integers from O upnte- 1. In this case, in fact one can use

v := 2mi/m instead ofv. This means that subgroups of scaling-rotations always contain
subgroups of pure rotations, which may be trivial, discrete, or the full rotation group.

Next consider subgroups consisting of products of two of the above subgroups. These
products are not direct products, since translations, scaling-rotations, and special conformal
transformations do not commute with each other. Consider first a subgroup of SCT,
consisting of transformations which are a scaling-rotation followed by a translation, where
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the translations are a subgroup of translations, and the scaling-rotations are a subgroup of
scaling rotations:

77— etz4a, (7)

wherex takes value on a lattice, (5), apdakes value on another lattice, (6). (Each of these
lattices may be degenerate, that is, a collection of lines, the whole plane, just one point, etc.)
This set of transformations is a subgroup, if and only if the lattice of the possible values of
« is invariant under the action of scaling-rotations which are in the set. The only possible
ways (apart from the trivial cases that the scaling-rotations or translations consist of only
the identity element) are the following:

(i) a rectangular lattice of translations, with scaling-rotations only rotations by integer
multiples ofr/2;

(i) a triangular lattice of translations, with scaling-rotations only rotations by integer
multiples ofr /3 or 27/3;

(i) any lattice of translations, with scaling-rotations only rotations by integer multiples
of r;

(iv) a degenerate lattice of translations, consisting of one continuous line, with scaling-
rotations only a subgroup (any subgroup) of scalings, or the product of a subgroup of
scalings and rotations by integers multiplesrof

(v) the full translations with any subgroup of scaling-rotations.

Again, a similar argument holds for subgroups of SCT, consisting of transformations
which are a scaling-rotation followed by a special conformal transformation, where the
special conformal translations are a subgroup of special conformal transformations, and
the scaling-rotations are a subgroup of scaling rotations:

s et g (8)

A set of transformations consisting of a translation followed by a special conformal
transformation, where the special conformal translations are a subgroup of special
conformal transformations, and the translations are a subgroup of translations, cannot
be a subgroup, unless the only translation is identity, or the only special conformal
transformation is the identity. To show this, one notices that the prait, can be equal
to C,/ T, for somea’ anda’, only if aa = 0 oraa = 2. But this criterion is necessary for
the above-mentioned set to be a subgroup (the multiplication be closed)=f0 for all
translations and special conformal translations in the set, then at least on of these subgroups
must contain no element apart from the identityidf= 2 for somez anda, one notes that
if the above-mentioned set contaifig it should also contaiff,, and obviously 2« # 2.

Finally, let us consider a subgroup G of SCT, containing nonidentity translations,
scaling-rotations, and special conformal transformation. First, assume also that G contains
a scaling-rotation which is not a pure-rotation, that is, sSinewith x not pure imaginary.

The above arguments show that G must contain a subgroup of continuous translations at
least in one direction, and a subgroup of continuous special conformal translations at least
in one dimension. The generators of these two one-parameter transformations are

gr=eL 1 +e 0L 4, (9)
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and
g2=eCLi+e Ly, (10)

for some# and¢. Using the commutation relation of the generators, it is seen that G
contains another one-parameter continuous subgroup, with the generator

g3=e Lo+ 0T, (11)

So G contains a continuous subgroup of scaling-rotations. Combining this with the above
arguments, it is seen that either

(i) G consists of transformations generatedgay g2, and Lo + Lo, Wherea + ¢ is an
integer multiple ofr, or,
(i) Gisequalto SCT.

Second, assume that the only scaling-rotations contained in G are pure rotations. It can be
shown that G cannot contain both nontrivial translations and nontrivial special conformal
transformations. The argument is similar to that used to prove that a set containing
translations followed by special conformal transformations cannot be a subgroup of SCT.
The difference is that now, For arfy, andS, in G, there should be son¥, andS, in G,

so thatT_, S_, T, S, be a pure rotation.

The above arguments can be stated for the conformal group in one dimension as well. In
one dimension, SCT is still constructed by the transformatigns,,, andC,. But now the
parameters, 1, anda are real, the scaling-rotations are in fact only scalings, and SCT is
isomorphic to Sk(R). Arguments similar to the above, then show that there are subgroups
of SCT consisting of

all translations, or discrete translations;

all special conformal transformations, or discrete special conformal transformations;
all scalings, or discrete scalings;

all translations, and all scalings or discrete scalings;

all special conformal translations, and all scalings or discrete scalings.

3. Systemswith discrete scaleinvariance

Consider a one-dimensional (one real dimension) system with discrete scale invariance.
A quasi-primary field transforms under the scaling as:

o(x) — eA’”d)(e“lx). (12)
Invariance under discrete scaling gives

(P (x)) = 3 (eM2x)). (13)
Defining

g(x) == x4 (p(x)), (14)
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one arrives at

g(e“lx) = g(x). (15)

This shows thag is periodic with respect to lag, with the periodw;. Hence it has a
Fourier series:

o(x) = Z C.e p(ZJTm |nx)7 (16)

n=—0oo Ml

from which one can obtain the one-point functigh(x)). The expectation value of the
field ¢ is real, iff C, = C_,,. In this case, one arrives at

(¢ (x)) = Zrn s(z””'"x +9n), (17)

wherer,, andg, are defined through@, =: r, exp(i6,).
The two-point function of two quasi-primary fields can be obtained similarly. Defining

g(x1, x2) i= x; 1x5 2 (1 (x1)2(x2)), (18)
and exploiting the discrete scale invariance, it is seen that
g(e"x1, e'ixp) = g(x1, x2), (19)
from which, using the new variablé€s,/x1) and Inx1, one arrives at
In X1 X2
g(x1,X2)=P<—, —>, (20)
M1 X1

where P is a periodic function with period one, of its first variable, and arbitrary with
respect to its second variable. One can then expand this function as a Fourier series, and
obtain the two-point function as

(prxDgo(x2) =x7 Yy 2 Y C(ff) exp(z”%'l”“), (21)

whereC, s are arbitrary functions.
This argument can be extended to more-point functions of quasi-primary fields, and one
arrives at

~ B s 2mnil
(r(x0) - drx) = xg M Y Cn(xl %) exp(%lnxl)
e (22)

Now let us assume a logarithmic partngrfor the quasi-primary fielg. This means
that under discrete scale transformatigrtransforms like

Y (x) —> e [x[f(eulx) + ulqb(e“lx)]. (23)

This is nothing by the formal derivative of (12) with respect4oif one considerss as
the formal derivative of with respect taA. So, in light of [8], it is not surprising that the
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expectation of/ is just the formal derivative of that af:

2rnilnx
-4 § Cl —Cyl p(7> 24
W) = ( nx)ex " (24)

n=—0oo

whereC;, is the formal derivative o€, with respect taA. This can be readily extended to
more-point functions: changing any quasi-primary field in the left-hand side of (22), into
its logarithmic partner, one has to differentiate formally the right-hand side with respect to
the weight of that field, treating arbitrary constants and functions as entities depending on
that weight.

Finally, the above arguments for obtaining the correlators of a one-dimensional system
with discrete scale invariance, can be easily extended to two-dimensional system with
rotational invariance and discrete scale invariance. Here, a quasi-primagy fraldsforms
as

#(z) — ei(AfA_wd)(eiez), 7 ez,
d(z) —> e(A+A)M1¢(e#1Z), 7 — ez, (25)

(It is not assumed that is holomorphic. Its dependence eris a short-hand notation for
its dependence on the real part and the imaginary pastafits dependence anandz.)
Now, let us find the expectation gf Defining

8(2) =274 (6 (2)). (26)

it is seen thag depends on onlyz|, and thatg is periodic with respect to liz|, with the
periodus. So,

6() = Z e (27mz In |Z|> 27)

n1

n=—oo

A similar reasoning leads to

(G121 r@)) =2g ooz Mg
27nil
x Z ( . )exp(L” n'“'), (28)
et " Zk-1 1
for thek-point function ofk quasi-primary fields. Differentiating this formally, with respect

to appropriate weights, one arrives at the correlators containing logarithmic partners as
well.

4. Discretescaleinvariance plustrandation invariance

First consider a one-dimensional system with discrete scale invariance as well as
translation invariance. A quasi-primary fielgl, is transformed under discrete scale
transformation like (12), and is transformed under translaties x + « as

¢(x) = ¢(x + ). (29)
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Translation invariance results in

(p(x +a)) = (p(x)), (30)
or

(p(x) =C, (31)
whereC is a constant. Discrete scale invariance, then gives

(e4*1 —1)C =0. (32)
This means that the one-point function is nonzero, only if for fields with the weights

2mki
A= (33)
M1

where k is an integer. If there exists a logarithmic partner for then translational
invariance gives

(p(x)) =C1, (U (x)) =Ca. (34)

Herey is the logarithmic partner of-, being transformed under discrete scale invariance
like (23), and behaving under translation like (29), witlsubstituted withy,. Imposing
discrete scale invariance, it is seen that the one-point functions are zero, afttess 1,

and in this cas€ is zero. The constraint on the weight is the same as (33). So,

(@) =0, (U (x)) =Ca, et =1, (35)

The more-point functions of quasi-primary fields, can be obtained similarly. Translation
invariance makes thie-point function a function otk — 1) independent differences of the
k coordinates. Defining

g(x2 — X1, ..oy Xk — Xp—1) 1= (x1 — x) A (x2 — x1)22 -+ (g — xp—1)
X (Pp(x1) - - Pr(xp)), (36)
it is seen that
INn(x2 —x1) x3—x2 Xk — Xk
g(XZ_xlw-ka_xk—l):P[ 5 3 eey ! ) (37)
M1 X2 — X1 Xk—1— Xk—2

whereP is periodic with the period one, in its first variable, and arbitrary in other variables.
From this, thec-point function is obtained as

(B (x1) - P () = (x1 — xx) (a2 — x1) 42 (g — xp—1)

> X3 — X2 Xp — X

- — Xk

X Z Cy e 1
X2 — X1

= T X1 = Xk—2
exp|:27'[m |n(x2—xl)i|' (38)
M1

Correlators containing logarithmic parts, can be obtained by formal differentiation with
respect to appropriate weights. The one-point function is exceptional, as it is zero unless
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the weight is one of the members of a discrete set, Eq. (33). This case was discussed
previously.

Finally, for a two-dimensional system, a quasi-primary figlds transformed under
rotation and discrete scaling like (25), and under translation like the obvious generalization
of (29). Again, translation invariance makes the one-point function of the quasi-primary
field ¢ independent of:

(p(z))=C. (39)
Rotation invariance and discrete scale invariance, then result in

A= [ADme — (40)

respectively. From the first equatiofi, nay be nonzero only i\ = A. Then the second
equation shows that may be nonzero only if
- ki
A=A="2 (41)
u1
wherek is an integer. Iy has a logarithmic partnefr, then there may be nonzero one-point
functions only as
@) =0  (Y@)=Cp  eAFDm=q (42)

k-point functions ofk quasi-primary fields are also similarly obtained:

(P (z1) - x(2k))
=(z1— Zk)_A1(§2 —z1)" 42 o (zk — 2k—1) "M )
X (71— k) MM (F2 — 7)) A% (T — k)M

o0 .
_ _ 2rnil _
X E C,,(Z3 2 . T )exp[ 7Nz Zl']. (43)

Nt 2221 Zk—1— Zk—2 M1

More-than-one-point functions containing logarithmic partners, are also obtained by
formal differentiation of the above, with respect to appropriate weights.

5. Discrete scale invariance plus special conformal invariance

Now, let us consider the systems invariant under discrete scale transformation
together with continuous special conformal transformation. First consider one-dimensional
systems. A quasi-primary field, is transformed under special conformal transformation

like
a ) (44)

1
o) = (1—ax)2A¢<l—ax

Defining a fieldg through
$x) :=x"*¢(1/x), (45)
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it is seen that undef,, this field is transformed like

P(x) = d(x —a). (46)

Itis also seen that under discrete scaligs transformed as
H(x) — e_Aﬂl(];(e_“lx). (47)

These show that corresponding to the quasi-primary fielthere exists another field

such that the actions of special conformal transformation and discrete scaling on which are
like translation and discrete scaling, respectively. So correlators containing these new fields
are like those obtained in the previous section. From these, it is easy to obtain correlators
containing the quasi-primary fields.¢fhas a logarithmic partnef, then define the field

Y through

¥ (x) == x"2A[Y(1/x) — 2AInx¢(L/x)]. (48)

This is in fact the formal derivative af with respect toA. Correlators containing andy
are of the general forms obtained in the previous section. From these, it is easy to obtain
correlators containing andys, or several fields like them.
For two-dimensional systems, one defigesorresponding to a quasi-primary fiefd
like

$(z) :=2724772¢(1/2). (49)

So correlators containing are of the general form obtained in the previous section.
Correlators containing logarithmic partners can be obtained through differentiation with
respect to appropriate weights.

6. Concluding remarks

The general form of correlation functions of systems with discrete scale invariance was
obtained. This was done for systems in one real dimension, as well as systems in one
complex dimension (two real dimensions). Logarithmic field theories with discrete scale
invariance, were also introduced, and their corresponding correlators were obtained. It is
still an open problem to find more physical systems with discrete scale invariance, and also
measure more-than-one-point functions for systems showing log-periodicity.
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