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Abstract

We find the exact N-point generating function in the Polyakov approach to Burgers turbulence.

1. Introduction

The theoretical understanding of turbulence has
eluded physicists for a long time. An interesting
approach is to model turbulence using stochastic
partial differential equations [1,2]. In this direction,
Polyakov [3] has recently offered a field theoretic
method for deriving the probability distribution or
density of states in (1 + 1)-dimensional turbulent
systems. He formulates a new method for analyzing
the inertial range correlation functions based on the
two important ingredients in field theory and statisti-
cal physics, namely the operator product expansion
(OPE) and anomalies. Despite the existence of many
field theoretic approaches to turbulence [4-6], it
appears that this new approach is more promising.
Polyakov argues that in the limit of a high Reynold
number, because of the existence of singularities at
the coinciding point, dissipation remains finite and
all subleading terms give vanishing contributions in
the inertial range. By using the OPE one finds the
leading singularities and can show that this approach
is self-consistent. Here we consider Polyakov’s ap-
proach [3] to Burgers turbulence when the pressure
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gradient is negligible and solve the N-point master
equation, calculating the N-point generating func-
tion. Our result also applies to the Kardar—Parisi—
Zhang (KPZ) equation in 1 + 1 dimensions to inves-
tigate crystal growth [7], nonlinear dynamics of a
moving line [8], galaxy formation [9], dissipative
transport [11], dynamics of a sine-Gordon chain [12],
behavior of a magnetic flux line in superconductors
[13], and spin glasses [14].

2. N-point generating functions

The Burgers equation has the following form,
u,tuu, =vu, +f(x, 1), (1)
where u is the velocity field, and » is the viscosity

and f(x, 1) is the Gaussian random force with the
following correlation,

FCx F(X 1)) =k(x=X)8(1=1).  (2)

The transformation, u(x, r) = — A8, h(x, 1) maps Eq.
(1) to the well known KPZ equation [7],

a,h=1vd_ h+ A8, ) +£(x, ). (3)
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It is noted that the parameter A that appears in the
above transformation is not renormalized under any
renormalization procedure [10). Following Polyakov
[3] we consider the following generating functional,

Zy(A), Agse Ay, X, xy)

= <exp( éﬁl Au( x;, t))> . (4

Noting that the random force f(x, t) has a Gaussian
distribution, Z, satisfies a closed differential equa-
tion provided that the viscosity v tends to zero,

1 3z,
Z +
2 ’8/\ /\ dx; )
= Y k(x,—x;)\;A,Zy + Dy, (5)
whereD,, is

Dy = 1/2)\)-<u"(xJ 1) exp(Z/\ku( Xi t))) (6)

To remain in the inertial range we must, however,
keep v infinitesimal but nonzero. Polyakov argues
that the anomaly mechanism implies that infinitesi-
mal viscosity produces a finite effect. To compute
this effect Polyakov makes the F-conjecture, which
is the existence of an operator product expansion or
fusion rules. A fusion rule is a statement concerning
the behaviour of correlation functions, when some
subset of points are put close together.
Let us use the following notation,

Z(A, Ay xyeexy) =g (x)) - (X4))-

M

Then Polyakov’s F-conjecture is that in this case the
OPE has the following form,

e(x+2y)e(x—3y)
=A(/\1, Ay, y)ex,+Az( ‘x)

d
e,\ +A2+0(y2) (8)

This implies that Z, fuses into functions Z,_, as
we fuse a couple of points together. The F-conjec-
ture allows us to evaluate the following anomaly
operator (i.e. the Dy-term in Eq. (5)),

a(x) = lim v(A)u'(x) exp[ Au( x)], (%)

+B()‘1» Ay, )’)

which can be written as
83
lim A
v 0 Vaga 2

As discussed in Ref. [3] the only possible Galilean
invariant expression is

a(x)= M e(x+y)e(x). (10)

. 2
a,(x) = a(A) e x) + B(A) T-e(x). (11)

Therefore in the steady state the master equation
takes the following form,

a
£ (5 -0
=Za()u,-)Z >
BN =N + . (12)

Polyakov has found the following explicit form of
Z, in the case that k(x;,—x)=K(Of1 —(x,—
X, )2/12]

Z,( ,va)=e2(#y)’“/3, (13)

and the following expression for the density of states
as the Laplace transform of Z,,

3
FZ Yk(x; = x)NAZy
J

c+ix

W )= [ ——e “Zy(1Y), (14)
where
r=2(A—A), y=x—x;.

It can be easily shown that with the following defini-
tion of variables the Polyakov master equation with
the scaling conjecture [3] is

¥ 9’ ) 0
+ - + =0,
oy T Omdys (Y22 +y3m3) | S5
(15)
where

-b
f3=()\1)\2’\3) Z,,

}’12%(}‘1"'}‘2*‘)‘3)’ yZ:xl_%(x2+x3)’

Y3 = Xy — X3, #1=%(A|+/\2+)‘3)’

o =3[A —3(A+A)]0 By =2(A = A).
(16)
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Now we set f; as

fy= w3 g3( 2 y2s By Ys)- (17)
Inserting this in Eq. (15) results in

8:( 2Y2, 13Y3) = e kvt ua /3 (18)
and

S,=8,=—3.

If we use the following transformation,
Xp+Hx, Fx; 4 xy

n= N >
Xyt X3+ xy

=x, - —-—
Y2 =X N—1 ’

X3 tx,+ ... xy

Y3= X~ N—2 )
INT Xy T XN (19)
and

A+HA+ Ay
o= N ’

N A+ A+ Ay
M=N—1(“_ N-1 )

N-1 A+ A+ .. +Ay,
lh:N—2(M— N-2 y :
my=2(Ay_; — Ay), (20)

we obtain the following partial differential equation
for fy,

Y

3 &
+...+t—
3y,8u, Oyn Oy

_(y2/"'2+"'+yN’~LN)2fN=O’ (21)
which is solved by

~QN-D/AN-1)
o= (o py. . py) Nopraw

K e mayat .t uwyn)? /3 (22)

In principle the parameter b in Eq. (16) can be
evaluated by means of the exponents of the
(u, ... uy) term in Eq. (22), which for Z, turns out
tobe b=13.

It must be noted that although the particular choice
of k(x— x") used above is solvable it may not be
appropriate to turbulence, due to its short-range cor-
relation. A correlation function for a noise better
suited to turbulence is given in Ref. [15]. Another
relevant random force is the conservative one, which
is important when studying the KPZ equation. Work
in both these directions is on the way.
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