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BP 4229, 06304 Nice Cedex 4, France

Received 19 November 2001
Revised 18 November 2002

We review a recent development in theoretical understanding of the quenched averaged
correlation functions of disordered systems and the logarithmic conformal field theory
(LCFT) in d-dimensions. The logarithmic conformal field theory is the generalization
of the conformal field theory when the dilatation operator is not diagonal and has the
Jordan form. It is discussed that at the random fixed point the disordered systems such
as random-bond Ising model, Polymer chain, etc. are described by LCFT and their
correlation functions have logarithmic singularities. As an example we discuss in detail
the application of LCFT to the problem of random-bond Ising model in 2 ≤ d ≤ 4.
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1. Introduction

Random systems represent the spatial inhomogeneity where scale invariance is only

preserved on average but not for specific disorder realization. The understanding

of the role played by quenched impurities of the nature of phase transition is one

of the significant subjects in statistical physics and has attracted a great deal of

attention.1 According to the Harris criterion,2 quenched randomness is a relevant

perturbation at the second-order critical point for systems of dimension d, when

its specific heat exponent α, of the pure system is positive. Concerning the effect

of randomness on the correlation functions, it is known that the presence of ran-

domness induces a logarithmic factor to the correlation functions of pure system.3,4

Theoretical treatment of the quenched disordered systems is a non-trivial task in

view of the fact that, one has to average the logarithm of the partition function

over various realization of the disorder in the statistical ensemble and therefore find

physical quantities.1 There are two standard methods to perform this averaging, the

supersymmetry (SUSY) approach, and the well-known replica approach. Recently

using the replica approach it has been shown by Cardy,5 that the logarithmic factor

multiplying power law behavior are to be expected in the scaling behavior near non-

mean field critical points (see also Ref. 54). It is shown also that the results are valid

for systems with short-range interactions and in an arbitrary number of dimensions.

He concludes that in the limit of n → 0 of replicas the theory possess of a set of

fields which are degenerate (they have the same scaling dimensions) and finds a

pair of fields which form a Jordan cell structure for dilatation operator and derives

logarithmic operator in such disordered systems. It is proved that the quenched

disordered theory with Z = 1 can be described by logarithmic conformal field the-

ory as well. The logarithmic conformal field theories (LCFT)6,7 are extensions of

conventional conformal field theories,8−10 which have emerged in recent years in

a number of interesting physical problems of WZNW models,11−15 supergroups
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and super-symmetric field theories,16−22 Haldane-Rezzayi state in the fractional

quantum Hall effect,23−27 multi-fractality,28 two-dimensional turbulence,29−31 grav-

itaitionally dressed theories,32 Polymer and abelian sandpiles,33−35,5 String theory

and D-brane recoil,36−44 Ads/CFT correspondence,45−52 Seiberg-Witten solution

to SUSY Yang-Mills theory,53 disordered systems.54−63 Also the material such as

Null vectors, Characters, partition functions, fusion rules, Modular Invariance, C-

theorem, LCFT‘s with boundary and operator product expansions have been dis-

cussed in.64−84

The LCFT are characterized by the fact that their dilatation operator L0 are

not diagonalized and admit a Jordan cell structure. The non-trivial mixing between

these operators leads to logarithmic singularities in their correlation functions. It

has been shown6 that the correlator of two fields in such field theories, has a loga-

rithmic singularity as follows,

< ψ(r)ψ(r
′

) >∼ |r − r
′ |−2∆ψ

log |r − r
′ | + . . . (1)

In this article we review the conformal field theory (CFT) and logarithmic con-

formal field theory (LCFT), which have appeared in the last decade as a powerful

tool for the description of the correlation functions of second-order phase transition

of pure and disordered critical systems near their fixed points. In section 2 and 3

we present a brief and self-content review of the CFT and LCFT and their basic

tools in d-dimensions. In section 4 using the replica method we show that the dis-

ordered systems near their fixed point can be described by LCFT. As an example

we discuss in details the correlation functions of the random-bond Ising model and

its connection to LCFT. We give the explicit expression of the various types of

quenched averaged 2, 3 and 4-point correlation functions of the local energy den-

sity. We also show that the ratios of these correlation functions to the connected

ones have specific universal asymptotic and write down these universal functions

explicitly.

2. Conformal Field Theory

In the following sub-sections we introduce the necessary techniques and the basic

definition such as conformal transformation, conformal group, its representation,

correlation functions, Ward-identities, Virasoro algebra and its representation in

2d conformal field theories, etc.

2.1. Conformal Transformation & Conformal Group

Let us start with definition of conformal transformation.

Definition 1: A transformation of coordinates x′ → x is called conformal if it

leaves the d-dimensional metric gµ,ν unchanged up to a scalar factor Λ(x), i.e.

g′µν(x) = Λ(x)gµν(x) (2)



September 30, 2003 9:29 WSPC/139-IJMPA 01690

4706 M. R. R. Tabar

consider an infinitesimal transformation

xµ → x′µ = xµ + εµ(x) (3)

to order (ε):

gµν → gµν − (εµ;ν + εν;µ) (4)

where εα;β is the covariant derivative of εα. The condition that the transformation

be conformal gives:

εµ;ν + εν;µ = f(x)gµν (5)

where

f(x) = Λ(x) − 1

Now we can eliminate f(x). Let us suppose that gµν = ηµν = Diag(1,−1, · · ·).
Contract eq. (5) with ηµν to get:

f(x) =
2

d
(∂νεν) =

2

d
(∂ · ε) (6)

This gives us the first relation between f(x) and ε. Differentiate eq. (5) w.r.t. xα

and after reordering of indices:

2∂µ∂νεα = ηµα∂νf + ηνα∂µf − ηµν∂αf (7)

Now contract (7) with ηµν gives:

2∂2εµ = (2 − d)∂µf (8)

To find final equation for f apply ∂µ to eq.(8) and ∂2 to eq.(5) and find:

(2 − d)∂µ∂νf = ηµν∂
2f (9)

now contract above eq. with ηµν (using ηµνηµν = d), therefore we find that the f

satisfies the following equation :

2(1 − d)∂2f = 0 (10)

2.2. Conformal Group with d > 2

For d > 2 eq. (10) reduces to following simple equation,

∂2f = 0 ⇒ f(x) = A+Bµx
µ (11)

Using the relation f(x) = 2
d∂αε

α:

εµ = aµ + bµνx
ν + cµναx

νxα (12)

The case b ≡ c ≡ 0 ⇒ infinitesimal translation. Now suppose a ≡ c ≡ 0.

Substitute εµ = bµνx
ν in eq. (5) gives:

bµν + bνµ =
2

d
bααηµν (13)
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Therefore bµν has two part which are antisymmetric and proportional to ηµν , i.e.

bµν = ληµν +mµν mµν = −mνµ (14)

where λ is scaling factor. The term which is proportional to ηµν is scaling trans-

formation and mµν part is an infinitesimal rotation. To understand the meaning of

the part cµναx
νxα we start with eq.(9) for d > 2:

(2 − d)∂µ∂νf = ηµν∂
2f = 0 ⇒ ∂µ∂νf = 0 (15)

or:

∂µ∂ν∂ · ε = 0 (16)

∂ν∂ · ε = −2bν ⇒ εµ = bµx · x − 2xµb · x (17)

This is known as special conformal transformation which has combination of inver-

sion and translation. For finite transformation:

x′
µ

= xµ + aµ

x′
µ

= λxµ

x′
µ

= mµ
νx

ν

x′
µ

=
xµ − bµx2

1 − 2b · x + b2x2
(18)

The generators of conformal group are: (for d > 2)

pµ = −i∂µ

D = −ixµ∂µ

Lµν = i(xµ∂ν − xν∂µ)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (19)

and the algebra is

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(ηµνD − Lµν)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ) (20)

Define new generators as:

Jµν = Lµν

J−1,µ =
1

2
(Pµ −Kµ)

J−1,0 = D

J0,µ =
1

2
(Pµ +Kµ) (21)
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Note that Ja,b = −Jb,a and a, b ∈ {−1, 0, 1, · · · , d}. Ja,b satisfy the SO(d + 1, 1)

algebra. Number of its parameters is 1
2 (d+ 2)(d+ 1). Ja,b satisfy:

[Ja,b, Jc,d] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (22)

2.3. Representation of Conformal Group

Consider infinitesimal transformation with parameters ωg. We would like to find

the representation of Tg so that:

Φ′(x′) = (1 − iωgTg)Φ(x) (23)

Now define:

LµνΦ(0) = SµνΦ(0) (24)

Near the origin:

exp(ixαPα)Lµν exp(−ixαPα)

= Sµν − xµPν + xνPµ (25)

using:

PµΦ(x) = −i∂µΦ(x) (26)

one finds,

LµνΦ(x) = i(xµ∂ν − xν∂µ)Φ(x) + SµνΦ(x) (27)

Similarly define the effect of D and Kµ on the origin as ∆ and kµ respectively, leads

to:

KµΦ(x) =

(kµ + 2xµ∆ − xνSµν − 2ixµx
ν∂ν + ix2∂µ)Φ(x)

DΦ(x) = (∆ − ixν∂ν)Φ(x) (28)

Now for finite transformation we can define the quasi-primary field as following.

Definition 2: The field Φ(x) which under conformal transformation transforms as:

Φ(x) → Φ′(x′) = Ω(x)∆i/2Φ(x) (29)

is called quasi-primary filed with scaling dimension ∆i/2. The relation between

Ω(x) and the Jacobian is, | ∂x′

∂x | = Ω−d/2.

2.4. Correlation Functions

Correlation functions of the conformal field theory should transform as following:

< Φ′(x′1) · · ·Φ′(x′N ) >=

Ω(x1)
∆1/2 · · ·Ω(xN )∆N/2 < Φ(x1) · · ·Φ(xN ) > (30)
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The conformal structure implies strong constraints on the correlation functions of

the theory. These constrains can be found by using the infinitesimal transformation

and the above transformation.

One can show that the two, three and four point correlation functions of Φ(x)

are given by:

< Φ1(x1)Φ2(x2) > =

{

c1,2

|x1−x2|2∆1
, ∆1 = ∆2

0, ∆1 6= ∆2

(31)

< Φ1(x1)Φ2(x2)Φ3(x3) > =
c1,2,3

x∆1+∆2−∆3

1,2 x∆2+∆3−∆1

2,3 x∆1+∆3−∆2

1,3

(32)

< Φ1(x1)Φ2(x2)Φ3(x3)Φ4(x4) > = f(
x1,2x3,4

x1,3x2,4
,
x1,2x3,4

x2,3x1,4
, · · ·)Π4

i<jx
∆/3−∆i−∆j

i,j (33)

where xi,j = |xi − xj | and ∆ = Σ4
i=1∆i.

2.5. The Ward Identities

Consider an infinitesimal transformation as:

Φ′(x′) = (1 − iηa(x)Ga)Φ(x) (34)

where Ga‘s are the generators of group and ηa(x)‘s are infinitesimal functions.

Under this transformation action changes as:

δS = −
∫

ddx∂µ(jµ
a η

a(x)) (35)

where jµ
a is conserved current corresponding to the transformation (34). On the

other hand we can find the change of N-point correlation functions under this

transformation. Defining Φ(N) = Φ(x1) · · ·Φ(xN ), it can be shown that to order

η(x):

< δΦ(N) >= −
∫

ddx∂µ < jµ
a Φ(N) > ηa(x). (36)

Also using explicit expression of transformation (i.e. eq. (34)):

δΦ(N) = −i
N

∑

i=1

(Φ(x1) · · ·GaΦ(xi) · · ·Φ(xN ))ηa(xi)

= −i
∫

ddxηa(x)
N

∑

i=1

{Φ(x1) · · ·GaΦ(x) · · ·Φ(xN )}δ(x− xi) (37)

Therefore for given (small) η:

∂

∂xµ
< jµ

a (x)Φ(x1) · · ·Φ(xN ) >

= i

N
∑

i=1

δ(x − xi) < Φ(x1) · · ·GaΦ(x) · · ·Φ(xN ) > (38)

This is the Ward identity corresponding to current jµ
a (x).
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2.6. Ward identity corresponding to the conformal invariance

We know that the Stress-Tensor ( Tµν) is conserved current due to the invariance

of S under transformation x′µ = xµ + εµ with constant ε‘s. It‘s properties are: 1)

Tµν = Tνµ and 2) ∂µT
µν = 0. Conserved charges are P ν =

∫

dd−1xT 0ν . P ν as

an operator in Hilbert space acting as : [Pν ,Φ] = −i∂νΦ. More generally [Qa,Φ] =

−iGaΦ. There is another definition of T µν . Consider the changes in metric as gµν →
g′µν = gµν + δgµν , under this transformation action S transforms as :

δS =

∫

ddx
√
gT µνδgµν (39)

This enable us to find more restrictions of T µν for conformal transformation. Sup-

pose that theory possess Wyle symmetry so that:

gµν(x) → Λ(x)gµν(x) (40)

For infinitesimal transformation, gµν → gµν + ω(x)gµν , or δgµν = ω(x)gµν . Substi-

tute this result in eq.(39):

δS =

∫

ddx
√
gT µνω(x)gµν

∫

ddx
√
gT µ

µω(x) = 0

⇒ T µ
µ = 0 (41)

This means that the stress-tensor is traceless.

Now we can write the Ward identities (WI) due to conformal invariance. For

invariance under translation:

∂µ < T µ
ν Φ(N) > =

N
∑

i=1

δ(x− xi)
∂

∂xν
i

< Φ(N) > (42)

for Lorantz invariance ( its current is jµνα = T µνxα − T µαxν and its generators is

Lµν = Sµν + i(xµ∂ν − xν∂µ)):

∂µ < (T µνxα − T µαxν)Φ(N) > =

−
N

∑

i=1

δ(x− xi){xν
i ∂

α
i − xα

i ∂
ν
i − iSνα

i } < Φ(N) > (43)

Using the first identity:

< (T µν − T νµ)Φ(N) > = i

N
∑

i=1

δ(x− xi)S
µν
i < Φ(N) > . (44)

WI corresponds to the scaling invariance

∂µ < T µ
ν x

νΦ(N) > =

N
∑

i=1

δ(x− xi){(xν
i

∂

∂xν
i

+ ∆i) < Φ(N) >} (45)
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Also using the first identity:

< T µ
µ Φ(N) > =

N
∑

i=1

δ(x− xi)∆i < Φ(N) > . (46)

2.7. Conformal invariance in 2- dimensions

Suppose x = (x0, x1) and gµν = Diag(1, 1). Using eq.(5) we have:

∂µεν + ∂νεµ =
2

d
gµν(∂ · ε) (47)

For ν 6= µ and µ = ν = 1 we have the following equations

∂1ε2 = −∂2ε1

∂1ε1 = ∂2ε2 (48)

Define z = x0 + ix1, z̄ = x0 − ix1, and d2s = dzdz̄ so that :

gzz = gz̄z̄ = 0

gzz̄ = gz̄z =
1

2
(49)

now for w = ε1 + iε2, the eqs. (48), reduce to the condition ∂z̄w(z, z̄) = 0. This

shows that the group of conformal transformations in two dimensions is isomorphic

to the (infinite-dimensional) group of arbitrary analytic coordinate transformation

z → w(z) and z̄ → w̄(z̄).

The Mobius transformation is a subset of holomorphic transformation which has

the following expression:

z → f(z) =
az + b

cz + d
ad− bc = 1. (50)

where a, b, c and d are complex numbers. One can show that the two transformations

f1 and f2 gives, f1f2 = f , so that the parameters of f1 and f2 be a1, b1, c1, d1

and a2, b2, c2, d2, respectively, the parameters of f3 will be a3 = a1a2 + b1c2, b3 =

a1b2 + b1a2, c3 = a1a2 + a1c2, d3 = c1b2 + a1a2.

2.8. Holomorphic form of conformal ward identity

In 2D we use the two-dimensional expression for generator of spin of i-th field as

Siµν = siεµν where εµν = −ενµ. Therefore conformal Ward Identities reduces to

the following form:

∂

∂xµ
< T µ

ν Φ(N) > = −
N

∑

i=1

δ(x− xi)
∂

∂xν
i

< Φ(N) >

εµν < T µνΦ(N) > = −
N

∑

i=1

δ(x− xi) < Φ(N) >



September 30, 2003 9:29 WSPC/139-IJMPA 01690

4712 M. R. R. Tabar

< T µ
µ (x)Φ(N) > = −

N
∑

i=1

δ(x− xi)∆i < Φ(N) > (51)

Now using the following identity:

δ2(x) =
1

π
∂z̄

1

z
=

1

π
∂z

1

z̄
(52)

we can write the conformal WI as:

2π∂z < Tzz̄Φ(N) > +2π∂z̄ < TzzΦ(N) > = −
N

∑

i=1

∂z̄(
1

z − wi
)∂wi < Φ(N) >,

2π∂z < Tz̄z̄Φ(N) > +2π∂z̄ < Tzz̄Φ(N) > = −
N

∑

i=1

∂z̄(
1

z − wi
)∂w̄i < Φ(N) >,

2 < Tzz̄Φ(N) > +2 < Tz̄zΦ(N) > = −
N

∑

i=1

δ(x − xi)∆i < Φ(N) >,

−2 < Tzz̄Φ(N) > +2 < Tz̄zΦ(N) > = −
N

∑

i=1

δ(x − xi)si < Φ(N) >, (53)

Using the last equations:

2π < Tz̄zΦ(N) > = −
N

∑

i=1

∂z̄(
1

z − wi
)hi < Φ(N) >,

2π < Tzz̄Φ(N) > = −
N

∑

i=1

∂z(
1

z̄ − w̄i
)h̄i < Φ(N) >, (54)

where h = 1
2 (∆ + s) and h̄ = 1

2 (∆ − s). Using the above equation we can rewrite

the eq.(53) as:

∂z̄ < TΦ(N) > = ∂z̄{
N

∑

i=1

1

z − wi
∂wi < Φ(N) > +

hi

(z − wi)2
< Φ(N) >}

∂z < T̄Φ(N) > = ∂z{
N

∑

i=1

1

z̄ − w̄i
∂wi < Φ(N) > +

h̄i

(z̄ − w̄i)2
< Φ(N) >} (55)

where T = −2πTzz and T̄ = −2πTz̄z̄. Therefore:

< T (z)Φ(N) > =

N
∑

i=1

{ 1

z − wi
∂wi < Φ(N) > +

hi

(z − wi)2
< Φ(N) >}+ · · · (56)

Also same equation holds for T̄ (replace z with z̄). This gives us the Operator

Product of T and Φ. For example consider N = 1 and find that:

T (z)Φ(w) =
1

z − w
∂wΦ(w) +

h

(z − w)2
Φ + · · · (57)

In the next section we will start from the OPE of T and Φ and introduce the LCFT.
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2.9. Correlation Functions in Two Dimensions

Let us now find δεΦ(x). Using the eq.(36):

δε < Φ(N) > =

∫

M

d2x∂µ < T µν(x)εν(x)Φ(N) >

i

2

∮

c

{−dz < T z̄z̄εz̄Φ(N) > +dz̄ < T zzεzΦ(N) >} (58)

or

δεε̄ < Φ(N) > = − 1

2πi

∮

c

dz < T (z)Φ(N) > +C.C (59)

Using the operator product of T (z) and Φ(w):

δε < Φ(N) >= −
N

∑

i=1

(ε(wi)∂wi + ∂wiε(wi)hi) < Φ(N) > (60)

Therefore for holomorphic part:

δεΦ(z) = −ε∂zΦ(z) − hΦ(z)∂zε (61)

For infinitesimal transformation ε(z) = a+ bz + cz2:

N
∑

i=1

∂wi < Φ(N) > = 0

N
∑

i=1

(wi∂wi + hi) < Φ(N) > = 0

N
∑

i=1

(w2
i ∂wi + 2wihi) < Φ(N) > = 0 (62)

One can solve the above equation and find that:

< Φ1(z1, z̄1)Φ2(z2, z̄2) > = δh1,h2

c1,2

(z1 − z2)2h(z̄1 − z̄2)2h̄
(63)

< Φ1(x1)Φ2(x2)Φ3(x3) > =
c1,2,3

xh1+h2−h3

1,2 xh2+h3−h1

2,3 xh1+h3−h2

1,3

(64)

< Φ1(x1)Φ2(x2)Φ3(x3)Φ4(x4) > = f(
x1,2x3,4

x1,3x2,4
,
x1,2x3,4

x2,3x1,4
, · · ·)Π4

i<jx
h/3−hi−hj
i,j (65)

where h =
∑4

i=1 hi. Note that in four point function unknown function f has

only one crossing ratio, because, if one define η =
z1,2z3,4

z2,3z1,4
, therefore will find that,

z1,2z3,4

z1,4z2,3
= η

1−η and
z1,4z2,3

z1,3z2,4
= 1 − η. So f is function of η and η̄.

In the end of this sub-section let us introduce the central charge c via the OPE

of T and T . For instance consider the following actions in two dimensions;

S1 =
1

2
g

∫

d2x∂µφ∂
µφ

S2 =
1

2
g

∫

d2xψ+γ0γµ∂µψ (66)



September 30, 2003 9:29 WSPC/139-IJMPA 01690

4714 M. R. R. Tabar

it can be shown that :

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ · · · (67)

where c = 1 and c = 1/2 for S1 and S2, respectively. This is just the definition of

central charge c.

2.10. Transformation of Stress-Tensor

According to definition of stress-tensor:

δεΦ = − 1

2πi

∮

ε(z)dzT (z)Φ (68)

and for T (w):

δεT (w) = − 1

2πi

∮

ε(z)dzT (z)T (w)

= − 1

12
c∂3

wε(w) − 2T (w)∂wε(w) − ε(w)∂wT (w) (69)

This gives the transformation of T under infinitesimal transformation z → z+ ε(z).

For finite transformation ( z →W (z)):

T ′(W ) = (
dW

dz
)−2[T (z)− c

12
{W ; z}] (70)

where {W ; z} = d3W/dz3

dW/dz − 3/2(d2W/dz2

dW/dz )2, which is called the Schwartzian deriva-

tive.

As an example one can check that for Mobius transformation W = az+b
cz+d (with

ad− bc = 1) we have {W ; z} = 0.

Also the map W (z) = L/2π ln z maps the plane to the strip with periodic boundary

conditions. One can show that 1) < Tplane >= 0 and 2) < Tcyl >= −cπ2

6L2 .

2.11. The Virasoro Algebra & Its Representation

Expanding the stress-tensor in terms of a Laurent series as:

T (z) =
∑

n

z−n−2Ln (71)

with

Ln =
1

2πi

∮

dzzn+1T (z) (72)

Using the above expansion and operator product expansion (OPE) of TT :

[Ln, Lm] =

∮

dw

2πi

∮

dz

2πi
zn+1wm+1(

c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
)

=

∮

dw

2πi
(
c

12
n(n2 − 1)wn+m+1 + 2(n+ 1)wn+m+1T (w) + wn+m+2∂T (w))

[Ln, Lm] =
c

12
n(n2 − 1)δn+m,0 + (n−m)Ln+m (73)
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These commutation relations are known as Virasoro Algebra. We intend to

create a representation of this algebra in terms of states, so let |0 > be a vacuum

state in our field theory such that Ln|0 >= 0 for n = 0, 1,−1. Define the state

|h >= Φ(0)|0 > for any primary field Φ of conformal weight h. It can be shown

that L0|h >= h|h >, so that |h > are eigenvectors of L0. Also we have Ln|h >= 0

for n > 0. We call these states highest−weight states in the representation. We

can obtain all states in the representation by applying a sequence of L−n operators

to a highest weight state. Alternatively we can define fields:

Φ−k1,···,−kn(z) = L−k1
· · ·L−knΦ(z) (74)

with

L−kΦ(w) =

∮

dz

2πi

T (z)Φ(w)

(z − w)k−1
. (75)

where k1 + · · ·+ kn = N . The fields Φ−k1,···,−kn(z) are known as the descendent of

field Φ(z) at level N .

For example one can check that the stress-tensor is the descendent of identity

operator I , i.e. L−2I = T (0).

Now define null vector |ξ > as being a linear combination of states of the same

level. Similar to primary state it is it must be stable under the operation of Ln and

L0.

Ln|ξ > = 0 n > 0

L0|ξ > = (h+N)|ξ > (76)

For instance we can show that the state (L−2 +aL2
−1)Φ with a = − 3

2(2h+1) is a null

state in the level N = 2. The existence of null vectors gives us additional differ-

ential equation for determining of unknown function f(η) in four-point correlation

functions which contains the field Φ.

3. Logarithmic Conformal Field Theory

In an ordinary conformal field theory primary fields are the highest weights of

the representations of the Virasoro algebra. The operator product expansion that

defines a primary field Φ(w, w̄) is

T (z)Φi(w, w̄) =
∆i

(z − w)2
Φi(w, w̄) +

1

(z − w)
∂wΦi(w, w̄) (77)

T (z̄)Φi(w, w̄) =
∆̄i

(z̄ − w̄)
Φi(w, w̄) +

1

(z̄ − w̄)
∂w̄Φi(w, w̄) (78)

where T (z) := Tzz(z) and T̄ (z̄) := Tz̄z̄(z̄).

The primary fields are those which transform under z → f(z) and z̄ → f̄(z̄) as:

Φi(z, z̄) → Φi(z, z̄)
′ = (

∂f−1

∂z
)∆i(

∂f̄−1

∂z̄
)∆̄iΦi(f

−1(z), f̄−1(z̄)) (79)
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It can be shown that the OPE of T and Φ is equivalent to the commutation relation

between Ln‘s and Φ. Let us introduce the radial quantization which is defined as:

R(Φ1(z)Φ2(w)) =

{

Φ(z)Φ(w) |w| < |z|
Φ(w)Φ(z), |w| > |z| (80)

Now suppose we have two function a(z) and b(z) (are holomorphic) and consider

the integral
∮

w
dza(z)b(z). To have a well defined expression for this integral we

should consider the radial ordered of fields. We consider two contours c1 and c2
so that the c1 is the circle path ( anti-clockwise) with center in the origin and its

radius is r = |w| + ε and c2 is similar path as c1 ( but clockwise) with r = |w| − ε.

Therefore,
∮

c

dza(z)b(z) =

∮

c1

dza(z)b(w) −
∮

c2

dzb(w)a(z) (81)

Define A =
∮

dza(z), therefore,
∮

c

dza(z)b(z) = [A, b(w)] (82)

From eq. (72) one finds,

[Ln,Φ(w)] =
1

2πi

∮

dzzn+1T (z)Φ(w) (83)

Using the OPE of T and Φ

[Ln,Φi(z)] = zn+1∂zΦi + (n+ 1)zn∆iΦi (84)

One can regard ∆i’s as the diagonal elements of a diagonal matrix D,

[Ln,Φi(z)] = zn+1∂zΦi + (n+ 1)znDj
i Φj (85)

One can however, extend the above relation for any matrix D, which is not nec-

essarily diagonal. This new representation of Ln also satisfies the Virasoro algebra

for any arbitrary matrix D. Because we have not altered the first term in the right

hand side of the equation (85), this is still a conformal transformation.

By a suitable change of basis, one can make D diagonal or Jordanian. If it be-

comes diagonal, the field theory is nothing but the ordinary conformal field theory.

The general case is that there are some Jordanian blocks in the matrix D. The

latter is the case of a LCFT.7

Here, there arise some other fields which do not transform like ordinary primary

fields, and are called logarithmic operators. For the simplest case, consider a two-

dimensional Jordan cell.

The fields Φ and Ψ satisfy

[Ln,Φ(z)] = zn+1∂zΦ + (n+ 1)zn∆Φ (86)

and

[Ln,Ψ(z)] = zn+1∂zΨ + (n+ 1)zn∆Ψ + (n+ 1)znΦ, (87)
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and they transform as below

Φ(z) → (
∂f−1

∂z
)∆Φ(f−1(z)) (88)

Ψ(z) → (
∂f−1

∂z
)∆[Ψ(f−1(z)) + log(

∂f−1(z)

∂z
)Φ(f−1(z)] (89)

Note that we have considered only the chiral fields. The logarithmic fields, how-

ever cannot be factorized to the left- and right-handed fields. For simplicity we

derive the results for chiral fields. The corresponding results for full fields are sim-

ply obtained by changing

z∆ → z∆z̄∆̄ (90)

and

log z → log |z|2 (91)

Now compare at the relations (86,87) and (88,89); one can assume the field Ψ as the

derivation of the field Φ with respect to its conformal weight, ∆. Now let us consider

the action of Möbius generators (L0, L±) on the correlation functions. Whenever

the field Ψ is absent, the form of the correlators is the same as ordinary conformal

field theory. By the term form we mean that some of the constants which cannot be

determined in the ordinary conformal field theory may be fixed in the latter case.

Now we want to compute correlators containing the field Ψ. At first we should

compute the two-point functions. The two-point functions of the field Φ is as below

< Φ(z)Φ(w) >=
c

(z − w)2∆
(92)

In the ordinary conformal field theory the constant c cannot be determined only

with assuming conformal invariance; to obtain it, one should know for example the

stress-energy tensor, although for c 6= 0 one can set it equal to one by renormalizing

the field.

Assuming the conformal invariance of the two-point function < Ψ(z)Φ(w) >,

means that acting the set {L0, L±1} on the correlator yields zero. Action of L−1

ensures that the correlator depends only on the z − w. the relations for L+1 and

L0 are as below

[z2∂z + w2∂w + 2∆(z + w)] < Ψ(z)Φ(w) > +2z < Φ(z)Φ(w) > = 0 (93)

[z∂z + w∂w + 2∆] < Ψ(z)Φ(w) > + < Φ(z)Φ(w) > = 0 (94)

Consistency of these two equations for any z and w, fixes c to be zero. Then, solving

the above equation for < Ψ(z)Φ(w) > leads to

< Φ(z)Φ(w) > = 0,

< Φ(z)Ψ(w) > =
a

(z − w)2∆
(95)
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Now assuming the conformal invariance of the two-point function < Ψ(z)Ψ(w) >,

gives us a set of partial differential equation. Solving them, we obtain

< Ψ(z)Ψ(w) >=
1

(z − w)2∆
[b− 2a log(z − w)] (96)

Now we extend the above results to the case where Jordanian block is n + 1-

dimensional. So there is n+ 1 fields with the same weight ∆.

[Ln,Φi(z)] = zn+1∂zΦi + (n+ 1)zn∆Φi + (n+ 1)znΦi−1, (97)

where Φ−1 = 0.

All we use is the conformal invariance of the theory. From the above fields, only

Φ0 is primary. Acting L−1 on any two-point function of these fields, shows that

< Φi(z)Φj(w) >= fij(z − w). (98)

Acting L0 and L+1, leads to

< [L0,Φi(z)Φj(0)] > = (z∂z + 2∆) < Φi(z)Φj(0) >

+ < Φi−1(z)Φj(0) > + < Φi(z)Φj−1(0) > = 0 (99)

< [L+1,Φi(z)Φj(0)] > = (z2∂z + 2z∆) < Φi(z)Φj(0) >

+ 2z < Φi−1(z)Φj(0) > = 0. (100)

Then it is easy to see that

< Φi−1(z)Φj(0) >=< Φi(z)Φj−1(0) > . (101)

Using Φ−1 = 0 and the above equation, gives us the following two-point functions.

< Φi(z)Φj(w) >= 0 for i+ j < n (102)

Now solving the Ward identities for < Φ0(z)Φn(w) > among with the relation

(101), leads to

< Φi(z)Φn−i(w) >=< Φ0(z)Φn(w) >= a0(z − w)−2∆. (103)

The form of the correlation function < Φ1(z)Φn(w) > is as below

< Φ1(z)Φn(w) >= (z − w)−2∆[a1 + b1 log(z − w)], (104)

but the conformal invariance fixes b1 to be equal to −2a0. So

< Φi(z)Φn+1−i(w) > = < Φ1(z)Φn(w) >

= (z − w)−2∆[a1 − 2a0 log(z − w)] for i > 0 (105)

Repeating this procedure for the two-point functions of the other fields Φi with

Φn, and knowing that they are in the following form

< Φi(z)Φn(w) >= (z − w)−2∆
i

∑

j=0

aij(log(z − w))j , (106)
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gives

i
∑

j=1

jaij(log(z − w))j−1 + 2

i−1
∑

j=0

ai−1,j(log(z − w))j = 0 (107)

or

(j + 1)ai,j+1 + 2ai−1,j = 0

So

ai,j+1 =
−2

j + 1
ai−1,j = · · · =

(−2)j+1

(j + 1)!
ai−j−1,0 =:

(−2)j+1

(j + 1)!
ai−j−1 (108)

or

< Φi(z)Φn(w) > = (z − w)−2∆
i

∑

j=0

(−2)j

j!
ai−j(log(z − w))j , (109)

and also we have

< Φi(z)Φk(w) > = < Φi+k−n(z)Φn(w) > for i+ k ≥ n. (110)

So for the case of n logarithmic field, we found all the two point functions. The

interesting points are

i) some of the two-point functions become zero.

ii) some of the two-point functions are logarithmic, and the highest power of the

logarithm, which occurs in the < ΦnΦn >, is n.

The most general case is the case where there is more than one Jordanian block

in the matrix D ,or in other words, there is more than one set of logarithmic

operators. The dimension of these blocks may be equal or not equal. Using the

same procedure, one can find that

< ΦI
i (z)Φ

J
j (w) >

=

{

(z − w)−2∆
∑i+j−n

k=0
(−2)k

k! an−k[log(z − w)]k , i+ j ≥ n

0, i+ j < n
(111)

where I and J label the Jordan cells, n = max{nI , nJ} and nI and nJ are the

dimensions of the corresponding Jordan cells.

Also note that the conformal dimensions of the cells I and J must be equal,

otherwise the two-point functions are trivially zero.

Now we want to consider the three-point functions of logarithmic fields. The

simplest case is the case where, besides Φ, only one extra logarithmic field Ψ exists

in the theory. The three-point functions of the fields Φ are the same as ordinary

conformal field theory.

A(z1, z2, z3) :=< Φ(z1)Φ(z2)Φ(z3) > =
a

(ξ1ξ2ξ3)∆
=: af(ξ1, ξ2, ξ3), (112)

where

ξi =
1

2

∑

j,k

εijk(zj − zk).
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If one acts the set {L0, L±1} on the three-point function < Ψ(z1)Φ(z2)Φ(z3) >:=

B(z1, z2, z3), the result is an inhomogeneous partial differential equation for the

function B(z1, z2, z3) where the inhomogeneous part is A(z1, z2, z3). So the form of

B(z1, z2, z3) should be as below,

B(z1, z2, z3) = [b+
∑

bi log ξi]f(ξ1, ξ2, ξ3). (113)

Solving the above mentioned differential equations, we find the parameters bi to be

b1 = −b2 = −b3 = a. (114)

The final result is

< Ψ(z1)Φ(z2)Φ(z3) >= [b+ a log
ξ1
ξ2ξ3

]f(ξ1, ξ2, ξ3) (115)

If there are two fields Ψ in the three-point function, one can write it in the following

form

< Ψ(z1)Ψ(z2)Φ(z3) > = [c+
∑

ci log ξi +
∑

ij

cij log ξi log ξj ]f(ξ1, ξ2, ξ3). (116)

Again the Ward identities can be used to determine the parameters ci and cij ,

< Ψ(z1)Ψ(z2)Φ(z3) > =

[c− 2b log ξ3 + a[(− log ξ1
log ξ2

)2 + (log ξ3)
2]f(ξ1, ξ2, ξ3). (117)

Finally, for the correlator of three Ψ’s we use

< Ψ(z1)Ψ(z2)Ψ(z3) > = [d+ d1D1 + d2D2 + d′2D
2
1

+ d3D3 + d′3D1D2 + d′3D
3
1]f(ξ1, ξ2, ξ3) (118)

where

D1 := log(ξ1ξ2ξ3) (119)

D2 := log ξ1 log ξ2 + log ξ2 log ξ3 + log ξ1 log ξ3 (120)

D3 := log ξ1 log ξ2 log ξ3. (121)

This is the most general symmetric up to third power logarithmic function of the

relative positions. Using the Ward identities, this three-point function is calculated

to be

< Ψ(z1)Ψ(z2)Ψ(z3) > = [d− cD1 + 4bD2 − bD2
1 + 8aD3

− 4aD1D2 + aD3
1]f(ξ1, ξ2, ξ3) (122)

Now there is a simple way to obtain these correlators. Remember of the relation

between Φ(z) and Ψ(z)

Ψ(z) =
∂

∂∆
Φ(z). (123)
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Consider any three-point function which contains the field Ψ. This correlator is

related to another correlator which has a Φ instead od Ψ according to

< Ψ(z1)A(z2)B(z3) > =
∂

∂∆
< Φ(z1)A(z2)B(z3) >, (124)

To be more exact, the left hand side satisfies the Ward identities if the right hand

side does so.

But the three-point function for ordinary fields are known. So it is enough to

differentiate it with respect to the weight ∆. Obviously, a logarithmic term appears

in the result. In this way one can easily obtain the above three-point functions. In

fact instead of solving certain partial differential equations, one can easily differ-

entiate with respect to the conformal weight. This method can also be used when

there are n logarithmic fields. To obtain the three- point function containing the

field Φi, one should write the three-point function, which contains the field Φ0, and

then differentiate it i times with respect to ∆.

Note that in the first three-point function, there may be more than one field

with the same conformal weight ∆. Then one must treat the conformal weights

to be independent variables, differentiate with respect to one of them, and finally

put them equal to their appropriate value. Second, there are some constants, or

unknown functions in the case of more than three-point functions, in any correlator.

In differentiation with respect to a conformal weight, one must treat these formally

as functions of the conformal weight as well.

As an example consider

< Φ(z1)Φ(z2)Φ(z3) > =
a

(ξ1)∆2+∆3−∆1(ξ2)∆3+∆1−∆2(ξ3)∆2+∆1−∆3
. (125)

Differentiate with respect to ∆1, and then put ∆1 = ∆2 = ∆3, and ∂a
∂∆1

= b. This

is (115). This method can be used for any n-point function:

< Φi(z1) · · ·A(zn−1)B(zn) > =
∂i

∂∆i < Φ0(z1) · · ·A(zn−1)B(zn) >, (126)

provided one treats the constants and functions of the correlator as functions of the

conformal weight.

3.1. Logarithmic Conformal Field Theory With Continuous

Weights

In this subsection we study the logarithmic conformal field theories in which confor-

mal weights are continuous subset of real numbers. A general relation between the

correlators consisting of logarithmic fields and those consisting of ordinary confor-

mal fields is investigated. As an example the correlators of the Coulomb-gas model

are explicitly studied.

In the previous subsection assuming conformal invariance we have explicitly

calculated two- and three-point functions for the case of more than one set of

logarithmic fields when their conformal weights belong to a discrete set. Regarding
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logarithmic fields formally as derivations of ordinary fields with respect to their

conformal dimension, we have calculated n-point functions containing logarithmic

fields in terms of those of ordinary fields. Here, we want to consider logarithmic

conformal field theories with continuous weights.72 The simplest example of such

theories is the free field theory.

In the last part it is shown that if there are quasi-primary fields in a conformal

field theory, it causes logarithmic terms in the correlators of the theory. By quasi-

primary fields, it is meant a family of operators satisfying

[Ln,Φ
(j)(z)] = zn+1∂zΦ

(j)(z) + (n+ 1)zn∆Φ(j)(z) + (n+ 1)zn∆Φ(j−1)(z), (127)

where ∆ is the conformal weight of the family. Among the fields Φ(j), the field Φ(0)

is primary. It was shown that one can interpret the fields Φ(j), formally, as the j-th

derivative of a field with respect to the conformal weight:

Φ(j)(z) =
1

j!

∂j

∂∆j
Φ(0)(z), (128)

and use this to calculate the correlators containing Φ(j) in terms of those containing

Φ(0) only. The transformation relation (79), and the symmetry of the theory under

the transformations generated by L±1 and L0, were also exploited to obtain two-

point functions for the case where conformal weights belong to a discrete set. There

were two features in two point functions. First, for two families Φ1 and Φ2, consisting

of n1 + 1 and n2 + 1 members, respectively, it was shown that the correlator <

Φ
(i)
1 Φ

(j)
2 > is zero unless i+ j ≥ max(n1, n2). (It is understood that the conformal

weights of these two families are equal. Otherwise, the above correlators are zero.)

Another point was that one could not use the derivation process with respect to

the conformal weights to obtain the two-point functions of these families from

< Φ
(0)
1 Φ

(0)
2 >, since the correlators contain a multiplicative term δ∆1,∆2

, which can

not be differentiated with respect to the conformal weight.

Now, suppose that the set of conformal weights of the theory is a continuous

subset of the real numbers. First, reconsider the arguments resulted to the fact

that < Φ
(i)
1 Φ

(j)
2 > is equal to zero for i + j ≥ max(n1, n2). These came from the

symmetry of the theory under the action of L±1 and L0. Symmetry under the action

of L−1 results in

< Φ
(i)
1 (z)Φ

(j)
2 (w) > = < Φ

(i)
1 (z − w)Φ

(j)
2 (0) > =: Aij(z − w). (129)

We also have

< [L0,Φ
(i)
1 (z)Φ

(j)
2 (0)] > = (z∂ + ∆1 + ∆2)A

ij(z) +Ai−1,j(z) +Ai,j−1(z)

= 0, (130)

and

< [L1,Φ
(i)
1 (z)Φ

(j)
2 (0)] > = (z2∂ + 2z∆1)A

ij(z) + 2zAi−1,j(z) = 0. (131)

These show that

(∆1 − ∆2)A
ij(z) +Ai−1,j(z) −Ai,j−1(z) = 0. (132)
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If ∆1 6= ∆2, it is easily seen, through a recursive calculation, that Aij ’s are all equal

to zero. This shows that the support of these correlators, as distribution of ∆1 and

∆2, is ∆1 − ∆2 = 0. So, one can use the ansatz,

Aij(z) =
∑

k≥0

Aij
k (z)δ(k)(∆1 − ∆2). (133)

Inserting this in (132), and using xδ(k+1)(x) = −(k + 1)δ(k)(x), it is seen that
∑

k≥0

[−(k + 1)Aij
k+1(z) +Ai−1,j

k (z) −Ai,j−1
k (z)]δ(k)(∆1 − ∆2) = 0, (134)

or

(k + 1)Aij
k+1(z) = Ai−1,j

k (z) −Ai,j−1
k (z), k ≥ 0 (135)

This equation is readily solved:

Aij
k (z) =

1

k!

k
∑

l=0

(k
l )Ai−k+l,j−l

0 (z), (136)

where Aij
0 ’s remain arbitrary. Also note that Aij

k ’s with a negative index are zero.

We now put (133) in (130). This gives

(z∂ + ∆1 + ∆2)A
ij
k (z) +Ai−1,j

k (z) +Ai,j−1
k (z) = 0, (137)

Using (136), it is readily seen that it is sufficient to write (137) only for k = 0 .

This gives

(z∂ + ∆1 + ∆2)A
ij
0 (z) +Ai−1,j

0 (z) +Ai,j−1
0 (z) = 0. (138)

Putting the ansatz

Aij
0 (z) = z−(∆1+∆2)

i+j
∑

m=0

αij
m(ln z)m (139)

in (138), one arrives at

(m+ 1)αij
m+1 + αi−1,j

m + αi,j−1
m = 0, (140)

the solution to which is

αij
m =

(−1)m

m!

m
∑

s=0

(m
s )αi−m+s,j−s

0 . (141)

From this

Aij
0 (z) = z−(∆1+∆2)

i+j
∑

m=0

(ln z)m (−1)m

m!

m
∑

s=0

(m
s )αi−m+s,j−s

0 , (142)

and

Aij
k (z) =

[
1

k!

k
∑

l=0

(−1)l(k
l )

i+j−k
∑

m=0

(ln z)m (−1)m

m!

m
∑

s=0

(m
s )αi−k−m+l+s,j−l−s

0 ]z−(∆1+∆2). (143)
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So we have

Aij(z) = z−(∆1+∆2)
∑

k≥0

δ(k)(∆1 − ∆2)[
1

k!

k
∑

l=0

(−1)l(k
l )

i+j−k
∑

m=0

(ln z)m (−1)m

m!

m
∑

s=0

(m
s )αi−k−m+l+s,j−l−s

0 ], (144)

or

Aij(z) = z−(∆1+∆2)
∑

p,q,r,s≥0

(−1)q+r+s

p!q!r!s!
αi−p−r,j−q−s(ln z)r+sδ(p+q)(∆1 − ∆2),(145)

where

αij := αij
0 . (146)

These constants, defined for nonnegative values of i and j, are arbitrary and not

determined from the conformal invariance only.

Now differentiate (145) formally with respect to ∆1. In this process, αij ’s are

also assumed to be functions of ∆1 and ∆2. This leads to

∂Aij(z)

∂∆1
= z−(∆1+∆2)

∑

p,q,r,s

(−1)q+r+s

p!q!r!s!
{∂α

i−p−r,j−q−s

∂∆1
(ln z)r+sδ(p+q)(∆1 − ∆2)

+ αi−p−r,j−q−s[(ln z)r+sδ(p+q+1)(∆1 − ∆2)

− (ln z)r+s+1δ(p+q)(∆1 − ∆2)]}, (147)

or

∂Aij(z)

∂∆1
= z−(∆1+∆2)

∑

p,q,r,s

(−1)q+r+s

p!q!r!s!
(ln z)r+sδ(p+q)(∆1 − ∆2)

× [(p+ r)αi−p−r,j−q−s +
∂αi−p−r,j−q−s

∂∆1
]. (148)

Comparing this with Ai+1,j , it is easily seen that

Ai+1,j =
1

i+ 1

∂Aij

∂∆1
, (149)

provided

∂αi−p−r,j−q−s

∂∆1
= (i+ 1 − p− r)αi+1−p−r,j−q−s . (150)

Note, however, that the left hand side of (150) is just a formal differentiation.

That is, the functional dependence of αij ’s on ∆1 and ∆2 is not known, and their

derivative is just another constant. Repeating this procedure for ∆2, we finally

arrive at

αij =
1

i!j!

∂i

∂∆i
1

∂j

∂∆j
2

α00, (151)
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and

Aij =
1

i!j!

∂i

∂∆i
1

∂j

∂∆j
2

A00. (152)

These relations mean that one can start from A00, which is simply

A00(z) = z−(∆1+∆2)δ(∆1 − ∆2)α
00, (153)

and differentiate it with respect to ∆1 and ∆2, to obtain Aij . In each differentiation,

some new constants appear, which are denoted by αij ’s but with higher indices.

Note also that the definition is self-consistent. So that this formal differentiation

process is well-defined.

One can use this two-point functions to calculate the one-point functions of the

theory. We simply put Φ
(0)
2 = 1. So, ∆2 = 0,

< Φ(0)(z) > = β0δ(∆), (154)

and

< Φ(i)(z) > =

i
∑

k=0

βn−k

k!
δk(∆), (155)

where

βi :=
1

i!

∂iβ0

∂∆i
. (156)

The more than two-point function are calculated exactly the same as in previous

subsection.

3.2. The Coulomb–gas model as an example of LCFT’s

As an explicit example of the general formulation of the previous section, consider

the Coulomb-gas model characterized by the action8,9

S =
1

4π

∫

∂2x
√
g[−gµν(∂µΦ)(∂νΦ) + iQRΦ], (157)

where Φ is a real scalar field, Q is the charge of the theory, R is the scalar curvature

of the surface and the surface itself is of a spherical topology, and is everywhere flat

except at a single point.

Defining the stress tensor as

T µν := − 4π√
g

δS

δgµν
, (158)

it is readily seen that

T µν = −(∂µΦ)(∂νΦ) +
1

2
gµνgαβ(∂αΦ)(∂βΦ) − iQ[φ;µν − gµν∇2Φ], (159)

and

T (z) := Tzz(z) = −(∂φ)2 − iQ∂2φ, (160)
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where in the last relation the equation of motion has been used to write

Φ(z, z̄) = φ(z) + φ̄(z̄). (161)

It is well known that this theory is conformal, with the central charge

c = 1 − 6Q2 (162)

There are, however, some features which need more care in our later calculations.

First, this theory can not be normalized so that the expectation value of the unit

operator become unity. In fact, using eS as the integration measure, it is seen that

< 1 > ∝ δ(Q) (163)

one can, at most, normalize this so that

< 1 > = δ(Q) (164)

Second, φ has a z-independent part, which we denote it by φ0. The expectation

value of φ0 is not zero. In fact, from the action (157),

< φ > = < φ0 > =
1

N(Q)

∫

∂φ0φ0 exp(2iQφ0), (165)

where N is determined from (164) and

< 1 >=
1

N

∫

∂φ0 exp(2iQφ0). (166)

This shows that N(0) = π, and

< φ0 >=
1

2i
[δ′(Q) +

N ′(0)

N(0)
δ(Q)] (167)

More generally

< f(φ0) > =
1

N
f(

1

2i

∂

∂Q
)(N < 1 >) =

1

N
f(

1

2i

∂

∂Q
)[Nδ(Q)]. (168)

Third, the normal ordering procedure is defined as following. One can write

φ(z) = φ0 + φ+(z) + φ−(z), (169)

where < 0|φ−(z) = 0, φ+(z)|0 >= 0, and

[φ0, φ±] = 0. (170)

The normal ordering is so that one puts all ‘-’ parts at the left of all ‘+’ parts. It

is then seen that

<: f [φ] :> = < f(φ0) > (171)

Here, the dependence of f on φ in the left hand side may be quite complicated;

even f can depend on the values of φ at different points. In the right hand side,

however, one simply changes φ(z) → φ0.



September 30, 2003 9:29 WSPC/139-IJMPA 01690

Disordered Systems and LCFT 4727

Now consider the two point function. From the equation of motion, we have

< φ(z)φ(w) > = −1

2
ln(z − w) < 1 > +b (172)

we also have

<: φ(z)φ(w) :> = < φ2
0 > = − 1

4N

∂2

∂Q2
[Nδ(Q)] (173)

Note that there is an arbitrary term in (172), due to the ultraviolet divergence of

the theory. One can use this arbitrariness, combined with the arbitrariness in N(Q),

to redefine the theory as

φ(z)φ(w) = : −1

2
ln(z − w)+ : φ(z)φ(w) :, (174)

and

< f(φ0) >: = f(
1

2i

∂

∂Q
)δ(Q) (175)

these relations, combined with (171) are sufficient to obtain all of the correlators.

One can, in addition, use (160) (in normal ordered form) to arrive at

T (z)φ(w) =
∂wφ

z − w
− iQ/2

(z − w)2
+ r.t., (176)

and

T (z)T (w) =
∂wT

z − w
− 2T (w)

(z − w)2
+

(1 − 6Q2)/2

(z − w)4
. (177)

Eq. (176) can be written in the form

[Ln, φ(z)] = zn+1∂φ− iQ

2
(n+ 1)zn. (178)

This shows that the operators φ and 1 are a pair of logarithmic operators with ∆ = 0

(in the sense of first part of section 3). Note that < 1 > is equal to δ(Q). One can

easily show that

T (z) : eiαφ(w) : =
∂w : eiαφ(w) :

z − w
− α(α + 2Q)/4

(z − w)2
: eiαφ(w) : +r.t., (179)

which shows that : eiαφ : is a primary field with

∆α =
α(α + 2Q)

4
(180)

To this field, however, there corresponds a quasi conformal family (pre–logarithmic

operators, see Ref. 55), whose members are obtained by explicit differentiation with

respect to α (α is not the conformal weight but is a function of it):

W (n)
α : = : φneiαφ : = (−i)n ∂

∂αn
: eiαφ : . (181)
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To calculate the correlators ofW ’s, it is sufficient to calculate< W
(0)
α1 · · ·W (0)

αk >.

One has, using Wick’s theorem and (174),

Πk
j=1 : eiαjφ(zj) : = e1/2

∑

1≤i<j≤k αiαj ln(zi−zj) : ei
∑k
j=1

αjφ(zj) : (182)

From this using (171) and (174), we have

< Πk
j=1W

(0)
αj (zj) > = [Π1≤i<j≤k(zi − zj)

αiαj
2 ]e1/2

∑k
j=1 αj

∂
∂Q δ(Q)

= [Π1≤i<j≤k(zi − zj)
αiαj

2 ]δ(Q+
1

2

k
∑

j=1

αj). (183)

Obviously, differentiating with respect to any αi, leads to logarithmic terms

for the correlators consisting of logarithmic fields W
(n)
α . The power of logarithmic

terms is equal to the sum of superscripts of the fields W
(n)
α .

3.3. Logarithmic Conformal Field Theory in d dimensions

In the previous subsection we discussed the LCFT in 2-dimensions. Generalization

for arbitrary dimension d has been given in Ref. 68. We have dealt with two dimen-

sional conformal field theory relying heavily on the underlying Virasoro algebra,

and have described how the appearance of logarithmic singularities is related to

the modification of the representation of the Virasoro algebra. In this subsection

we try to understand LCFT’s in the context of d-dimensional conformal invariance.

As is well known, one of the basic assumptions of conformal field theory is the ex-

istence of a family of operators, called scaling fields, which transform under scaling

S : x → x′ = λx, simply as follows:

φ(x) → φ′(x′) = λ−∆φ(x), (184)

where ∆ is the scaling weight of φ(x). It is also assumed that under the conformal

group, such fields transform as,

φ(x) → φ′(x′) = ‖ φx
′

φx
‖−∆

d φ(x), (185)

where d is the dimension of space and ‖ φx′

φx ‖ is the Jacobian of the transforma-

tion. Equation (185) which encompasses eq. (184) defines the transformation of the

quasi-primary fields. For future use we note that the Jacobian equals λd for scaling

transformation and ‖ x ‖−2d for the Inversion transformation I : x → x′ = x
‖x‖2 ,

being unity for the other elements of the conformal group. Combination of (185)

with the definition of symmetry of the correlation functions, i.e.:

< φ′1(x
′
1) · · ·φ′N (x′N ) > = < φ1(x

′
1) · · ·φN (x′N ) >, (186)

allows one to determine the two and the three point functions up to a constant and

the four point function up to a function of the cross ratio.

It’s precisely the assumption that scaling fields constitute irreducible representations
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of the scaling transformation, which imposes power law singularity on the correla-

tion functions.

As we will see, relaxing this assumption, one naturally arrives at logarithmic singu-

larities. It also leads to many other peculiarities, in the relation between correlation

functions. To begin with, we consider a multiplet of fields,

Φ =











φ1

φ2

...

φn











, (187)

and note that under scaling x → λx, the most general form of the transformation

of Φ is,

Φ(x) → Φ′(x′) = λT ′

Φ(x) (188)

where T ′ is an arbitrary matrix. More generally, we replace (188) by,

Φ(x) → Φ′(x′) =‖ φx
′

φx
‖T Φ(x). (189)

where T is an n×n arbitrary matrix. When T is diagonalizable, one arrives at ordi-

nary scaling fields by redefining Φ, so that all the fields transform as 1-dimensional

representation. Otherwise, following Ref. 68 we assume that T has Jordan form,

T =











−∆
d 0 · · · 0

1 −∆
d · · · 0

0 1
. . . 0

0 · · · 1 −∆
d











. (190)

Rewriting T as −∆
d 1 + J , where Jij = δi−1,j , eq. (189) can be written in the form,

Φ(x) → Φ′(x′) =‖ φx
′

φx
‖−∆

d ΛxΦ(x), (191)

where Λx =‖ φx′

φx ‖J is a lower triangular matrix of the form,

(Λx)ij =
{ln ‖ φx′

φx ‖}
i−j

(i− j)!
, (Λx)ii = 1, (192)

i. e. for N = 2 we have,

φ′1(x
′) = ‖ φx

′

φx
‖

−∆

d

φ1(x),

φ′2(x
′) = ‖ φx

′

φx
‖

−∆
d

(

ln ‖ φx
′

φx
‖ φ1(x) + φ2(x)

)

. (193)
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An important point is that the top field φ1(x) always transform as an ordinary

quasi-primary field. A most curious property of the transformation (191) is that

each field φk+1 transforms as if it is a formal derivative of φk with respect to −∆
d ,

φk+1(x) =
1

k

φ

φ(−∆
d )

φk(x). (194)

This formal relation which determines the transformation of all the fields of a

Jordan cell from that of the top field φ1, essentially means that with due care,

one can determine the correlation functions of the lower fields from those of the

ordinary top fields simply by formal differentiation. Also one can find the two-point,

three-point correlation functions of fields for jordan -cell of rank r. For example we

already know by standard arguments that the two point function of the top fields

φα and φβ belonging to two different Jordan cells (∆α, n) and (∆β ,m) vanishes,

i.e.:

< φα(x)φβ(y) >=
Aδ∆α,∆β

‖ x− y ‖2∆α
. (195)

Due to the observation (194), it follows that the two point function of all the fields

of two different Jordan cells with respect to each other vanish. Therefore we can

calculate the two point function of the fields within the same Jordan cell. As we

will see logarithmic conformal symmetry gives many interesting and unexpected

results in this case. Let’s denote the matrix of two point functions < φi(x)φj(y) >

for all φi, φj ∈ (∆, n) by G(x, y), then from rotation and translation symmetries,

this matrix should depends only on ‖ x − y ‖. From scaling symmetry and using

(185) and (186), we have,

ΛG(‖ x− y ‖)Λt = λ2∆G(λ ‖ x− y ‖), (196)

where Λ = λdJ , and from inversion symmetry, we have,

ΛxG(‖ x− y ‖)Λt
y =‖ x− y ‖−2∆α G(

‖ x− y ‖
‖ x ‖‖ y ‖), (197)

where

Λx = ‖ x ‖−2dJ ,

Λy = ‖ y ‖−2dJ . (198)

Defining the matrix F as G(‖ x − y ‖) = F (‖x−y‖)

‖x−y‖2∆ , we will have from (196) and

(197),

ΛF (‖ x− y ‖)Λt = F (λ ‖ x− y ‖), (199)

and

ΛxF (‖ x− y ‖)Λt
y = F (

‖ x− y ‖
‖ x ‖ ‖ y ‖). (200)

For every arbitrary λ, we now choose the points x and y such that ‖ x ‖= λ
−1

4

and ‖ y ‖= λ
−3

4 . It should be noted that in this way by varying λ, we can span all
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the points of space. From (198), we will have Λx = Λ
1
2 and Λy = Λ

3
2 , therefore eq.

(199) turns into,

Λ
1
2F (‖ x− y ‖)

(

Λ
3
2

)t
= F (λ ‖ x− y ‖). (201)

Combining (199) and (201) and using invertibility of Λ, we arrive at,

F = Λ
1
2F

(

Λt
)

−1
2 , (202)

by iterating (202), we will have F = ΛFΛt, and by rearranging, we have,

FΛt = ΛF. (203)

Expanding Λ in terms of power of lnλ as Λ = 1 + (d ln λ)J + (d ln λ)2

2! J2 + · · · and

comparing both sides, we arrive at

F
(

J t
)k

=
(

J
)k
F, k = 1, 2, · · · , n− 1. (204)

Since
(

Jk
)

ij
= δi,j+k , we will have from (204),

Fi,j−k = Fi−k,j , (205)

which means that on each opposite diagonal of the matrix F , all the correlations

are equal. Moreover from FJ = JF , one obtains,

n
∑

l=1

Filδj,l+1 =

n
∑

l=1

δi,l+1Flj , (206)

which means that if j = 1 and 1 < i ≤ n, then Fi−1,j = 0, or

Fij = 0 for j = 1 and 1 ≤ i ≤ n− 1. (207)

Combining this with (205), we find that all the correlations above the opposite

diagonal are zero. In order to find the final form of F , we use eq. (199) again, this

time in infinitesimal form, let Λ = 1 + αJ + o(α2) where α = d lnλ, then from

ΛF (x)Λt = F (λx), we have,

d
(

JF + FJ t
)

= x
dF

dx
. (208)

Due to the property (205) only the last column of F should be found, therefore

from (208) we obtain,

x
dF1,n

dx
= dF1,n−1 ≡ 0,

x
dFi,n

dx
= 2dFi,n−1, if i > 1 (209)

which upon introducing the new variable y = 2d lnx gives,

F1,n = c1, F2,n = c1y + c2, F3,n =
1

2
c1y

2 + c2y + c3, etc. (210)
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with the recursion relations,

dFi,n

dy
= Fi−1,n. (211)

Thus we have arrived at the final form of the matrix F , which is as follows:

F =















0 · · · 0 0 g0
0 · · · 0 g0 g1
0 · · · g0 g1 g2
...

...
...

...
...

g0 · · · gn−2 gn−1 gn















, (212)

where each gi is a polynomial of degree i in y, and gi = dgi+1

dy . All the correlations

depend on the n constants c1, · · · , cn, which remain undetermined. We have checked

(as the reader can check for the single n = 2 case) that inversion symmetry puts

no further restrictions on the constants ci.

The observation that the transformation properties of the members of a Jordan

cell are as of the formal derivative of the top field in the cell, allows one to determine

the correlation functions of all the fields within a single or different Jordan cells,

once the correlation function of the top fields are determined. As an example, from

ordinary CFT, we know that conformal symmetry completely determines the three

point function up to a constant. Let φα, φβ and φγ be the top fields of three Jordan

cells (∆α, l), (∆β ,m) and (∆γ , n) respectively. Therefore we know that,

< φα(x)φβ(y)φγ(z) >=

Aαβγ

‖ x− y ‖∆α+∆β−∆γ‖ x− z ‖∆α+∆γ−∆β‖ y − z ‖∆β+∆γ−∆α
, (213)

where the constant Aαβγ in principle depends on the weights ∆α,∆β and ∆γ .

Denoting the second field of the cell (∆α, l) by φα1,
a we will readily find from

eq.(213) that,

< φα1(x)φβ(y)φγ(z) > = −d ∂

∂∆α
< φα(x)φβ(y)φγ(z) >

=
A′

αβγ

‖x− y‖∆α+∆β−∆γ‖x− z ‖∆α+∆γ−∆β‖y − z ‖∆β+∆γ−∆α

+
dAαβγ

‖x− y‖∆α+∆β−∆γ‖x− z ‖∆α+∆γ−∆β‖y − z ‖∆β+∆γ−∆α

ln
( ‖ y − z ‖
(‖ x− y ‖)(‖ x− z ‖)

)

, (214)

where A′
αβγ = −d ∂

∂∆α
Aαβγ is a new undetermined constant. For the correlation

functions of fields within a single cell, one should then take the limit β, γ → α

aFor simplicity, we have denoted the top field by φ and the second field by φ1, instead of φ1 and
φ2 respectively.
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in the above formula. It’s not difficult to check that this formula satisfies all the

requirements demanded by conformal symmetry.

4. Disordered Systems & Logarithmic Conformal Field Theory

4.1. Introduction

Consider a renormalization group transformation acting on the space of all possible

couplings of a model, {k}, see Ref. 1. The transformation has the form {k′} =

R{k} where R depends, in general, on the specific transformation chosen, and in

particular, on the length rescaling parameter b. Suppose there is a fixed point at

{k} = {k∗} the renormalization group equations, linearized about the fixed point,

are

k′a − k∗a ∼
∑

b

Tab(kb − k∗b ) (215)

where Tab =
∂k′
a

∂kb
|k=k∗ . Denote the eigenvalues of the matrix T by λi and its left

eigenvectors by {φi} so that
∑

a

φi
aTab = λiφi

b (216)

Now we define scaling variables ui ≡
∑

a φ
i
a(ka−k∗a), which are linear combinations

of the deviations ka−k∗a from the fixed point which transform multiplicatively near

the fixed point

ui =
∑

a

φi
a(k′a − k∗a) =

∑

a,b

φi
aTab(ka − k∗a)

=
∑

b

λiφi
b(kb − k∗b ) = λiui (217)

It is convenient to define the quantities yi by λi = byi , the yi’s are called RG

eigenvalues. Now we can distinguish three cases,

(1) If yi > 0, ui is relevant,

(2) If yi < 0, ui is irrelevant,

(3) If yi = 0, ui is marginal.

4.2. Rule of the rescaling factor b

Consider an infinitesimal transformation, that b = 1+δl, with δl << 1. In this case

the coupling transforms infinitesimally

ka → ka + (
dka

dl
)δl +O((δl)2) (218)

and the RG equation has the differential form

dka

dl
= −βa({k}) (219)
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where the function βa are called the RG beta-function. Also the matrix of derivatives

at the fixed point is now Tab = δab + (∂βa
∂kb

)δl, with eigenvalues (1 + δl)yi ∼ 1 + yiδl.

Hence the yi’s are simply the eigenvalues of the matrix − ∂βa
∂kb

evaluated at the zero of

the beta-functions (because at the fixed points we have ka → ka and beta-function

must be zero).

4.3. The perturbative RG

When two fixed points are sufficiently close, it is then possible to deduce universal

properties at one fixed point in terms of those at the other. Such an analysis is

the basis of the ε-expansion and many other similar techniques. It also allows us to

describe the properties of fixed points with exactly marginal scaling variables.

Now consider a fixed point Hamiltonian H∗ which is perturbed by a number of

scaling fields, so that the partition function is:1

Z = Tr exp{−H∗ −
∑

i

gi

∑

r

axiφi(r)} (220)

Let us expand this in powers of couplings gi,

Z = Z∗{1 −
∑

i

gi

∫

< φi(r) >
ddr

ad−xi

+ 1/2
∑

ij

gigj

∫

< φi(r1)φj(r2) >
ddr1d

dr2
a2d−xi−xj

− 1/3!
∑

ijk

gigjgk

∫

< φi(r1)φj(r2)φk(r3) >
ddr1d

dr2d
dr3

a3d−xi−xj−xk
+ · · ·} (221)

where all correlation functions are to be evaluated with respect to the fixed point

hamiltonian H∗. We now implement the RG by changing the microscopic cut-off

a → ba , with b = 1 + δl, and asking now the couplings gi should be changed in

order to preserve the partition function Z. The length a appears in three ways in

eq.(221),

(1) Explicitly , through the divisors ad−xi

(2) Implicity , we must restrict all integrals to |ri − rj | > a.

(3) Through the dependence on the system size L in the dimensionless ratio L/a.

For the explicit dependence we have:

gi → (1 + δl)d−xigi ∼ gi + (d− xi)giδl (222)

The implicit dependence will appear in the second order term. After changing

a→ a(1 + δl) we may break up the integrals,

∫

|r1−r2|>a(1+δl)

=

∫

|r1−r2|>a

−
∫

a(1+δl)>|r1−r2|>a

(223)
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The first term simply gives back the original contribution to Z and the second term

may be expressed using the operator product expansion

φi(r1)φj(r2) =
∑

k

Cijk(r1 − r2)φk((r1 + r2)/2) (224)

where Cijk(r1 − r2) =
cijk

|r1−r2|
xi+xj−xk

, (cijk are known as OPE coefficients) as:

1

2

∑

i,j

cijka
xk−xi−xj

∫

a(1+δl)>|r1−r2|>a

< φk((r1 + r2)/2) >
ddr1d

dr2
a2d−xi−xj

(225)

The integral gives a factor Sda
dδl, where Sd = 2πd/2/Γ(d/2) ( the area of d-

dimensional sphere). This term may then be compensated by making the change

gk → gk − 1/2Sd

∑

i,j

cijkgigjδl (226)

Finally by changing the variable gk → (2/Sd)gk we find the beta-function for cou-

pling gk as (with yk = d− xk):

dgk

dl
= ykgk −

∑

i,j

cijkgigj + · · · (227)

4.4. Quenched Random Ferromagnets

We consider the random bond Ising model and suppose that positions of the impu-

rities are fixed, and tracing over the only magnetic degrees of freedom.5,60 Let us

describe these disordered systems in the continuum limit by the following Hamil-

tonian,

H = H0 +

∫

j(r)E(r)ddr (228)

where H0 is the Hamiltonian of the renormalization group at fixed point describing

the pure Ising model. The field j(r) is a quenched random variable coupled to the

local energy density E(r). For simplicity we assume that the random variable j(r)

is a gaussian variable which is characterized with its two moments < j(r) >= 0

and < j(r)j(r′) >= gδ(r − r′). The explicit distribution of j(r) is,

P (j(r)) = N exp(− 1

2g

∫

j(r)2ddr) (229)

where N is normalization constant.

We are interested in computing the average of the free energy, or quenched

averaged correlation functions. Since the free energy is proportional to logarithm

of the partition functions Z[j], we have to compute the average of logZ[j]. The

replica method is based on the identity

logZ[j] = lim
n→0

Zn[j] − 1

n
=

d

dn
Zn[j]|n=0 (230)
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The standard procedure of averaging over disorder is to introduce replicas , i.e. , n

identical copies of the same model

Zn = Tr exp{−
n

∑

a=1

H0
a −

∫

ddrj(r)

n
∑

a=1

Ea(r)}. (231)

Averaging over the disorder gives rise to the following effective replica Hamiltonian:

HR =

n
∑

a=1

H0
a − g

∫ n
∑

a6=b

Ea(r)Eb(r)d
dr. (232)

We keep only the non-diagonal terms , since using the operator algebra of the pure

system one can absorb the diagonal terms into H0
a . The replicas are now coupled

via the disorder. The scaling dimension of coupling g is yg = d − 2x0
E and it is

relevant at the pure fixed point if d > 2x0
E . If yg is small , it is possible to develop

perturbative RG in powers of these variable and we can find a random fixed point

with perturbative RG.

To find the renormalization group equation for g we need the operator product

expansion of (
∑

a6=bEaEb) with itself. Since the replicas are decoupled in H0 , we

may evaluate this using the operator product expansion of Ea with itself, the first

few terms of which have the form

Ea ·Eb ∼ δab + cδabEa + · · ·, (233)

where c is a coefficient whose value is fixed and universal. The coefficient c van-

ishes when d = 2. This is a consequence of the self-duality if Ising model in two

dimensions.1 Now we have

(
∑

a6=b

EaEb) · (
∑

c6=d

EcEd) =
∑

a6=b,c6=d

EaEbEcEd. (234)

The OPE of EaEb is zero (see eq.(238)) and the OPE of EcEd’s is also zero, so we

have two ways of writing the OPE. So
∑

a6=b,c6=d

EaEbEcEd = 2
∑

a6=b,c6=d

(δbd + cδbdEb)EaEc. (235)

The first term is

2
∑

a6=b,c6=d

δbdEaEc2{(n− 1)
∑

a=1

E2
a + (n− 2)

∑

a6=b

EaEb}, (236)

the second term can be written as;

c
∑

a6=b,c6=d

δbdEaEcEb = 2c
∑

a6=b,c6=d

δbd(δac + cδacEa)Eb

= 2c
∑

a6=b,c6=d

δbdδacEb + 2c2
∑

a6=b,c6=d

δbdδacEaEb

= 2c(n− 1)
∑

a=1

Ea + 2c2
∑

a6=b,c6=d

δbdδacEaEb

= 2c(n− 1)
∑

a=1

Ea + 2c2
∑

a6=b

EaEb (237)
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Therefore:

(
∑

a6=b

EaEb) · (
∑

c6=d

EcEd) = (2(n− 2) + 2c2)
∑

a6=b

EaEb

+ 2(n− 1)
∑

a=1

E2
a + 2c(n− 1)

∑

a=1

Ea (238)

The renormalization group equation for g is thus

dg

dl
= y0

gg − (2(n− 2) + 2c2)g2 +O(g3, · · ·). (239)

Therefore if one denote
∑

a6=bEaEb with Φ so the coefficient in OPE Φ · Φ =

1 + bΦ + · · · , is 2(n− 2) + 2c2.

Now Consider a scaling operator φ with a scaling dimension xφ so that φΦ =

bφφ+ · · · and denote coupling of φ with t. Now we have

βg = y0
gg − bg2 + · · ·

βφ = y0
φt− 2bφtg + · · · (240)

From the above equations,

g∗ =
yg

b
(241)

Therefore using eq.(245) we obtain:

yφ =
∂βφ

∂t
|0 = y0

φ − 2bφ
y0

g

b
, (242)

and then

d− xφ = (d− x0
φ) −

2bφy
0
g

b
, (243)

so

xφ = x0
φ +

2bφy
0
g

b
. (244)

Now consider the case where φ is Et =
∑

aEa and Ẽa = Ea − ( 1
n )

∑

aEa

with
∑

a Ẽa = 0. The combination Et =
∑n

a=1Ea is a singlet ( symmetric under

the permutation or the replica group) and the Ẽa = Ea − 1
n

∑n
b=1Eb transforms

according to an (n−1)-dimensional representation of Sn. The fields Et and Ẽa have

proper scaling dimensions. To find the scaling dimensions of new fields we should

find the OPE coefficients EtΦ and ẼaΦ,

EtΦ = (

n
∑

a=1

Ea)(

n
∑

b6=c

EbEc)

=

n
∑

a,b 6=c

EaEbEc
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= 2
n

∑

a,b 6=c

(δab + cδabEa)Ec

= 2

n
∑

a,b 6=c

δabEc + 2c

n
∑

a,b 6=c

(δac + cδacEa)δab

= 2

n
∑

b6=c

δbbEc +O(c) = 2(n− 1)
∑

c

Ec, (245)

so bEt = 2(n− 1).

ẼaΦ = (Ea − 1

n

n
∑

b=1

Eb)(

n
∑

c6=d=1

EcEd)

=

n
∑

c6=a

EaEcEd − 1

n
(

n
∑

b=1

Eb)(

n
∑

c6=d=1

EcEd)

= 2

n
∑

c6=d

(δac + cδacEa)Ed − 1

n
(

n
∑

b=1

Eb)(

n
∑

c6=d=1

EcEd)

= 2

n
∑

d6=a

Ed − 1

n
(2n− 2)(

n
∑

b=1

Eb) + · · ·

= −2(Ea − 1

n

n
∑

b=1

Eb) + · · · (246)

so bẼa = −2. Now we can obtain xEt , xẼa
,

xEt = x0
Et +

2bE
b
yg (247)

xẼa
= x0

Ẽa
+

2bẼa
b

yg, (248)

we have neglected O(c) and O(c2 · ··) so b = 2(n− 2) and in the limit of n→ 0,

xEt = x0
E + (1 + n/2)yg (249)

xẼa
= x0

Ẽa
+ (1 − n/2)yg, (250)

Now define xEt = 2∆Et and xẼa
= 2∆Ẽa

.

The important observation is that the fields Et and Ẽa have the proper scaling

dimensions close to n→ 0 as ∆Et = ∆
(0)
Ea

+ yg/2 +O(y2
g) and ∆Ẽ = ∆

(0)
E + yg/2 +

O(y2
g) respectively. It is clear that the singlet field Et becomes degenerate with the

(n − 1) operators Ẽa. However they do not form the basis of the Jordan cell for

the dilatation operator. Starting from the following replicated Hamiltonian one can

show that correlation functions calculated against this effective Hamiltonian will

correspond to correlator averaged against the initial Hamiltonian with quenched
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disorder,

HR =

n
∑

a=1

Ha + t

∫

ddx

n
∑

a=1

Ea(r) − g

∫

ddr
∑

a6=b

Ea(r)Eb(r)

< E(r) >H ↔ lim
n→0

< Ea(r) >repl

< E(0)E(r) >H ↔ lim
n→0

< Ea(0)Ea(r) >repl

< E(0) >H< E(r) >H ↔ lim
n→0

< Ea(0)Eb(r) >repl a 6= b

< E(r1)E(r2)E(r3) >H ↔ lim
n→0

< E1(1)E1(2)E1(3) >repl

< E(1)E(2) >H< E(3) >H ↔ lim
n→0

< E1(1)E1(2)E2(3) >repl

< E(1) >H< E(2) >H< E(3) >H ↔ lim
n→0

< E1(1)E2(2)E3(3) >repl (251)

etc.

To find the logarithmic pair consider:

< Et(0)Et(r) > = n(< E1(0)E1(r) > −(n− 1) < E1(0)E2(r) >)

≡ nA(n)r−2∆E(n)

< Ẽa(0)Ẽa(r) > = (1 − 1

n
)(< E1(0)E1(r) > − < E1(0)E2(r) >)

≡ (1 − 1

n
)B(n)r−2∆̃E(n) (252)

The above equations enable us to write the quenched averaged connected two-

point correlation functions of energy density operator in terms of < E1(0)E1(r) >

and < E1(0)E1(r) > in the limit of n → 0 as: < E(0)E(r) >c =< E1(0)E1(r) >

− < E1(0)E2(r) > which is equal B(0)r−2∆E and it has a pure scaling behavior.

However the correlation functions < E1(0)E1(r) > and < E1(0)E2(r) > have the

logarithmic singularities and behave as:

< E1(0)E1(r) > = (A′(0) −B′(0) +B(0) −B(0)
yg

2
ln r)r−2∆E

< E1(0)E2(r) > = (A′(0) −B′(0) −A(0)
yg

2
ln r)r−2∆E (253)

where A(0) = B(0). The prime sign in the eq. (258) means differentiating with

respect to n.

This means that in the limit n → 0 the field Et and Ea form a basis of Jordan

cell, i.e. their two point correlation functions behave as: < Et(0)Et(r) >= 0, further

< Et(0)Ea(r) >= a1r
−2∆E , and < Ea(0)Eb(r) >= (−2a1 ln r +Da,b)r

−2∆, where

a1 and Da,b are some constants.

Also the ratio of quenched averaged two-point correlators of the energy density

operator to connected one has a universal r-dependence as:

< E(0)E(r) >

< E(0)E(r) >c

∼ < E(0) >< E(r) >

< E(0)E(r) >c

∼ ln r (254)
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We note that in 2D we have dealt with two-dimensional conformal field theory,

relying heavily on the underlying Virasoro algebra. For an extension to d dimensions

one has to modify the representation of the Virasoro algebra to higher dimensions.

We consider a doublet of fields (Jordan cell)

Φ =

(

Et

Ea

)

, (255)

and note that under D-dimensional conformal transformation x → x′, we have,

Φ(x) → Φ′(x′) = GTΦ(x) where T is a two dimensional matrix which has Jordan

form and G = ||∂x′

∂x || is the Jacobian. The fields Et and Ea, transforms as:

Et(x
′) = G−

2∆E
D Et(x)

Ea(x′) = G−
2∆E
D (ln(G)Et(x) +Ea(x)) (256)

This expresses that the top-field Et always transforms as an ordinary scaling oper-

ator. It can be verified that the correlation functions of fields Et and Ea have the

standard d- dimensional logarithmic conformal field theory structures.

Let us consider the case that d = 2. Therefore we can write:

L0Et = ∆EEt

L0Ea = ∆EEa +Et

L0Eb = ∆EEb +Et

L0Ec = ∆EEc +Et

where we have used the replica symmetry. Using the above equations, it is evident

that the dimension of difference-fields Ea−Eb with a 6= b is ∆E and it transforms as

an ordinary operator under the scaling transformation. The important observation

is that the individual logarithmic operator Ea do not contribute to the connected

quenched averaged correlation functions. Instead the connected averaged correlation

functions depend on the difference fields Ea−Eb only. For instance in the following

we write the connected quenched averaged 2,3 and 4-point functions of local energy

density in terms of the difference operators explicitly,

<E(1)E(2)>c =
1

2
<(Ea − Eb)(1)(Ea −Eb)(2)> (257)

<E(1)E(2)E(3)>c = <(Ea −Eb)(1)(Ea −Ec)(2)(Ea −Eb)(3)> (258)

<E(1)E(2)E(3)E(4)>c = (259)

<(Ea −Eb)(1)(Ea −Ec)(2)(Ea −Ed)(3)(Ea −Eb)(4)>

−1

2
<(Ea −Eb)(1)(Ec −Ed)(2)(Ec −Ed)(3)(Ea −Eb)(4)>

−1

4
<(Ea −Eb)(1)(Ec −Ed)(2)(Ea −Eb)(3)(Ec −Ed)(4)>

−1

4
<(Ea −Eb)(1)(Ea −Eb)(2)(Ec −Ed)(3)(Ec −Ed)(4)>
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where the last equation has only 15 independent terms. This shows that quenched

averaged connected correlation functions have a pure scaling behavior. Let us verify

this results from direct calculation of quenched averaged connected 3-point corre-

lation function of energy density.

We are interested in the exact derivation of the various 3-point quenched av-

eraged functions as < E(1)E(2)E(3) >, also < E(1)E(2) >< E(3) >, and finally

< E(1) >< E(2) >< E(3) >, which can be written in terms of the replica cor-

relation functions < E1(1)E1(2)E1(3) > = a < E1(1)E1(2)E2(3) > = b and

< E1(1)E2(2)E3(3) > = c, respectively. One can derive the correlation functions a,

b and c by means of the 3-point functions of Et and Ẽa as:

< Et(1)Et(2)Et(3) > = na+ 3n(n− 1)b+ n(n− 1)(n− 2)c

≡ nA1 (260)

< Ẽa(1)Ẽa(2)Et(3) > = n1a+ (n2
1(n− 1)

−4n2
1 +

1

n2
(n− 1)2 +

2

n2
(n− 1)(n− 2))b

+(− 2

n
n1(n− 1)(n− 2) +

1

n2
(n− 2)2(n− 1))c

≡ (1 − 1

n
)B1 (261)

and finally,

< Ẽa(1)Ẽa(2)Ẽa(3) > = (n2
1 −

n− 1

n3
)a

+(−3n2
1

n− 1

n
− 3

n3
(n− 1)(n− 2) +

3

n2
n1(n− 1))b

+(
3

n2
n1(n− 1)(n− 2) − 1

n3
(n− 1)(n− 2)(n− 3))c

≡ (1 − 1

n
)(1 − 2

n
)C1 (262)

where n1 = (1− 1
n ). To derive the above equations we use the replica symmetry and

symmetries of the various type of 3-point correlation functions under interchanging

of positions. We note that replica symmetry leads to have < Ẽa(1)Et(2)Et(3) >= 0

and therefore, dose not give any new relationship between a, b and c. Using the

above equations, it can be found that the correlation functions a, b and c are as

following:

a =
3nB1 − 3nC1 + n2C1 +A1 − 3B1 + 2C1

n2

b =
nB1 − nC1 +A1 − 3B1 + 2C1

n2

c =
A1 − 3B1 + 2C1

n2
(263)

Where A1 , B1 and C1 are pure scaling functions of variables ri,j . Using the above

equations we can show that the connected quenched averaged 3-point function



September 30, 2003 9:29 WSPC/139-IJMPA 01690

4742 M. R. R. Tabar

behaves as:

< E(1)E(2)E(3) >c = 2c+ a− 3b = C1 (264)

which is a scaling function and confirms the observation that the logarithmic

operators (individually) do not play any role in the connected quenched aver-

aged correlation functions. In addition one can derive the correlation functions

< Ei(1)Ej(2)Ek(3) > for given i, j and k in the limit of n→ 0 and show that they

have the following form:

< Ei(1)Ej(2)Ek(3) > = [αijk − βijkD1 + γijk(4D2 −D2
1)]f(1, 2, 3) (265)

where f(1, 2, 3) = (r12r13r23)
−2∆E , D1 = ln(r12r13r23) and D2 = ln r23 ln r13 +

ln r13 ln r12+ln r23 ln r12. It can also be shown that the ratio of various symmetrized

3-point functions to the connected one behaves asymptotically as a universal func-

tion

1

3
(4D2 −D2

1). (266)

We generalize the above calculations to derive the various type of 4-point correlation

functions and show that the ratio of the various disconnected to the connected one

has the following universal asymptotic:

∼ 1

36
[O3

1 − 6O2 − 3O3 − 12O4 − 18O5] (267)

where O1 = ln(r12r13r14r23r24r34), O2 = (ln rij ln r2kl + · · ·) with i 6= j 6= k 6= l,

O3 = (ln rij ln r2ik + · · ·) with i 6= j 6= k, O4 = (ln rij ln rkl ln rlj + · · ·) with i 6= j 6=
k 6= l, and finally O5 = (ln rij ln rik ln ril + · · ·) with i 6= j 6= k 6= l

One can check directly that these different types of the 3 and 4-point correlation

functions have the general property of a logarithmic conformal field theory that the

logarithmic partner can be regarded as the formal derivative of the ordinary fields

(top field) with respect to their conformal weight. In this case, one can consider

the Ea fields as the derivative of Et with respect to n . We emphasis that the

derivative with respect to scaling weight can be written in terms of the derivative

with respect to n. These properties enable us to calculate any N-point correlation

function containing the logarithmic field Ea in terms of the correlation functions of

the top-fields. We have shown that the individual logarithmic operators Ea do not

have any contribution to the quenched averaged connected correlation functions of

the energy density. We also obtain that the connected correlation functions can be

written in terms of the difference fields which transform as an ordinary scaling oper-

ator. However they will play a crucial role to the disconnected averaged correlation

functions. Also we find that the ratio of the various types of 3 and 4-point quenched

averaged correlation functions to the connected ones have a universal asymptotic

behavior and give their explicit form. Our analysis are valid in all dimensions as

long as the dimension is below the upper critical dimensions. To derive the above

results we have used the replica symmetry. Any attempt towards the breaking of
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this symmetry will change the above picture and may produces more than one

logarithmic fields in the block and produce higher order logarithmic singularities.

These results can be easily generalized to other problem such as polymer statistics,

percolation and random phase sine-Gordon model etc.
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