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Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions
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The Kardar-Parisi-ZhangKPZ) equation in (1) dimensions dynamically develops sharply connected
valley structures within which the height derivatiienot continuous. We develop a statistical theory for the
KPZ equation in (& 1) dimensions driven with a random forcing that is white in time and Gaussian-correlated
in space. A master equation is derived for the joint probability density function of height difference and height
gradientP(h—RaXh,t) when the forcing correlation length is much smaller than the system size and much
larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find
the exact generating function bf-h and dyh. The time scale of the sharp valley formation is expressed in
terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size
corrections to the scaling laws of the structure functio(r‘rs—ﬁ)“(axh)m are also obtained.

DOI: 10.1103/PhysReVvE.65.026132 PACS nuni)er05.70.Ln, 68.35.Fx

I. INTRODUCTION (F(x,)f(x",t"))=2Dy8(t—t")D(x—x"), (2

There has been a great deal of recent work on the formaahere
tion, growth, and geometry of interfacs—5|. The dynam-

ics of interfaces has turned out to be one of the most fasci- , 1 (x—x")?
nating and challenging topics in theoretical nonequilibrium D(x—x")= Vo &~z | )

physics. There are two principal approaches for theoretically

analyzing such problems. The first is based on computes,q; is the variance ob(x—x'). Typically, the correlation
simulations of discrete models and often provides usefuly forcing is considered as & function for mimicking the
links between theoretical analysis and experiments. The Segprtrange correlation. We regularize whéunction correla-
ond approach’s aim is to describe the dynamical process by gon py a Gaussian function. When the variancés much
stochastic differential equation. This procedure neglects thg,ss than the system size, we would expect that the model
short length-scale details but provides a coarse-grained dgoid represent a short-range correlated forcing. So we
scription of the interfacdthat is suitable for characterizing would stress that our calculations are done for fimitaL

the asymptotic scaling behavjorTheoretical modeling of \ here| is the system size. The average force on the inter-
growth processes started with the work of Edwards and,ce js unimportant and may be removed from the equation
Wilkinson [6]. They suggested that one might describe theyt motion by a boost transformation. Every term in Edj)
dynamics of the height fluctuations by a simple linear stoy,,qves a specific physical phenomenon contributing to the
chastic equation. Kardar, Parisi, and Zha#®Z) [7] real- g itace evolution. The parametersa, andDy, (and o) de-
ized that there is a relevant term proportional to the square Qferipe the surface diffusive relaxation, nonlinear lateral
the height gradient which represents a correction for latergl.ovth and the effective noise strength, respectively.

growth. Indeed, the KPZ equation is a prototype model for & \na consider a substrate of siteand define the mean
system in which the interface growth is subjected to a ran eight of a growing film and its roughnessby
dom external flux of particles. The randomness is describeg

by an annealed random noise, which mimics the random ad- _ L2

sorption of molecules onto a surface. In the KPZ mdded., h(L,t)= T f dx h(x,t), (4)

in the (1+ 1) dimension, the surface height field(x,t) of a L2

one-dimensional substrate satisfies a stochastic random equa- _

tion, w(L,t)=[((h—h)%)]*2 (5
h where() denotes an averaging over different realizations of
< E(pyxh)Zz ya§h+ f(x,t), (1)  the noise(sampleg Starting from a flat interfacéone of the

possible initial conditions it was conjectured by Family and
Vicsek[8] that a scaling of space by a factmand of time by
wherea=0 andf is a zero-mean, statistically homogeneous,a factorb? (zis the dynamical scaling expongméscales the
white in time, and Gaussian process with covariance roughnessv by a factorbX as follows:
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w(bL,b%)=b*w(L,t), (6) properties of the roughening transition have been known
only numerically[17—-23 and by the various approximative
schemeg$24-32.
The theoretical richness of the KPZ model is partly due to
close relationships with other areas of statistical physics. It is
w(L t):LXf(l). (7) shown that there is a mapping between the equilibrium sta-
' L* tistical mechanics of a two-dimensional smedaidliquid
crystal onto the nonequilibrium dynamics of the
If for large t and fixed L[(t/L?)—%] w saturates, then (1+1)-dimensional stochastic KPZ equati$83]. It has
f(x)— const asx—. However, for fixed largd and 1<t been shown in34] that one can map the kinetics of the
<L? one expects that correlations of the height fluctuatior@nnihilation procesé+B— 0 with driven diffusion onto the
are set up only within a distand&? and thus must be inde- (1+1)-dimensional KPZ equation. Also the KPZ equation is
pendent ofL. This implies that fox<1, f(x)~x? with g closely related to the dynamics of a sine-Gordon clhabj,

which implies that

= x/z. Thus dynamic scaling postulates tfig} the driven-diffusion equatiori36,37, high-T, supercon-
ductor[38], directed paths in the random me{ig®—52 and
w(L,t)~tF, 1<t<L? charge-density wave$3], dislocations in disordered solids

[3], the formation of a large-scale structure in the universe
(8) [54-57, Burgers turbulencgs8-85,9(, etc.
~LY  t>LA As already mentioned, the main difficulty with the KPZ
equation is that it is controlled, in all dimensions, by a strong
The roughness exponegtand the dynamic exponemichar-  disorder(or strong-coupling fixed point and efficient tools
acterize the self-affine geometry of the surface and its dyare missing to calculate the exponents and other universal
namics, respectively. Several time regimes can be distinproperties, e.g., scaling functions, amplitudes, etc. Despite
guished in the time evolution of the surface roughness. Thethe fact that in one dimension the exponents are known,
can be summarized as follows: for very early times, the noisgnany properties, including the probability density function
term dominates since its contribution to the equation grow$PDF) of the height of a growing interface, have so far been
as the square root of time. In this time regime, the surfaceneasured only in numerical simulations. Recently, Derrida
roughness grows as(t)~tY% For intermediate times, the and Lebowitz have shown that for one particular model of
linear term has the main contribution. The linear case ( the KPZ class, the asymmetric exclusion procéSSEP),
=0) is the Edwards-Wilkinson model, for which one can the distribution of the displacement of particles could be cal-
easily find that the surface roughness behaveswély  culated for a finite geometry by the Bethe ang&,87. It is
~tPo, where the value of3, depends on the dimension of proved in[86,87 that the distribution of deviatioy of the
the substratéB,=[(2—d)/4] for a d-dimensional surfage  average current is skewed and has the following asymptotic
For later times, the contribution of the relevant nonlinear[88]:
term becomes a dominant one and the surface roughness

growth is characterized by the behavig(t) ~t?. For very P(y)~exp(—Ay*?), y— -+,
late times and finite substrate lendththe roughness satu-
rates asv(t—o,L)~LX. Of course, in an experiment or in a ~exp(—Bly|¥?), —-—. 9

numerical simulation the transition between the different re-

gimes is not sharp and different crossover behaviors can be More recently, Praofer and Spohn mapped the poly-
observed. Galilean invariance implies the relatjpit z=2 nuclear growth modelPNG) onto random permutations,
independent of dimensidri0,11]. It means that there is only where the height is the length of the longest increasing sub-
one independent exponent in the KPZ dynamics. In the onesequence of such a permutation, and thereby onto Gaussian
dimensional substrates a fluctuation-dissipation theoremandom matrices. Hence they succeeded to obtain an analytic
yields exactlyz=3, x=3, andB=3 [12]. In contrast to one expression for a certain scaling distribution, which led to an
dimension, the casd=2 can only be attacked by approxi- understanding of how the self-similar height fluctuations de-
mative field-theoretic perturbative expansidd8—16. It is  pend on the initial conditionf94].

well known that the effective coupling constant for the KPZ In this paper, we are interested in the statistical properties
equation isg=2a?D,/v3. Phase diagram information ex- of the KPZ equation in the strong-coupling limit0).
tracted from the renormalization-group flow indicates thatThe limit is singular, i.e., the surface develops sharp valleys.
d=2 plays the role of a lower critical dimension. For Therefore, starting with a flat surface after a finite time scale,
d=<2, the Gaussian fixed poinwE0) is infrared-unstable, t., the sharp valley singularities are dynamically developed.
and there is a crossover to the stable strong-coupling fixeth the singular pointgésharp valleyy the spatial derivative of
point. Ford>2, a third fixed point exists, which represents the h(x,t) is not continuous. Hence the limit af—0 is not

the roughening transition. It is unstable and lies between theingular fort<t., and we can ignore the diffusion term,
Gaussian and strong-coupling fixed points, which are nowvhile after developing the singularities the diffusion term has
both stable. Only the critical exponents of the strong-a finite contribution in the PDF of height fluctuations. In-
coupling regime(g—« or »—0) are known in (k1) di- spired by the methods proposed recently in the works of
mensions and their values in higher dimensions as well ag/einan E and Vanden Eijndd@3], we develop a statistical
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method to describe the moments of height difference anthe amplitudes of all correction terms. We have left the de-
height gradient of height fielth(x,t). We derive a master tails of the calculations to Appendixes A—E.
equation for the joint PDF of the height differenck—{h)
and height gradient,h, P((h—h),d,h), for a giveng or
diffusion constanty. We will consider two different time
scales in the limit ob— 0: (i) early stages before developing  In this section, we consider the {11)-dimensional KPZ
the sharp valley singularities, ariii) an established station- equation and derive the master equation to describe the joint-
ary state comprised of fully developed sharp valley singulariPI:lF of height difference and height gradient, i.€(h
ties. In the regimeli), ignoring the relaxation term in the —h g h), for givenv anda. It is shown that the equation for
equation of the joint PDF whem—0, we determine the the joint PDF is not closed due to tfiaear term »9°h. The
exact generating function of joint moments of height andPDF of height difference is related to the joint POF(h
height gradient fields. The realizability condition for the re- —h, aht), by the relation P(h—F,t)=f°ﬁ P(h
sulting joint PDF sheds light on the time scale of the sharp h.o.h t)d(ah). We show thatP(h—Ft) satisfies a
X'y X . 1

valley fprmgnon In contrast, the limit—0 is smgular in Fokker-Planck equation and we write down the explicit ex-
the regime(ii), leading to an unclosed terfrelaxation term | aqsion of drift and diffusion coefficie®™® andD®. It is
in the PDF equation. However, we show that the unclose hown that the drift and the diffusion coefficients can be
term can be expressed in terms of statistics of some quanti- 2
ties defined on the singularitigsharp valleys Identifyin written in terms of the conditional averagéi,h)?/h— h)
eIZih .Share :Ile .E’;ISOS.L:. a '?h ?hrr)eea egnt't'ees rgm?el We consider a one-dimensional substrate of lehgtind a

p valiey In posilioy, wi quantiies, Y surface of height fielch(x,t) and its gradient,h(x,t) at

the gradient oh in the positiony,.. ,yo- and its height from time t. The (1+ 1)-dimensional KPZ equation governed on
h, we determine the dynamics of these quantities. In bothhe height fieldh(x,t) is defined in Eq(1), while u(x,t)=

Il. THE MASTER EQUATION FOR HEIGHT DIFFERENCE
AND HEIGHT GRADIENT

regimes, all the momentgh—h)"(d,h)™) for a givennand ~ —dsh(x,t) is a solution of the so-called Burgers equation,
m are found. In the regimé&i) we will prove that in leading
order, whenL —, fluctuation of the height field is not in- Ut auu,=vug— (X, (10

termittent and also we succeed in giving the analytic form of
the amplitudes of all the structure functions. In addition, the
scaling behavior and the amplitudes of all the correctlon
terms due to the finite-size effect are calculated.

The paper is organized as follows. In Sec. Il, we derive _ : T

. - ) . z = —i\[h —h]- .

the master equation for the joint PDF of height differences (A, 8) = (eXp(=IA[hOG ) =h] =T wu(x, 1)) (11)
and height gradients for given diffusian We convert the
height PDF, i.e.P(h—h,t), evolution equation consequent It follows from Eqs.(10) and(1) that the generating function
to a Fokker-Planck equation for an arbitrary given diffusionZ is a solution of the following equation:
constant. In Sec. Ill, we consider the limit of~0 of the o 2
master equation in the time scales in which there is no sin- . e lah+v
gularity in the surfacébefore developing the sharp vallgys Zi=1y(OAZ=IA 2 Zun~ NK(O)ZF z
We determine the exact and explicit expression of the gener- 5
ating function for the momentgh—h)"(4,h)™) for givenn — ﬂzx_ i a,u(—x
andm. In Sec. IV, we consider the master equation in the I K,

where the covariance dfis given by Eqgs.2) and (3). To
investigate the statistical properties of E¢E0) and (1), let
us define the generating functi@f\ , u,x,t) as

+ Mzkxx( 0)z

limit »—0 and consequently when the singularities are fully —

developed. In this regime, the relaxation term has a finite —ipv(uexp(—iN(h—h)—iuu)), (12
contribution in the master equation. Using the methods intro- _

duced in[73], we prove that the unclosed term can be writtenwhere  k(x—x")=2D,D(x—x"),  y(t)=h;,  k(0)
in terms of quantities which are defined on sharp valleys=Dg I\7a, andk,(0)=—2Dy/\/7mc2. To derive Eq(12),
where d.h is discontinuous. Also in this section, we deter- we have used the following Identltles

mine the relation between the density of sharp valleys and _

the forcing varianceD,,(0) in detail. In Sec. V, we derive . e _

the moments of height fluctuation in the stationary state and! Mo XPILNOGH =] =i pu(x, 1)) = I{ZXJFMMZ}’

show that the PDF off(— h) is strongly asymmetric, and we (13
prove that_up to leading order theh moments of i—h), fixt L inThx) =T —i O = —inK(0)Z
i.e., ((h—h)"), can be written in terms of the second-order (FOcDexp(=iA[h(x,t) =h] =i pu(x,1))= =irk( )(’14)

moment of height fluctuation in a nonintermittent way. We
determine all of the moments and show that the amplitudegnq

of moments((h—h)"(dy h)™ can be written in terms of
characteristics of singularities. We also derive the finite-size(f,(x,t)exp(—i\[h(x,t) — h]—l,uu (X,1)))=—1iuky(0)Z,
effect on the moments of height differences and determine 1
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where we have used the fact thaf(0)=0. Evidently the (u|ﬁ>=0 (21)
last term in Eq.(12) is not closed. Assuming statistical ho-
mogeneity Z,=0), we have for any givenv. In fact, for a givenh the average of height

gradient,u, is consequently zero. The identity proposed by
Eqg. (21) is not restricted to any limiting asymptotic and is
true in all regimes of the dynamical evolution of the surface.
Also Eg. (20) allows us to determine an evolution equation

for P(h—ﬁ). Doing so, we multiply Eq(20) by u and inte-

o
—ipZ=y\puZ— E)\MZW—H)\ZMK(O)Z

—i,u,stX(O)Z—i(vhz-Ha)\)Z’u

— 121Uy, exp(—i)\ﬁ(x,t)—mu(x,t)», grate overu from —« to +o, from which we get
(16) ~ d ) )
_ aP(ht)=— —«u>uum )|P(h,t)
where h(x,t)=h(x,t)—h. Defining P(h,u,t) as the joint oh
probability density function oh andu, one can construct 72
P(h,u,t) in terms of the generating functichas + Tz{[k(O)— wu?h)yIPh,t)}, (22
dh
P(h,u,t)= f f o —exm)\h+|,uu)2()\ mi). whereh=h—h and the relationy= a/2(u?) is used. This is

(17 a Fokker-PlanckFP) equation, describing the time evolution

_ of P(h,t). The drift coefficient in the FP equation is
It follows from Eqgs.(17) and(16) thatP(h,u,t) satisfies the

following equation: Do _ %2y 2w
(U2~ (u[R) @3
o
—Pu=—vPhu— E(UZP)TW— a(uP)r—k(0) Py and the diffusion coefficient reads
D@ =k(0)— »(u?|h) (24)

+ Ky (0)Pyyu— v(UP)FR— ff——exp(n\h
Evidently, to obtainP(h—h) one should know the condi-
+ipu) (U exp(—iNh(x,H) —inu(x,t))). (18  tional averagg/u?[h). The equation has the following sta-

. . tionary solution:
Now we can rewrite the last term in E(L8) as

~ N
Pial(h) = waw%fththmWh) (29

f f ex;:1(|)\h+|,uu),u2<uXX (X,1)
- whereN is the normalization coefficient. Therefore, to derive
X exp(—iNR(x,t) =i pu(x,1))) the moments of height differende-h, i.e., ((h—h)"), we
= — (Uy(X,1) S(h(X,t) — ) Su(X,1) — u)) need the conditional avgragir(gﬂﬁ). The simplified pic-
~ B ture given by this equation indicates that all the knowledge
=—v{{UyJu,n)P(u,h, )}y, (199  to obtain the behavior of PDF is buried in the functional

form of one conditional average, i.e(u?h). Although

where (|u, h) denotes the average conditional on a givensimple, it is clear that the conditional averagé|) would
u,h. Therefore, using Eq19), it follows thatP(h,u,t) sat- have a nontrivial dependence enandL in the limit of v

isfies the following equation: —0. Instead of following this strategy, however, in the next
section we follow another direct way of extracting the mo-
—Pu=— yPr— = (UP)5,— a(uP);— k(0) Piq, ments of height differenceh(=h) in the strong-coupling

limit, i.e., v—0.

Kol 0) Py (UP)i+ (U U, )P A D o lll. THE JOINT CORRELATIONS OF HEIGHT

(20 DIFFERENCE AND HEIGHT GRADIENT

BEFORE SHARP VALLEY FORMATION
This equation is exact for a givemand clearly the trace of

the diffusion term leads again to an unclosed equation for Whena is finite, the very existence of the nonlinear term
P(h,u,t). Obtaining the functional form of the conditional in the KPZ equation |eads to the development of the sharp

valley singularities in dinite timeand in the strong-coupling
averaging <uxx|u'h> is one of the major d|ff|cult|e§ N limit (v—0). In one dimension, the system is already in the
the formulation. From Eq.(18) we see thatP(u,h)  strong-coupling regime, so starting from any finite value of
=P(—u,h), which results in at large time, the system develops sharp valley singularities
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1) for which, consideringZ(«,0)=1 as the initial condition, its
solution is

Z(,(,L,t)=eX|i,LL2kXX(0)t). (29

On the other hand, by definition we havéu?)=
- b, —([&ZZ(M,t)]/a,uz)M:O. So before the creation of the sin-
h LB gularities, the second moment of height gradient behaves as

(U%)=—2Ky(0)t, (30)

- h(x)
SO consequently,

‘)’(t) == akxx(o)t- (31)
Inserting Eq.(31) into Eq. (26) gives
A ,
A =" x d N N9
EZ(,LL,)\,U——Ia)\mZ(M,R,t)‘i‘la;aZ(,LL,)\,t)
+[M2kxx(0)_iakxx(o)t)\_)\zk(o)]
XZ(,\,b). (32

FIG. 1. In the upper graph the sharp valley solution in the KPZWe solve Eq.(32) with the initial conditionZ(x,\,0)=1,
equation are demonstrated while in the lower one the correspondinjom which by expanding the generating function in powers

shock structures in the Burgers equation are sketched. The variablg$ \ and . we can obtain the momen¢(;h—ﬁ) ", (u"), and
characterizing a sharp valley, namély_, h,. , andh, are shown. <(h_F)num>_ Changing the variablg: to y=,u2 converts

) o ) Eq. (32) to the following equation:
(Fig. 1). Therefore, one would distinguish between different

time regimes before and after the sharp valley formation. 52 J

Starting from a flat initial condition, i.eh(x,0)=0, u(x,0) —Z(y,\ 1) =—2iaNy —5 Z(y,\, ) +iak —Z(y,\, 1)

=0 for a one-dimensional surface, which evolution is given ay ay

by the inviscid KPZ equationy—0), we know that after a Yk (0) — i aky (0) N — N2K(0)]Z(Y A ).
finite time the derivative of functioh(x,t) becomes singu- > e n
lar. After this time scale, the diffusion term is important, but (33

we can neglect this term before the appearance of the singu-
larities. So the equation governing the evolution of the genintroducing the Fourier transform &(y,\,t) with respect
erating functionZ(u,\,t), before the creation of the sharp toy asQ(q,\,t), it is simple to get the following evolution

valleys is given by equation satisfied by the Fourier transform:
) L« ) i\ 9 9
. ZX 2 B (9 .
—lap| —| +uke(0)Z, (26) —iky(0) = Q(q,\, 1) —i arky,(0)t
wl, 9
2
in which we have assumed the statistical homogenetty ( XAQ(a, A1) =Nk(0)Q(q. N 1), (39

=0). Now we need they, which is given byy=h,. Using

Eq. (1), we get with the initial condition

1 _
— o
Y(t)=ht=§<u2>. (27) Q(q,x,0)=5f eYidy=4(q). (35)
To evaluate(u2>, we setA =0 in Eq.(26) and find Equation(34) is a first-order partial differential equation
which can be solved by the method of characteristics. The
Z= %k, (0)Z, (28) general solution of Eq34) is written as
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i _ 2ial
12thx(0)a)\+\/—2|kxx(0)a)\tanh TN "0

xx(0)
Q(q,)\,t):g )\! E

Kyx(0)
) —2ia\ i
10ans+itanh Y s V= 2iky(0)
X ex —1/2f K 0)
P 0 2ans?— K, (0)
] ] —2ia\ .
2i aky(0)tA —2A2K(0) —i tanhl( q \/k—(o)> V= 2iKy(0) al
" : X ds|, (36)

2ans?—iKy,(0)

whereg is an arbitrary function of its arguments. Imposing the initial condition, given by(&%), and introducingw as

L tanhl( q\/ _kz;é;\) V—2iKy(0) a\
@73 ke 0) @k ’ (37)

we obtain

1/2v2[iKy(0)/ antanh /21Ky, (0) eX ]

g()\,w)=5<—%1/2 XX( tanh \2ik,,(0) )\w])ex 1/2]

S\/ (0 )\/ 2Ky, (0) @\ — 2i wky,(0) e\ — 27\ %k(0)

10a\s+i tanh !
X

x 2ans?— ik (0) dsi, (38)

from which Q(q,\,t) is obtained as

10ans+i tank 2| sv/ =2 | 2k 0)an
q NS+ 1an S k—(O) iKyx(0)

QA =g\ t+w)expy —1/2| 2a\s?—iky(0)

2ia)\kxx(0)t—itanh‘< \/ z'm‘)\/ 21k (0) ah — 21 2K(0)

- 2ans?— K (0) ds. (39
|

Inverse Fourier transforming of the solution in E9) is Since we are interested in momer{h—h)", setting
straightforward, so after switching to variablewe get the ;=0 in Eq. (40) and expanding the generating function in
following solution forZ(x,,t): powers of A enables us to obtain them all. For example,
B —_— expanding up t@(\"), it is easy to see that the first sixth

Z(p\ 1) ={1~tankT y2ike(0) alt]} order of moments behaves as follows:
xexp{ — 2 In{1—tanH y2ik,,(0) art]} ((h—h)?)= — L[ ke (0)2a?t3—6k(0)], (42)
2 tanh {tantf[ v2ik,(0) ant]} —A2k(0)t (h—h)3) = — 2k (0)3a3tS, 42

1

((h=h)%) = — 1k, (0)*a*t®— 4t%K,,(0) %a?k(0)
12t2k(0)?, (43)

) 1—tanf[\/2ikxx(0)a)\t])

1+tanh v2ik,,(0) axt]

i \/2'kXX( ) tanti 2k () an t]]

((h—)% = — [ 28K,,(0)°a®t 1+ £k,,(0)3a®t"k(0)],
(40) (44)
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e be found. One should first check the realizability condition,
2y i.e., P(h—h,t)>0. In fact, the above moment relations indi-
E cate that different even-order moments becamgativein
175 some distinct characteristic time scales. Closer inspection of
- the even-moment relations reveals that the higher the mo-
1.5 ments, the smaller are their characteristic time scales, so they
C asymptotically tend tojt* for very large even moments,
125 where t* =[k(0)/a?k2,(0)]*® (see Fig. 2 Therefore, we
C conclude that after this time the far tails of the probability
1 distribution function start to become negative, which is remi-
C niscent of sharp valley creation. This means that after the
075 characteristic time scalg=t/4*, one should also consider
C the contribution of the relaxation term in the limit of vanish-
05F ing diffusion in order to find a realizable probability density
E function of height field. In other words, disregarding the dif-
0,25 ool fusion term in the PDF equation is valid only up to the time
scales in which the singularities are developed. Taking into
ol v v v 1 v v 1w v w1 . n account thata>0, the odd-order moments are positive in
0 25 50 & 100 time scales before the formation of sharp valleys. This means

FIG. 2. Behavior of the time scales in which the momejfts  that the probability densit?(h—ﬁ,t) in this time regime is
—)2") become negative in terms af The square points are cal- Positively skewed. In Figs. 3—5, we have demonstrated the
culated according to E¢40) while the solid line is the fitting curve  role of o on the time scale of the creation of singularities.

asymptotically tending to 1(&(0)/a?k2,(0))*2, Substitutingk,,(0) andk(0) in the expression df* gives us
t* =(3)Y¥(7) YD, ta~ #3052 Hence the smaller the, the
{((h—h)®) = — 7555:t3[85 78%,(0) ®a’t® shorter the time scale of shock creatisee Figs. 3, 4, and)5
[93].
+299 97K, (0)*a*t®k(0)
+623 70K,,(0)?a’t3k(0)? IV. THE EQUATION OF THE JOINT PDF OF HEIGHT
DIFFERENCE AND HEIGHT GRADIENT IN
—1 247 40&(0)°]. (45) THE STATIONARY STATE

The important content of the exact forms derived above is Assuming the stationary state, we are interested in inves-
that through it the time scale of sharp valley formation cantigating the stationary solutions of E@20) in the limit

t=0.10 1=0.20
u(x) A u(x) i
1 1
0 _/’—_\ 0 \_,/\"”'\
-1 -1
0 02 04 08 08 1% 0 02 04 06 08 1%
t=0.30 1=0.40
ux ux) FIG. 3. Different time snap-
1 1 shots of gradient configuration
within system size, i.e.,—dh.
0 0 The time scale for shock creation
is demonstrated fore~L. The
-1 - solid points show the jumps in the
- - height gradienf93].
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1%
t=0.50 1=0.60
ux) § u(x) |
1 1
0 0
1 1
0 02 04 06 08 1% o 02 o4 06 08 1%
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) =0.10 . 1=0.20
A /
1 1
I NN
-1 -1
0 1 2 3 4 5% 0 1 2 3 4 5%
1=0.30 1=0.40
kg u® FIG. 4. Different time snap-
1 1 shots of gradient configuration
within system size, i.e.,—dyh.
0 0 The time scale for shock creation
is demonstrated foro<L. The
-1 ] solid points show the jumps in the
- x - height gradienf93].
0 1 2 3 4 5 0 1 2 3 4 5
1=0.50 1=0.60
ux) A u(x) |
1 1
0 0 -
-1 R
= X - X
0 1 2 3 4 5 0 1 2 3 4 5

v—0. Of course in the stationary state the sharp valleys are
fully developed and one should also take into account the
diffusion term in the PDF equation. The complicated term

involved with the singularities can be overcome by using the

G(u,h,t)=lim »(uyJu,h)P(u,h,t)

v—0

= lim (U (x,t) S(h—h(x, 1)) S(u—u(x,1))),

v—0
method proposed ifi73]. Let us define (46)
1=0.10 t=0.20
u(x) \ u(x) )
1 1
-1 -1
0 5 0 15 20 25°% x
1=0.30 t_O 4o
u® 4 u(x) FIG. 5. Different time snap-
1 1 shots of gradient configuration
within system size, i.e.,—dh.
0 0 The time scale for shock creation
is demonstrated fore<L. The
-1 - solid points show the jumps in the
- 5 x height gradienf93].
0 5 10 15 20 25
1=0.50 t_O eo
u(x) u(x)
1 1
0 0
-1 -1
= X X
0 5 10 15 20 25
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where in the last step in E¢46) we have used the definition

of the joint PDFP(u,h,t). Assuming spatial ergodicity, the
average of the dissipative term can be expressed as

~ o = 2
hot— 5 (dxho)“=T.

5 5 In order to deal with the inner solution around the sharp
v(Uyyu,h)P(u,h,t) valley, lety=y(t) be the position of a sharp valley, define
the stretched variable=(x—y)/v, and let
=v< Ugy(X, 1) S(U—u(x,1))S(h—h(x,t)) | —y

u'”(x,t)zv(TJr 5,t) ,
=vlimﬂi lelzdx Uge(X,1) S(u—u(X,1)) (50)

L NJ_- - ~ [ X—
: h'“(x,t)=h(7y+5,t

L—oo

x s(h—h(x,1)). (47
The parameteb is a perturbation of the sharp valley po-

It IS well _know_n that theu f|el_d, which satisfies Bur_gers _sition andv andh satisfy the following equations:
equation, gives rise to discontinuous or shock solutions in

the limit v— 0. Consequently, for finite- the shock solutions v— a(U—vy)v,+ avv,=v,,— f,(z,1),

are manifested in height field as a set of sharp valleys at the (51)
positions where the shocks are located, where they are con- _ a .

tinuously connected by some hill configuratidifég. 1). It is v?hy—vth,+ v?h,— E(hz)2= vh,+ 17 (z,1).

noted thatu,, is zero at the positions where no sharp valley

exists. Therefore, in the limiv—0, only small intervals \where U= (1/a)(dy/dt)=(u, +u_)/2, (5=(1/a)(ds/dt),
around the sharp valleys will contribute to the integral in Eq.andu, , u_ are the height gradients on the in right-hand and
(47). Within these intervals, boundary layer analysis can beft-hand sides of the sharp valley in the positiotsee Fig.

used to obtain an accurate approximatioru@f,t), h(x,t). 1). We look for a solution in the form

Generally, boundary layer analysis deals with the problems

in which perturbations are operative over very narrow re- v=vo+rv;+0(1?),

gions across which the dependent variables undergo very (52
rapid changes. These narrow regioisharp valley layens h=ho+ vh;+0O(12?).

frequently adjoin the boundaries of the domain of interest,

owing to the fact that a small parameter in the present To leading order we get for, andh,

problem multiplies the highest derivative. A powerful

method for treating boundary layer problems is the method ho,=0,

of matched asymptotic expansions. The basic idea underly- (53
ing this method is that an approximate solution to a given a(Vg—U)vg,=Ugzzs

problem is sought not as a single expansion in terms of a

single scale, but as two or more separate expansions in terrii§iere we have assumed that the variancef(@t) is a

of two or more scales, each of which is valid in part of thesmooth function so that we can neglect its variation in the
domain. The scales are chosen so that the expansion assharp valley regionf,=0). In other words, we suppose that
whole covers the whole domain of interest and the domaing>O(v) (i.e., ¢ > the typical layer width One can easily
of validity of neighboring expansions overlap. In order tointegrate Eq(53) and find that

handle the rapid variations in the sharp valley layers, we

define a suitable magnified or stretched scale and expand the ho=const,
functions in terms of it in the sharp valley regions. For this

purpose, we split andh into a sum of an inner solution near — S asz
the sharp valleys and an outer solution away from the sharp Vo= U~ Etam—(T>’

valleys, and we use systematic matched asymptotics to con-

struct a uniform approximation afi andh. For the outer inwhichs=s(t)=u,—u_ is the shock strength. The bound-
So|uti0n, we look for an approximation in the form of a se- ary condition for the second equat|0n arises from the match-

ries in v, ing condition,

— out_ 2
u=u"-"=uUpg+ru +OV), . i . —
0 ! ( lim v'g—— lim USUt—_U“‘_

49 o po=im 54

N »

h=h""=hy+vhy+0(+?),
Basicallyh{(z) =C— v[%{(z')dz’, whereC is the integra-
tion constant. Therefore, tr@(1) solutions ofvg' give rise

to O(v) solutions in theﬁ{;1 field and only the integration

Ugi+ aUgUgy= —f, constant is thé(1) part of the solution oﬁg‘. In fact, the
(49
026132-9
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constant is merely the height value at the sharp valley posi- L o -
tion. Of course due to the height continuity at the sharp val-  €(u,s,h,x,t)= < > sU—uly;,t)a(s—s(y; 1))
ley position there is no boundary layer for the KPZ equation, :

meaning that the rapid changing term in the sharp valley -

layer occurs irh,,, while the highest derivative in the KPZ —h(y; .t))ﬁ(X—y1)>- (58)
equation involves onh\,,. The above analysis shows that,

to O(»), Eq.(47) can be estimated as Due to statistical homogeneity, the sharp valley’s character-

istics are independent of their location, so
lim [ (U Ju,h)P(u,h )]

0 o(U;s,h,x,t)=pS(U;s,h,1), (59
N 1 A . . . . .
=Iimu|imr—z dx Ui 8(u—u(x,t)) in which p=p(t) is the number density of shocks and
v—0 Lo 1o S(u,s,h,t) is the PDF of(u(yg,t),s(Yo.t),h(yo.t)) condi-

« 5(ﬁ—ﬁin(yj ) tional ony, being a shock location. Hence

N 1 x . . lim v(uy,|u,hYP(u,h,t
= lim— =, dz ULo(u—u"(zt)) Hov< ol MP( )
L*)UJL N j —®
fo q fuf(SIZ)d_ - E
TR ) = - S - S 'S, yt .
xo(h—h"(y; 1)) L B IS M~ S )

N1 - o
= ||mfN; f_ochUg‘zﬁ(u—vo)é(h—h(yj 1),

L—oo

(60)

Therefore, the relaxatiofdissipative contribution in Eq.
(59  (20) is written as

where(}; is a layer located a; with width >O(v). Using G(uht)=—

0 u—(sl2) -
apj dsf du(u—u)S(u,s,h,t)
—® u+(s/2)

Eqg. (53) and "
(61)
v
dzvg,,=dvg vOzz: advg(vg—u), (56)  So Eq.(20) is rewritten in the form
0z
- o 29\~ -~ e
the zintegral can be evaluated exactly leading to the follow- —Pu=—vPhu— E(“ P)ru— a(uP)i—k(0)Phy
ing result: 3
K 0)PyyytG(u,hit). (62)
_ _ 0 o T (s2) o _ .
v(uxxlu,h>P(u,h,t)=af dﬁf dsp(u,s,h,x,t) | It is interesting that thés term comes from the relaxation
- u+(s2) term in the KPZ equation, but its explicit expression in terms
X dvo(0e—1) S(U—1vo). (57) of the sharp valley’s characteristics is proportional dp

which is the coefficient of the nonlinear term in the KPZ

equation. This indicates that without the nonlinear term in
o(u;s,h,x,t) is defined such thap(u,s,h,t)duds dhdx the KPZ equation there is no finite contribution for the dif-
gives the average number of valleys [i®,x+dx) with  fusion term in the PDF equation when- 0. Although this
T(y,t) e[Gu+du), s(y,t)e[s,s+ds), andh(y,t)e[h,h  €quationis exact for finite, we cannot solve it since the last
+d}‘,), wherey e[x,x+dx) is the sharp valley location. term is not expressed in terms B{u,h,t). Despite the ex-

Equation(57) indicates that the relaxation term in the strong-iSténce of an unclose@ term, we can still derive interesting
coupling limit can be written in terms of some quantities'”format'on about the moments using the above equation. We

which are defined in singularitiggalleys. Indeed we char- will study comprehensively the moments of height difference

acterize a sharp valley with four quantities, its locatign ~ and height gradient, i.e({(h—h)"(9¢h)™, in the next sec-
its gradients ayj,, (i.e.,uy), Yio- (i.e.,u_), and its height tion. B
It is worth mentioning that integration ovdr gives an

from theh, i.e.,Flj . Instead ofu, andu_, we have used the - ) k
equation for the PDF ofi recovering the results ifi73],

guantitiesu=(u,. +u_)/2 ands=s(t)=u, —u_. Later we
will determine the time evolution equations which govern

L 0 (u—(s2)

these four quantities. - R= — Ky, (0)Ry p“j duu-wSus,)! |
Proceeding further, we note tha{u,s,h,x,t) can be de- —oJu+(sl2) u

fined as (63

026132-10
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whereR(u,t)=[P(u,h,t)dh and S(u,s,t) = fS(u,s,h,t)dh B ) .
is the PDF of(u(yo,t),S(Yo.t)), conditional on the property ~ 9nm= _apf dh J duh
thaty, is the singularity position. Because of the statistical
homogeneityy, is a dummy variable. We finish the section < ym
by determining the relation between the density of valleys

and the noise characteristik§0) andk,,(0), that is,

0 u—(sl2) o
f dsf du(u—u)S(u,s,h’,t)

u+(sl2)

uu

(68)
ap . . .
Kex(0) = 75 (s%), (64)  After integrating by parts, it converts to
—_ ’ ’ -2
indicating that the forcing variande,,(0) is related to the Gnm= _“pJ dh J du h"'m(m—1)u™
products of the density of valleys (s®), and . This rela- o )
. ; ) . . . U—(s
g\on ha; bgen found 73] and its details are given in the x f dsf dU(u—mS(U,s,h’,t))
ppendix 5. o Jut(s2)
0
V. THE MOMENTS OF HEIGHT FLUCTUATION IN - apm(m—l)f dsf dh’h'”f du um™ 2
THE STATIONARY STATE -
Our goal is to investigate the scaling behavior of moments u-(sf2) — .,
of height difference and height gradient in the stationary X ot s du(u—wS(u,s,h’,t)|. (69)

state. After sharp valley formation, the lateral correlations

produced by the nonlinear term will grow with time. The It can be integrated oveu, which leads to the following
dynamic scaling exponeatcharacterizes the self-similar lat- expression fog, ., (see Appendix R

eral growth. However, in the stationary state the height field '
width saturates in the sense that lateral correlations are on
average grown up to the system size. As it was explained,
after the saturation the width scales wag(L,t>L%)~LX. o
Having in our disposal the exact resylt 2 in one dimen- +(h,"(2u=9)" [(m—1)s+2u])}, (70
sion[89], it will be natural to defind’(h’,u,t) as the PDF of

ap o B
gn,m:2_m{<hl,;n(zu+ s)™ l[(m_ 1)s— 2m>

, ' _ 1 : Wherehlﬂ:(hv—ﬁ)lwo andh, is the height of a given sharp

h ’h,u’ and b wherlehd h)/wo agd Wo=L"% Obr\]/,IOUSIy valley. This means that the relaxation term in the strong-
P( ,uf) s relate o P(hut) as P(h"ut) coupling limit can be written in terms afnly characteristics
=WoP(h,u,t). From Eq.(62), it follows thatP(h’,u,t) in  of the valleys, i.e.li, s, andh, .

the stationary state satisfies the following equation: At statistical steady statet{>,{ };=0) and using the
scale independence gf, ,,'s (see Appendix | we derive, to
— L1, — EL—1/2(UZP)h,u_a,L—llz(uP)h’ leading order and in the limit of —, from Eq.(66),
—K(0)L " Pppru+ Ky 0) Pyuyt G(u,h’, 1) =0. <(tﬂnum3> =— Inm (72)
65 Wo Kex(0)m(m—1)(m—2)

for m=3. For instance, setting=0 causes the height gra-
From Eq.(65) it follows that the moments dfh’"u™) satisfy ~ dient moments to behave §&3]
the following equation in the stationary state:
ap

UnmT Kex(0)M(M—1)(m—2)¢h’"u™"3) (u)= 2MF3k (0)(m+1)(m+2)(m+3)
+mn(n—1)k(0)L " h'""2u™"t) X{((20—s)™ [ (m+2)s+21])
—mnyL " Yh' " tume ) —{(2U+9)™ 22U~ (m+2)s])}, (72
_n(m_z)gL—l/2<h/n—1um+l>:0, 66y  and form=3 we find
where (h=T)")= g L 73

B , , , where, using Eq(70), we haveg, ;= (ap/2)(h'"s?). The

g”:m_J' dh fdu h"u™G(u,h" ). (67) fact thatg,,’s, up to leading order, are scale-independent
implies that Eq.(73) builds up a relation between th&h

Using Eq.(61), we can determine the explicit expression of moments of height difference in terms of the second moment
On,m in terms of the characteristics of valleys. Thus we findwg in a nonintermittent way. This means théh-order mo-
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ment is scaled linearly with order. To verify the scale in-  Noting thatg,,_, s andg,_ 7 are not zero, we conclude that
dependence dj,, ,,'s, one should look at the statistics of the the next-to-leading-order correction for the structure func-
sharp valley environment and the different processes intions isO(1/LY9). Also, Eq.(77) shows that the amplitude of

volved in the sharp valley creation and annihilation, whichthe correction terms to momentgh—h)") is related to the
cr?ntrlllauteddynammally._ V\f havzlcoéméfeheu?gé\)/e? explainedstatistics of quantities which are defined on the singularities,
the related arguments in Appendix E. Equa also sug- - o Also it shows that all of the moment¢h—h)"
gests that the amplitudes of height difference and height gr or' g{‘/'é“n and odah) exist and consequently tthDF)of) the
dient moments depend strongly on the singular structures i _His not symmetric. However, using the properties of the

the theory, encoded in the functiogg , [i.e., Eq.(70)]. At L be sh h | ¢
this stage, we find the finite-size effects on the moments oPUrgers equation, it can be shown that only even moments o
u are nonzero and all the odd moments vanish, hence the

Sh.m=(h""u™). Defining e=1/L*? as a perturbative param- _ .
eter, we find the structure functio®§ ,,=(h'"u™) perturba- PDF ofu is symmetric.

tively in terms of small parameter=1/L*? as
Shm=(h""uM =8 + €S+ 2SS+ (74

Using EQs.(66), (74), and the scale independence g,
we get

S0 — 1 .
"M Ko 0) (M 1) (M 2)(m+3) I

Sin- X
M Key(0)(m+21)(m+2)(m+3)

yn(m+3)

8 Ky (0)(M+3)(m+4)(m+5) On-1m+5

an(m+1)
! 2kyx(0)(M+5)(M+6)(Mm+7) On—1m+7(>

(79

S = !
"M ko (0)(M+1)(m+2)(m+3)

X

o
(m+3)SY g+ M DS,

—k(O)n(n=1)(m+3)S, 1.5, (76)

etc. For example, the momentth—h)") behave as
R\ — n/2
<(h h) > L [SIKXX(O) gn,3

1 vn 2an
+|_T7 W%—m W%—m

1/k(0)n(n—1) ¥’n(n—1)
T Bk 0)7 925" Tk _(0)F In-27

1layn(n—1) 40a’n(n—1)
_Wgnfzg_wgnlel

+O(L—3’2)]. (77)

Equation(72) enables us to determine the rate of surface

growth at the stationary state, |Et Using the KPZ equa-
tion, it is trivial to see that

— a
lim y(t)=ht=§<u2>+ vp(s), (78
t—oo

where we have used the fact thgi,,)=—(u,)=—p(s)
[73]. In the limit »—0, the second term vanishes and

. —
lim 'y(t)=ht=§<u2>. (79
t—oo

Going back to Eq(72), the h, is written in terms of the
properties of the singularities as

2

:245‘!“7:1(0){(807%% 4s°)}. (80)

h;
So in the stationary state, momenis’s®) and (s°) deter-
mine the growth rate. In other words, for a given time in the
steady state, if one gets the momefités®) and(s®), which
are defined only on the valleys, he can predict the rate of
surface growth. This provides a simple way to determine the
h, in the stationary state. Now we prove thB{(h',u,t
—oo,L—o)=P(h’,u) is a positive and normalizable PDF.
To show the positivity of the PDF, we note that H&1)
indicates thaP(h’,u) satisfies the following equation in the
limit of L—oo:

0 u—(sl2) o~
kxx(o)Puuu:(a’pf dsf du(u—U)S(u,s,h,t))
- u+(sl2) uu
(81

Taking advantage of the method introduced in Sec. Ill, one
may obtain

h ap JO q u—(s/2)
P(h',u)=— =—— s
( ) 2Kkyx(0) J oo™ " Jus(si2)

2
xdd%—(u—W)sw@s,h'), 82)

where S, (u,s,h’) is the PDF of valleys withu, s, andh’.
Therefore, positivity ofS..(u,s,h’) implies that P(h’,u)
=0. To check the normalizability of thB(h’,u), consider
Eq. (71) with n=0, m=3, leading to
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1 in Eq. (85) are given explicitly in terms of the functiomg, ,
f dh’du P(h’,u,t)= 3ik(0) Y03 (83 defined on the sharp valley singularities. The next step, left
> for the future, would be the calculation gf, ,,’s in terms of

where the explicit form ofy, 3 can be found from Eq(70). few known parameters, i.e., the forcing and diffusion coeffi-

The result ngOV3=(ap/2)<S?’). Now combining with Eq. cients.
(B15) gives Our analysis enables us to find the stochastic equations

which are governed over the dynamics of quantities charac-
terizing the sharp valley singularities too. This translates the
stationary nonequilibrium dynamics of the surface in terms
of the dynamics of singularities in the stationary state. When
so the proof of normalizability of the stationary state PDFthe system crosses over the tirhe after which the first

f dh’du P(h',u,t—o,L—0o0)=1, (84)

P(h’,u) is completed. singularities are formed, it would be an important study to
analyze the shape deformation of nonstationary height PDF
VI. CONCLUSION P(h’,t) in time. We believe that the analysis followed in this

_ paper is quite suitable for the zero-temperature limit in the
We study the problem of nonequilibrium surface growth 5 piem of a directed polymer in the random potential with
described by the forced KPZ equation in{1) dimensions.  gport.range correlationf88]. The same method applied to
The forcing is a white in time Gaussian noise but with aye Kpz equation in higher dimensions would definitely be
Gaussian correlatlon' in space. Modeling a short-range corrgsqe of the goals of the present work. The main message that
Iat_ed noise, we restrict our _study to the case when the COM&Right be encoded in the present work is the importance of
lation length of the forcing is much smaller than the systemy,e gatistical properties of the geometrical singular struc-
size. In the nonstationary regime when the sharp valley o5 for understanding the strong-coupling regime of the

structures are not yet developed, we find an exact form fokardar-Parisi-Zhang equation in higher dimensions.
the generating function of the joint fluctuations of height and

height gradient. We determine the time scale of the sharp
valley formation and the exact functional form of the time
dependence in the height difference moments at any given
order. Investigating the stationary state, we give a general We would like to thank J. Bec for kindly providing us
expression of the mixed correlations of height and heightvith some of his unpublished numerical results. We also
gradient at any order, in terms of the quantities which charthank C. Castellano for reading the manuscript and directing
acterize the sharp valley singular structures. Through a careur attention to some of the references, and Roya Mohayaee
ful analysis of the behavior of the sharp valley environmentfor helpful comments. We are indebted to Eric Vanden
we derive the general finite-size corrections to the scaling oEijnden for very informative discussions. We thank also F.
an arbitrarynth moment, i.e.{(h—h)"), at any order. Re- Azami, R. Asgari, B. Davoudi, M. E. Fouladvand, R.
cently, Marinariet al. [23] have obtained the corrections to Gholestanian, G. Ketabi, M. Kohandel, M. Khorammi, A.
the leading-order scaling in dimensiobs=2,3,4, in a high-  Naji, and A. R. Rasteghar for useful discussions. A.A.M. and
resolution simulation on the RSOS discrete model, which i$=.S. were partially supported by the Institute for Studies in
believed to be in the universality class of the KPZ equatiorPhysics and MathematidéPM). J.D. acknowledges partial
stirred with a white in time Gaussian noise afdorrelated  support by the Deutsche Forschungsgemeinschaft.

in space. Hence they get
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Wi (L)~ AL (1+B,L ). (85) APPENDIX A: AN ALTERNATIVE METHOD FOR
DETERMINING THE MOMENTS OF HEIGHT
Irrespective of the dimension and moment ordethey ELUCTUATION BEFORE THE FORMATION
observe the same subleading exponenglways very close OF THE SINGULARITIES

to unity (see als§91,97)). Through our calculations, we suc-

ceed in obtaining the finite-size corrections analytically. In this appendix, we give the details of calculations of the
However, we have to remark that, due to working with finite scaling behavior of moments of height difference before the
correlated forcing, a firm comparison between our resultdormation of singularities. We know that the generating func-
and numerical simulations is not possible. More precisely, ifion Z(u,\,t) satisfies the following equation whenv (
the present paper the limiting #f¥—0 is taken into account —0)

only wheno is finite. Still the forcing correlation length is

much smaller than the system size and height correlation _ .
length. But the limiting ofe—0 is a singular limit in our . N lak

calgulations, and morgover, it is netprigri clear that the 21— YA~ TZM—)\zk(O)Z+ TZ#+“2kXX(O)Z'
limits of »—0 ando—0 commute at all. However, due to (A1)
the scale independence @ 's, Eq.(77) shows the general

correction terms for thenth-order moment, all having the

same subleading exponant= 3. The amplitudeg\, andB,, Let us writeZ(u,\,t) as follows:
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— 2 3 4 5
2 A =1+ AN CIOVHFDA G iK(t)=—2iakXX(O)ztzB(t)—SiakXX(O)tE(t)—QiaQ(t),
+I(ONS+M (DN +B(H)A p2+ D(HA2u? Jt

(A10)
FEONp* +HON P+ KON p?+ LN p?
J
NN w2+ PN 1+ Q)N ] EQ(t)zO. (A11)
X exp([ —N?k(0) + u?key(0)]1). (A2)
By solving these differential equations
Now expandingZ(u,\,t) as a series ofx,A and substi-  with the initial conditions that

tuting it in Eq. (A1), we equate the terms in different orders A(t),B(t),C(t),D(t),E(t),F(t),H(t),K(t),Q(t) are zero at
of w,\ ending with some coupled differential equations gov-t=0, we find
erned over the coefficients introduced in the definitiorZof

in Eg. (A1). So we have A(t) = £ a®K,(0)%t4, (A12)
%A(t)=iaB(t), (A3) B(t)=— §i ak,(0)t%, (A13)
; C(t) =751 Ky (0)°%t5, (A14)

- — _ 9] 242
ot B =~ 2lak (07 (A4) D(t)= & a?ky,(0)35, (A15)
%C(t)ziaD(t), (A5) E(t)=0, (A16)
; F(t)=— 72 a’kt8, (A17)
St D(D)=—4iak,(0)tB(t) - 2i aE(1), (AB) ()= 1987 0é 17 (AL8)
2 Em=0, (A7) K(1) =~ 3a?k(0)1°, (A19)
P Q(t)=0. (A20)
EF(t):IaH(t)’ (A8) By replacing these expressions in E@2), we find

Z(w,\,t) as a function ofu,\,t explicitly without any un-
d . . . known terms or expressions. Now if we expand the original
— = — _ _ 242
at H(Y) A1 ek (0)ID (1) = 21 K (1) =21 ko 0) A1), form of the generating functiod(u,\,t) as a series i\,
(A9) we find

Z(pu\ 0= (exp{— ix[(h—h)]—iu[a(h—h)T})
= — 75— 5 (h—h)uu®\ — 5 (h—h)2u* A2 55 (h—h)2udu®\*— 5 (h—h)*uu®\*
— 155(h—h)Puph®— 75 (h—h) N6 — Zgiuu®— 75 (h—h)u’ s\ — 55i (h—h)2u3 3\ 2 — i (h—h)2u?u?\3
—Zith—h)uph?— 25 (h—h)°\%+ Lutu?+ 2 (h—h)ududh + 2 (h—h)2u2u\2+ 2 (h—h)3up\®
+ 2 (h=h)*\ %+ iudu®+ i (h—h)u2u®\ + i (h—h)2upn®+ i (h—h)3\ 3= Su?u®— (h—h)up

—L(h—h)2\2—iup—i(h—h)\+1. (A21)

Equatin_g the coefficients of Eqs(AZ) and (A21) ((h—ﬁ)2>=—%t[kxx(0)2a2t3—6k(0)], (A22)
proportional to the same powers im and A and

replacing the expressions ofA(t),B(t),C(t),D(t),

E(t),F(t),H(t),K(t),Q(t), we get the same expressions as _

given before, i.e., ((h=h)%) = —25k,(0)%at®, (A23)
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((h=h)*)=— 18k 0) *a*t®~ 4t3k,,(0)*a?k(0)
+12t%k(0)2. (A24)
APPENDIX B: PROOF OF THE RELATION
BETWEEN p AND (S®)
We consider the statistical steady state, Rg= 0, so that

Eq. (63) can be written as follows:

Ruu=1—q7 G(u,t)

1
kex(0)

XX<O>U J awu-msws.y -

(B1)

We integrate Eq(B1) with respect tau and find

R,= f dsfuﬂs/2 du(u—u)S(u,s,t). (B2

xx(O)

At the large time limit (—), we denotek andSasR,, and
S..(u,s). Therefore,

u—(sf2 o
Re= XX(O)f d”f d3f+(5/2)dU(u—U)Sw(u,s).
(B3)

To determineR.,, we define the functioi(u) as follows:

B u—(s/2 _(u jz
K(w= xx(O)J j+(s/2) S.(U,S).
(B4)

Differentiating the above equation with respecutgives us

d u—(s/2)
ﬁr«u):%f dsf dTu-T)S.(Ts)

+(s/2)

ap 0 q s2 S
K 0) Lc SgSe|u=3s
XX(OJ ds_ "2 )

Now we integrate Eq(B5) overu from —c0 to u and find

(B5)

[* anh
_dugg (u)
f df q Ju (s/2)d
xx(o) ! S u+(s2) uu—u)
_ ap u d 0 q s? ( S )
+Sx(u,5)mJ:w UJ;DO stw U—E,S

2kxx<of d“f ds

s) . (B®)
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ap JO d J‘U-(S/Z)
S
2kex(0) J - ) o
S2

><dUZSoc

Then we will find

K(u) —K(=2)=R.(u)+

(u,8)—

sHuior | .

ut(s) _ §?
xdsf du—S.,

B 7 (B7)

(u,s).

According to the definition oK(u), we see thaK(—x)
—0 (the shock probability density function goes to zero in
this limit) and therefore we find the following relation be-

tweenK(u) andR..(u):
u—(s/2) s
f f du—Sw(u s).

+(sl2)
(B8)

K(u)=R,(u)+

ap
2kyx(0)

Using Egs.(B4) and (B8), we find an explicit relation be-
tween theR,, andS,.(u,s) as follows:

RAW=" 3¢ 15} 0)f f e f—z—(u V)

X S,.(U,s). (B9)

Assuming S..(u,s)=0, it becomes evident that the above
integral would give a realizable portability density for height
gradient, that isR..=0. For finite o, Eq. (B9) gives us the
PDF of height gradient in the KPZ equation in the strong-
coupling limit. The functionR..(u) enables us to determine
the relation between the valleys densjtyand k,,(0). We
would integrate oveu from R.,, so we define another func-
tion K{(u) such that

I
u —Uu—
l 2|(xx(o s/2) 4 3

XS, (u,s), (B10)
where differentiating<,(u) with respect tau gives
d u—(s/2)
aKl(u T 2k O)J f+(s/2)
S _
Xdﬂz—(u Tz)sw(u,S)
[odu-Zlslv-3
2kxx (0) Se| U= 358
ap J‘O g 2 s S
{0 ). S Zu+ﬂ S.|u+ E’S .
(B11)

Now integrating the above equation owefrom —oo to +o0
gives
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+oo ap +oo > dK(u) -
Ki(+0)—Ki(—o)= chu R“(u)_Zk—(O) B _Tdu du=g,,—m(m— l)a'p ds dhh »

g Jod s? s) s® g um um‘l( s ( s .

xdu| dgg|u+s]-5,18.(us) Xdup - | U5 (S| u—5.s.hit

2kxx(0>f d“f _m(m_”“”ﬁdsﬁdh'h'”ﬁ

52 s m um—l s
Xd5[4< _E 24 (U,S). X du E_m_l(U‘l‘E S LH'E,S,h ,t).
(B12) (C2
Since K(+x)=K(—=)=0, the left-hand side vanishes,
Using the fact thakK(+%)=K;(—«)=0, we obtain therefore
0 S o
s3 Onm= m(m—l)apf dsj dh’h’”f
| avrw=-50 ) aul” ds(_”_l_z)
. m . s m—1
ap +o0 0 U+§ U+§
xsw(u,s)+—f duf _ —| o b
2kxx(0) —o - xdu m m—1 S(u,s,h’,t)
2 S3 0 0 S
Xds| Ut 75/S.(u,s), (B13 —m(m—l)apf dsf dh'h'“j
s m s m—1
in which the sum of the terms on the right-hand side gives (U— 5) (U— 5)
xdu - u | S(u,s,h’,t)
m m—1
fﬂodu Rw(u):L@S) (B14) p (0 ) o
—o 12k,(0) ' :ﬁf dsf de dh’h'™(2u+s)m 1

_ _ T o\Mm—1
Thus from the requirement th&,, be normalized to unity, X[(m—1)s—2u]+(2u—s)

we get X[(m=1)s+2u]}S(u,s,h",1), (C3
which finally leads to Eq(70).
ap
kex(0) = 75 (s°)- (B15)
APPENDIX D: DYNAMICS OF QUANTITIES WHICH ARE
DEFINED ON THE SHARP VALLEYS
APPENDIX C: DERIVATION OF THE FINITE In this appen~d|x, we determine the equation of mc')t|on'for
CONTRIBUTION OF THE RELAXATION TERM IN u(yj.t),s(y;.t),h(y;.t) along the sharp valley, which is
THE STATIONARY STATE located at positiorny; at time t. Using the KPZ equation

and its differentiation by around the sharp valley at position
In this appendix, we give the details of calculations ofy one can find a set of equations fan.(y;,t)

In,m in Eq. (70). To computeg,,, we introduce =lim _g+h(y;+€,t), h_(y;,t)=lim._o+h(y;—€,1),
ui(yj.t)=lim_ g+u(y;+e,t), and u_(yj,t)
0 " u(s12) =lim._o+u(y;—€,) as follows:
K(u)=—m(m—1)apf dsf dh’h’"f
— —®© u—(sl2) % 2
hadyj =5 sy O+ 1(yj.0, (D1)
umfl_ um -
xdﬁ:m_lu—m}S(u,s,h ). (Cy
h_i(y;. )= u (y;, O+ f(y;. 0, (D2
By differentiatingk (u) and integrating in the whole range of
u, we have Uyi(yj D)= —au (yj,Hu,(y; 0 —fi(y;,t), (D3
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(D4)

U_(yj, t)=—au_(y;,Hhu_,(y;,t) = f(y; 0.

To determine thel/dt{u,s,h} we use the following identity
[73,84:

dy;
+(y] :t) u+x(yj ,t)+U+t(y, :t)

= au(y;, hux(y;,t)
—aU,(y) Hhu(y;, H) =iy, t)

o
- Es(yj ,t)U+x(Yj !t)_ fx(y] ,t), (D5)
whereﬁz(lla)(dyj /dt). Similarly,
d__ o
au(yj' 1= 5 SUYj Du(y;, O —fi(yj,t).  (D6)
These equations can be rewritten as
d__ a
U b=—gslun—u)—fy,
(D7)
d a
dts(yj t)=- (u+x+u—x)

where we will give the equations far and s. Sinceu=

PHYSICAL REVIEW E 65 026132

whereh(y;,t)=h(y; ,t)—h andh,=

Therefore, in summary we have the following set of equa-

tions for a given sharp valley in the KPZ problem in the limit

v—0:
dy; _
ar v
d_ a
&u(yj 1) = Zs(h+xx_h—xx)_fx:
g (D12
o
aS(Yj 1) = Es(h+xx+hfxx)u
d. a
ah(y] ,t)=—§(4U2—SZ)+f—'y.

APPENDIX E: STATISTICS FOR THE ENVIRONMENTS
OF THE SINGULARITIES

In this appendix, we derive the PDF of quantities which
characterize the sharp valleys. As is depicted in Fig. 2 and
formerly described, the evolution of the surface after the for-
mation of singularities is determined by the dynamics of the
sharp valleys and their statistical properties. In a more quan-
titative sense, one should attempt to characterize the time
evolution ofh,, , u, ands consequently. We show therefore

- J . . -
—h,, we write the above equations in terms of the curvaturéhat to leading order of the expansion in terms of system size
of the surface on the right and left sides of the sharp valley athe g, m's do not depend on the scale Doing so, we reach

positiony; as

( +xx_h—xx)_ fx

d_
au()’j )= 7S h
(D8)

d a
as(y]’ 1= Es(h+xx+h7xx)-

To determine the time evolution &f=h—h, we use the
KPZ equation by which one can easily show that(y;,t)
andh_(y;,t) satisfy

Gen 0= g ey D hady; ),
(DY)
d y]
&h*(ij ) h X(y] 1t)+h t(ij )
By definition, we have d/dt)h(y; ) =3[(d/dt)h,
+(d/dt)h_], so using the equation fdr, andh_,
Dy 0= — & (am— )+ 1 D10
g .H=—g4u"=s’) (D10)
and
d- 2
ah(yj ,t)=——(4u —s9)+f—y, (D11

such a level of describing the dynamics of the surface growth
by which one may also trace the dynamics of the singularity
environments. That creates a logical way to construct the
pathway toward examining the statistical properties of singu-
larity functionsg, . The importance of such an analysis
became clear in Sec. V, in which the determination of the
finite-size corrections to scaling ir§, ,=(h"u™) was
shown to be dependent on the lack of scale dependences in
the singularity functiong, , .

Let us turn to a study of the statistics for the environment
of the singularities in the KPZ equation. Defiggx,t) =
—hy(x,t) and letW(h,,u,s, &, ,&_ ,x,t) be the PDF of

X

2

X
yj_i

bl

xixi()’j X 1),

X
yjt5|thly

2

hv(xiyj vt): %{h

— X
u(x,yj,t)=szu yjt5|tu

s(x,yj,t)=u

X
Yits

£-(xy;,=—h

conditional ony; being a singularity position. In this section,
we will find the master equation governing the evolution of
W(h, ,u,s,&, & ,x,t) in the limit of »—0. Starting from
the dynamical equation
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a and
ht(z+xi)—§h§+(z+xi)=f(z+xi), (ED
0=>, 05(z—y)), (E5)
U(z+x.) +auuy (z+x.)=—f, (z+x.), (E2 i Ji
E(Z+X2) + aU(Z+X2)éy (24 Xe) +a?EX(Z+X2) then
:—fxixi(z+xi)' (E3) PW(h+,h—aU+:U—,§+:§—th)
dr,dN _dp,du_dn dy_
we define :f h e skl i
(2m)
ON ¢ Ny e 4, - X X, Z,E) X @ Ny N i Ui b i),
=exgd —iN h(z+x,)—iN_h(z+x_)—iu, u(z+xy) (E6)

“lp-u(ztxo)—in {2+ X)) —ig-§(z+X-)] Using equation$E1), (E2), (E3) we now derive equations

(E4) for (©) andW,

a

<6>t=_i)\+<(2 uf+fy

> 05(z—yj)>—i)\<(gu2+f
J

2 06<z—y,->>

—i,u+<(—au+uX++fX+)§j: 06(z—yj)>—iu<(—auux+fx)§j) 05(z—yj)>
—in+<<—a§i—au+§x++fx+x+>; 05(Z—yj)>—i77<(—a§2—au§x+fxx)§j: 05<z—yj)>
+<$ [~ etly; D18 z=y)) 6+ 2, 5<z—yj>6<t—tk)o>—<2| 5(z—y|>6<t—t|>e>. (E7)

8%(2)=(d/dz) 8(z), the (y«.t,)’s are the points of singularity creations, and thg,{|)’s are the points of singularity
annihilation due to collisions. Assuming homogeneity and using the iddrtiy

064 (z—y;)=[08(z—y;)1,— 0y 8(z—y;)— 6,_8(z—y)), (E8)
it follows that

(%

<9)t=—i)\+<(2uﬁ+f+)§j: 05(z—yj)>—i)\_<(%u2+f_

; 05(z—y,-)>—iﬂ+<(—aU+ux++fx+); 08(z—y;)
_iﬂ—<(_au—ux+fx); Gé(z_yj)>_in+<(_a§i_au+§x++fx+x+); 05(Z_Yj)>

—i 7]—<(_a§2—_au—§x+fxx); U(yj rt)(0x++ 0x)5(z_yj)> +21_22: (E9)

where ; and, account, respectively, for singularity cre- So(Ng Ao g e iy T Xy X, Z,1)
ation and collision events. These are given by

=<§I‘, 08(z—y,)d(t—t)) ). (E1D)
E’1()\-%— !)\— M M- - X X !th)

= 08(z—y ) o(t—ty) ), E10 .
; (Z=y o=t (E10 In regard to Novikov's theorem, we have

026132-18



STATISTICAL THEORY FOR THE KARDAR-PARISI . .. PHYSICAL REVIEW E 65026132
(FL0)=[—iNk(0) =INK(Xs = X5) =iz Ke(X: —X5) ia#t(“tfte>+iaﬂ1<ut§:e>:_a<utexi>
+i7:Kex(0) +in= (X2 —X5)1(6), (E12 +i01?\¢<u2¢9>:—a<U¢9>xt+a<§i9>

. 2 __. .
(Fy 0) == 1N k(Ko —X) = K (0) +1 o Ko(X = X5 Flah=(U=0)=~1a(0)y, . T1a(0),,

Fin=kgulx=—x:)1(6), €13 ~eh (O (E19
Note that
<fxtxt9>:[_i)\thx(xt_XI)_i)\ikxx(Xt_Xi) ext:(i)\tut_iﬂt‘fxt_i n:6x.)0, (E16)
=i Ky X = X5) 17Ky 0) <U?:e>: —(O) s (E1)
175 Kyxxol X — X5 ) 1(6). (E19 (§i9>=—<9>mm- (E18)
To average the convective terms, we use Finally, for (©), we find

e ia ia i
<e>t:_?)\+<6>M+#+_?)\7<6>M7/L7_?(<9>X+/L++<6>X7,U/7_<6>X+/L7_<6>X7/L+)+?(<e>7}++<e>7]7)
—ian(0), , —ian(0), , —[N3K(0)+A2Kk(0)+2\ A_K(x,—x_)}(O)
_[Mikxx(o)+M27kxx(o)+2:“+#7kxx(x+_Xf)]<e>_[nikxxxx(o)—i_7727kxxx>€(o)+277+777k(x+_xf)]<6>
2N =N KX =X (O) 2N 7 N7 )R (0)(O) +2(N L 7+ N 9 K (X1 =X )(O)
=2(n-py = ) K X =X )(O) + aE y] 1) (6y +0 )o(z— yj)>+21_22- (E19
For the term involvingu(y; ,t), we note that

u-(yj at)axi:[u(Yj+Xr ut)a]xi_f(Yj +Xs 1t)0:i0xi)\r_i0,utu (E20

U (Y50 B =[U(y;+Xe D) 0], =i 6, N, (E2)

thus

J

al 2 Tly; (6, + Hx)c?(z—yj)>

=iia<<9>u++<9>u++<9>X+n+<9>x,x,—<9>u+—<e>u,>. (E22

Combining the above expressions, on the subset N =A\/2, X, =—X_=X/2, p1=p;+pu_, and uo=(p, —u_)/2,
(O) satisfies

i i
(0),= — Zax(2<e>wl+ H0),0,)— 1 (O + ;((6),7++(6>,77)—ian+(6>n+ﬂ+—ian_<6)mm

2 2

2 ©i
+2M2) Kyx(0) — 2( 4 /~L2

A
——[k(O ) +K( X)]<e> xx(X)<e> [77+ xxxx(0)+77 Kyxxod 0) + 271 17Ky X) ]

X<e>+2)\ﬂ*2kx(x)<e>+)\(77++ W—)[kxx(o)+kxx(x)]<e>
+2u5(n, + n—)kxxx(x)<e>+ﬂl( n-— 77+)kxxx>é(x)<e>+22_21-

The 3,,2, are evaluated ak . =N_=\/2, X, =—X_=X/2, uy=p,+u_, and u,=(u+—u_)/2. Changing to the
variables b, ,u,s, ¢, ,£_), we obtain the following equation foN:
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o
8
+ k(O)PWhvhv + kxx(O)PWm+ 2p[kXX(0) - kxx(x)]wss+ pkxxxx(o)(vv@r@r + Wg?g?)

o _a_z 2 o o 2 2
[pW(h,,u,s, &+, & XD =5 U"pWy + o 8"pWy, —aspWyt 5 & pW 5 & pWH ap(E5 W), +ap(EEW),

+ 2pKuxd X)W ¢ — ZkX(X)pWshv_ 2kxx(o)pv\/h0§+ - kax(O)PWhvg - 2kxx(x)P\NhU§+
- 2kxx(X)PWhv§, - Zpkxxx(x)(wsg, + Ws.§+) + kxxx(X)P\NU‘f, + kxxx(X)P\NUg+ +01—&s.
(E23

The gl(hvj,i,s,g+ & ,x,1) is defined such that §2(hvjﬂ,3=§+ E ,x,t)dhvjds dudé,dé_dz dt

_ E2
4(h, Ts,é. € xdh, ds dudé, d¢_dz dt (E29

(E29) gives the average number of singularity collision points in

gives the average number of singularity creation points ir{Z’Z“LdZ)x[t’H'dt) with

[z,z+d2Z) X[t,t+dt) with
h,(x,y»,t5) e[h, ,h,+dh,),

h,(x,y1,t1) e[h, ,h,+dh,),

_ o u(x,y,,t u,u+du),
u(x,ys,t) e[u,u+du), U(X,y2,tp) € [U,utdu)

s(X,¥1,t1) €[s,5+ds), S(X,Yo,t,) €[S,5+dSs),
X X
fdyatgt)elés fotds), §(y2+ E,tz) e[¢. & TdEy),

X
§(y -5t >€[§—,§—+d§—), X

A €lyom 5 te| e[é- £+,
conditional on ¢;,t;) e((z,z+d2) X[t,t+dt)) being a
point of singularity creatioribecause of the statistical homo- conditional on §,,t,) e ((z,z+d2z)X[t,t+dt)) being a
geneity,z is @ dummy variable {>(h, ,u,s,&, & ,x,t) is  point of singularity collision. Now we rescale, as h,,
defined such that =h,/L*?, so Eq.(E23 changes to

!

@ ! — @ ! ’ @ ’ a ’ ! ! -
LYWW, + L V2 SPpWy — aspWy+ 5 £ pW' 5 £ pW'+ ap(E2W) -+ ap(£2W'), +L 7 k(0)pW,,

8
+ kXX(O)pW[,j_u_f_ 2p[kex(0) = kxx(x)]wés+ PKxxxd 0) (Wé+§+ + Wéfgﬁ) + Zpkxxxk(x)wéf & 2L llzkx(x)pW;h'

—2Kk,,(0) L*lfzpwr’]; ¢, ~2kxx(0) L*lfzpwéé e 2kxx(x)|_*1’2pwr’1; ¢, ~ 2KudX) L*lfzpwglé c

— 2pkyxx(X) (Wé§7 + Wé§+) - kxxx(x)pWL,T§7 + kxxx(X)PWﬁng +{1—-§=0. (E26)

In the limit of largeL or L—, the leading terms are

o a ! !
—aspWit 5 £, pW' + S £ pW' +ap(E W) +ap(£2W') ¢+ Kex(0) Wi+ 2p[ K(0) — ki X) IWas+ K 0)

X (Wé+§+ + Wéfgﬁ) + 2pkxxx>€(X)W27§7 - 2kaxx(x)(Wé§7 + W;§+) - kxxx(x)pwl:_§7 + kXXX(X)pWLIj_§+ +{1—¢5=0.
(E27)
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To find the g,, we multiply the above equation by
h'™u™sP, and integrating oveh’, u, s, &,, and é_, we
have

— ap(h! s 1y 4 S <h'mspg+>+ p<h;rﬁmspg,>

+ 2p(p_ 1)p[kxx(o) - kxx(x)]<hz:namsp72>+ m(m

—1Dkee(0)p(h, U™ 2Py + Q1 — Q7 =0,  (E29
where
gln;p—f h'™uMsPzidh’'duds dé, dé_,
gzn:p—f h'umsPzsdh’duds dé, dé_.
Using the identities
S
ox (XY == 7rm, (E29
J
J_

we find

SANTIS(E, +E )

n —
m <hl’)nUmSp+l>X+ W<h;(n l)S_LfnSp+2>

+ T<h;)mm1sp+2>]. (E32

2

So in the limit ofL— o, we have
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pap

e (T

Map N
2(p+1)<h n—m 1Sp 2>
+2p(p—l)p[kXX(O)—kXX(X)]<h;nEmSp72>
+m(m— 1)k, 0) p(h; U™ ?s) + Q{1 — Qf,=0.

(E33

Assuming a stationary solution for the dynamical equa-
tion (E23 governed overW and rescalingh, as h,
=h, /LY?in the resulting differential equation, we reach Eq.
(E26) Of course the mentioned equati@ dependent on
scaleL, but being interested in the limit df— results in
Eq.(E27), which is free of the explicit scale-dependent terms
in the leading order. However, we are faced with two very
complicated terms, namelyy and{,, which should be ana-
lyzed. The origin of these terms is related to processes of
sharp valley creation and annihilation. We argue that these
processes basically involve local interaction between nearby
sharp valleys and the effects of forcing, which spatial corre-
lation is assumed to be much less than system size, so they
essentially would not carry any information about system
size. In this sense, EE27) encodes the fact that the prob-
ability distribution W is a scale-invariant function of its ar-
gumenth,=h, /LY2in the leading order. The above property
is deciphered in EqEE33) too, but this time it is translated in
terms of the scale independenceggfy,’s.

Also, the equation folWV enables us to find the time evo-
lution of the sharp valley characteristics. For example, mul-
tiplying Eq. (E23) by h, and integrating over all variables,
we can derive the increasing rate of mean height of the sin-
gularities, and noting that
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