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Three-dimensional forced Burgers turbulence supplemented with a continuity equation
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We investigate turbulent limit of the forced Burgers equation supplemented with a continuity equation in
three dimensions. The scaling exponent of the conditional two-point correlation function of density, i.e.,
(p(X1) p(X2)| Au)~|x1— %o ~*3, is calculated self-consistently in the nonuniversal region from which we ob-
tain a3=3. Also we derive an equation governing the evolution of the probability density fund@@ofR) of
longitudinal velocity increments in length scale, from which a possible mechanism for the dependence of the
inertial PDF to one-pointi,, is developed.
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[. INTRODUCTION that the probability density functiofPDF) for the velocity
difference behaves differently in universal and nonuniversal
Burgers equation describes a variety of nonlinear wavéegions. In the universal region, i.e., the intenjalu|
phenomena arising in the theory of wave propagation, acous<Urms andr <L, the PDF can be represented by the univer-
tics, plasma physics, surface growth, charge density wave§al scaling form
dynamics of the vortex lines in highz superconductors, dis- 1 [ Au
locations in the disordered solids, and formation of large- P(Au,r)z—F(—), )
scale structures in the univergke-9|. The problem of forced rz \ r?
and unforced Burgers turbulence has been attacked recently ) , i )
by various method§1—27. It is well known that both de- whereF(x) is a normalizable function and the exponeii$

caying and forced Burgers equation develop singular strucrﬁlated to the exponent of random-force correlatipras z

— — Zs i i _
tures. In one dimension, nonlinearity in the advection term._(77+1)/3: Fo_rx—|Au|/r >1 the ur_uversal scaling func
n F(x) is given by the expressioff(x)~exp(—ax®),

develops the so-called shock structures. Heuristic argumen\%?]ere is some constant in one-dimension and it depends
[3,6,11,19,2Bshow that shock structures are responsible forOn theC::osine of angle between the vectars andr in thre):
;if:]ee;»ggeme intermittency. So in the structure functions dehigher dimensions. On the other hand, the PDF in the inter-

val |Au|>u,,s behaves as
Au
, )

rms

Sa(r)=([u(x+r)—u(x)]")~rén, (N P(AUT)=rG

the exponents aré,=1. At the same time, energy cascade ) ) )
has a simple picture in terms of shock structures in the stawhere the argument depends on the single-point nonuniver-
tionary Burgers turbulence. Forcing at large scales the inS@l Urms- Analytic supports for any one of the observations
jected energy is advected from large scales down to thatarting from the dynamical equations is the major challenge
scales of typical shock width where the energy is dissipateo‘?f theorenc_al understanding of intermittent statistics of Bur-
In multidimensional Burgers turbulence the presence of IargéJers equation. . . .
scale structures forming @&dimensional frothlike pattern is We will study the three-dimensional Burgers equation

believed to be responsible for extreme case of intermittenc pupplemented with a continuity equation in the inviscid limit.
. PO . ) yContrasting the fact that there are infinity of conserved cur-
causing the saturation of the intermittency exponentto

0 : : : . L rents in one dimension to the lack of such conserved currents
=1 Similarity of intermittency iin stationary mU|tld'me”' in multidimensional Burgers problem we aim to extract some
sional Burgers problem to one dimension is motivated by th§,ormation about the intermittency and probability density
replica calculationg11] in infinite dimensions and simula- o |ongitudinal velocity increments. Providing a mean-field-
tions[19]. Recently the nature of singularities in multidimen- |ike approximation for the conditional two-point correlation
sional decaying Burgers turbulence with density has beef density, i.e., assumingp(x;)p(Xz)|Au)~|x;—X,| 43,
elaborated22]. However, in one dimension there are an in-the right tail of probability density of longitudinal
finity of conserved currents in the inviscid and unforcedvelocity increment is shown to behave a&B(Au,r)
equation, while the multidimensional Burgers problem~(1/r)exd—(Au/r)®] in the universal region. Positivity of
ceases to have such conservation laws. According to recetiie PDF indicates that the exponent of two-point correlation
theoretical11-24 and numerical work10,1€], it is known  of density for the inviscid case fixes t@;=7/2 in the uni-
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versal regime. Unlike the Burgers problddil—23 we cor-  ear interactions, hidden in the nonlinear term ¥)u. The
roborate that when continuity equation is coupled it is posadvective term couples any given scale of motion to the large
sible to find a positive PDF even in thetrict inviscidcase, scales where large scales contain most of the energy of the
i.e.,v=0. However, due to lack of control on the dissipation flows. This means that large-scale fluctuations of turbulence
anomaly we cannot provide any information regardimgs-  production in the energy-containing range couple to the
cid limit. Relying on the same mean field analysis we derivesmall-scale dynamics of turbulence flow. In other words, the
an equation governing the evolution of stationary probabilitydetails of the large-scale turbulence production mechanism
density of longitudinal velocity increments in the nonuniver- gre important, leading to the nonuniversality of probability
sal region. The results indicate that the information of onedistribution function of velocity difference. However, in the
point u,ms is transferred from integral scales down to case of one-dimensional forced Burgers equation when
inertial-scale PDF. This is also observed numerically in onetu(x) — u(x’)| <u,nms it is believed that the PDF for the ve-
dimensional Burgers probleifii1,19. Within our approxi- |ocity difference is not dependent an., and therefore one-
mations the intermittency exponents are derived to saturatgoint u,,,s does not appear in the velocity difference PDF.
to a constant and from there we obtaig= 3. This region is known as the Galilean invarig@l) region.

The paper is organized as follows: In Sec. Il we define therhe problem is to understand the statistical properties of ve-
generating function and comment on its relevance to consefocity and density fields that are the solutions of Eg$.and
vation laws. In Sec. Ill we derive the right tail of the prob- (5). Before starting the statistical analysis of these coupled
ability density of longitudinal velocity increments in the uni- equations we wish to remind some basic differences between
versal region and obtain the exponent of denSity-denSit)Burgers equation and Burgers and density equations in
correlator in inviscid case. In Secs. lll and IV we obtain higher dimensions. It is well known that Burgers equation in
stationary relations for some of the structure functions inone dimension has infinity of conserved currents in inviscid
which the viscose terms are not relevant and determine thgnd unforced case, i.e., for purely convective dynamics we
small-scale statistics of longitudinal velocity difference by have
finding an evolution equation for the PDF of longitudinal
velocity difference in the nonuniversal regime. The picture au" n gu"tl
for nonskewed part of the PDF is consistent and we confirm gt n+1l ax ~0. ®
that intermittency exponents saturate to a constant.

In higher dimensions such conserved currents do not exist.
[l. GENERATING FUNCTION EQUATION IN THREE However, purely convected dynamics in the coupled density
DIMENSIONS and Burgers equations have infinite conserved currents both
) o ) in one dimension or higher dimensions. Followifi®] we
Our starting point is the 3D Burgers equation supple-gemonstrate these infinity of conserved equations in terms of

mented with a continuity equation e, (x) = p(x) M) ag
U+ (u-Vyu=vV2u+f(x,t), (4) J J
—en(X)+ ——[ue,(x)]~0. 9
pitda(pUy)=0, (5) at X

for the Eulerian velocityu(x,t) and viscosityr and density ~=XPanding the above relation in powers dfshows that
p, in three-dimensions. The fordéx,t) is the external stir- generally all the tensord, ..., =pUs, U, are con-
ring force that injects energy into the system on a typicaiserved in purely convective case. For example, components
length scald.. More specifically, we take a Gaussian distrib- of momentum and energy satisfy some conservation laws as

uted random force that is identified as following:
(fL(xDF (X' ,t'))=K(0)8(t—t )k, (x—x"),  (6) d(pui) +9j(puiu;) =0, (10
where u,v=X,y,z. The correlation functiork,,(r) is nor- di(pu-u)+d;(pu-uu;)=0. (11

malized to unity at the origin and decays rapidly enough o . o _ .
wherer becomes larger or equal to integral schld.e., we ~ Qualitatively these conservation laws indicate that in the in-

suppose that viscid case the fluctuations of density and velocity should be
interrelated. In the driven case fundamental quantities that

i —XJ-IZ (X = X)) u(Xi = X{), emerge through calculations are mixed correlations of veloc-

K, (X—X;) =k(0)| 1— L2 Opv B , ity and density and the statistics of density and velocity alone

would be extracted from those mixed correlations. For study-
(7)  ing the driven Burgers equation in three dimensions con-

with k(0),L=1. The quantityk(0) measures the energy in- strained with continuity, we consider the following two-point

jected into the turbulent fluid per unit time and unit voiume, 98Nerating function:

f(x,t) provides also the energy flux in theh shell aslI, Z.(he X _ A
=TI(r=k %) =/%,(|f(k)|?), wherer belongs to the inertial 2(M1:h2 % X2) = (p(Xa)p(X) eXH Ay -U(Xa)
range. Equation$4) and (5) exhibit special type of nonlin- + - u(x) ). (12
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Basically we have written the objeet (x) in two different  equivalence is no more valid. In this sense up to the time
points and the symbd|- - -) means an average over various scale of singularity formation Eq10) and Eq.(11) are valid

realizations of the random force. To derive an equation foand after that one needs to regularize the convection terms in
Z,, we write Egs.(4) and (5) in two points x; and x,  them in a way that produces the anomaly terms established

for different components of velocity vectouq, u,, by the presence of the singularities.
uz, and p(x) and multiply the equations inp(x5), Hereafter we change the variables as:=x;£x,, A,
Ao (X) p(X2), - . ., N1zp(X1) p(X2) and p(xq), =N +A, andA_=(N;—N\y/2) and write Eq(8) in terms of
Nowp(X1) p(X2), . .., and\,,p(X;) p(Xy), respectively. After A, andA_ so we will have
adding the equations and multiplying the result by [axp
-U(x1) + Ay-u(X,)] we average with respect to external ran- S g d N Jd d ) 2
dom force, so S Vong, axi,  an_, 9x_,]7?
P d
hZy+ Z,— _
12 {i=1,2u=xy,z a)\i,,u, =2 {i,j=1,2§v=x,y,z M;::l )\+,u,)\+vk(o)22
X)\i,,u)\j,vk,uv(xi_xj)ZZID21 (13) d 1
+ 2 SN2,
whereD, is given by mov=1
2
D,= X1) p(X2)[ A1~ V2u(x r X_ Xy
2 <Vp( 1)p( 2)[ 1 ( 1) Xk(o)(ﬂgﬂ]}_‘_ Cz ZZZDZ; (15)

+ N2 V2U(Xp) JeXg Ag- U(Xg) + Ap-U(Xp) ). (14)

, , ) WhereD, term is the dissipation contribution and is writ-
Second and third terms in the left-hand side are respegg, 45 2 P

tively related to convective terms and random forcing. It is

one of the advantages of this method that all the nonlineari- Nip o )

ties due to convection can be written in a closed form. The Da={ vp(x)p(xe)| 5 ~A(VI+ ViU,
Gaussianity of the forcing statistics also helps to write its

contribution in terms of generating function according to a +2(V_~V+)u_ﬂ}+)\_ﬂ{(V2_+Vi)u_ﬂ
typical trick in Gaussian random variablgl. On dropping

the_d|_55|pat|on terms, the_ generating functlon defined ab_ove +2(V_-V U, e eateath ot (16)
satisfies a closed equation for Gaussian random forcing. #

However, it is already emphasiz¢d2,19 that the role of . .

dissipation term in the turbulent limit can be understood by Because of statistical homogeneity all the terms propor-
looking at the statistics ofu") in Burgers equation. In one tional to aZ;/axW are vanished. The abo_ve equation can be
dimension convective terms cannot offset the pumped rate ¢PPanded in powers of _, and,, so in each order of
(u" since(du™ax)="0. Therefore the stationary state may €XPansion one would .ObVIOUS|y get an equation that is gov-
be maintained by nonzero limit of dissipation terms. Finite€ned over different mixed moments@fu_,,, andu. ,. In-~
contribution of the dissipation terms in the driven turbulentd€neral, the generating function satisfying the above dynami-
limit resembles the notion c&nomaly In the problem of c&l equation is a compact way of writing the dynamical
Burgers and continuity the convective terms can be writterfduations of all the structure functlons_. Its solution would be
as conserved currents even in higher dimensions. Henc&function ofx_, and\ ., ,; however, itis easy to check that
anomalous behavior of the dissipation terms in the multidi-th€ dependence df; on A_, and ., can be separated
mensional Burgers and continuity equation are important irs€!-consistently so that

maintaining a statistical statiqngry state. Rece_ﬁily,zﬂ it . Zo(X_ A Ay) =N )Fa(X_ A_). (17)

has been shown that regularizing the convective terms in a

precise way is equivalent to imposing anomalous contribult is remarked[12] that in theinviscid limit, the proposed
tion of dissipation terms in the turbulent limit not only for ansatz is the only consistent form fgg in which its depen-
the forced Burgers equation but even for decaying case idence onk, andA_ can be separated. However, one may
one dimension. Hence one can in principle determine theee that in the inviscid problem wher=0 it is possible to
anomaly by appropriate regularization of the derivatives infind more general forms of separation in which the depen-
order to take care of the singularities. However, we believelence on\, is not a delta function. In the case of Burgers
that proposing the regularization scheme when one is workequation in one dimension the proposed separation is valid
ing with momentum equation is not a trivial task. The only whenu<u,,,sandr<L. As far as convective terms are
scheme introduced if23] is not applicable to this case since concerned in the present problem the validity of this ansatz
it relies upon a special separation of velocity equation ands not necessarily restricted t0<u,,s. Actually the con-
density continuity. In other words, naive coupling of Burgersservation of density cancels the terms of the type
and continuity equations is not equivalent to momentum and1/x; ,)(dZ,/dx; ,) in the convective contributiong2,17—
continuity equations unless one assumes the smoothness 1] that complicates the problem by mixing , and\ , , in

the fields. As soon as the singularities are developed, théhe equation ofZ,(x_,A_,\.). However, we emphasize
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that it might happen that effective closure for dissipation
generates such complicated operators that limit the validity Fz(/M-S)ZJ (p(x1)p(x2)|Au)
of the ansatz. Hence putting, =0 and considering the
spherical coordinates, i.ex, :(r,0,¢) andA_:(u,0',¢"). Xexp(A_-Au)P(Au,r)dAu. (21
It becomes clear that on inserting, =0 in Eg. (15) the ] o ) ) ]
remaining will involve velocityincrements We find that Assuming scaling invariance for density fluctuations, the
F.(x_,\_) satisfies the following equation for homoge- conditional density-density correlation appearing in the inte-
neous and isotropic case: grand would be a scaling function of In addition, since
density-density correlation is conditioned on a fixed value of
s(1-s?) , 1+¢? 1-¢2 1—¢2 velocity increment, it should be a nontrivial function of ve-
S0 d,,— ” ds+ ” dst+ M d,dst T&Mas locity increment fluctuations too. Having the idea of mean-

field analysis we assume that conditional average is function-
ally dependent on fluctuations of velocity increments just
—r?u?(1+25%) |F,=D,, (18 through different values of scaling exponent in universal and
nonuniversal regimes, i.e.,

wheres=cosy=cosfcosd’ +sinfsin§’ cosp—¢'). AUd~r 93 22
In this case the dissipation term is the limit #f-0 and {pOx)p(xg)| AU =T, 22
thenr—0 of the following: Although an approximation, this assumption simplifies the
) ’ v form of generating function so one can identify the function
D2=(vp(X)p(Xp)A - (ViUy, = ViU, )€t —st-s). F(u,r,s) in Eq. (20) as the generating function of velocity

(19 increments so that

The same kind of master equation was first derived by
Polyakov[12] in the problem of forced Burgers equation in F(,u,r,s)=f expA _-Au)P(Au,r)dAu. (23
d=1 and then generalized by Boldyrgy7]. This equation

is not closed due to the dissipation term and many proposalfnerefore we expect that the mean field kind of reasoning
have been suggested for treatilly in the case of one- yqyq fix the value of the parametes, self-consistently. We
dimensional Burgers equation that have given rise to differyyquid notice that even fixinges within this approximation

ent resultd11-22. _ _ _ becomes very promising due to dissipation anomaly.
Adaptingv=0 in one-dimensional Burgers equation con-

verts the original problem to Riemann equatip20,21].
Structure of nonlinearity in Riemann equation leads to mul-
tivalued solutions so the complete statistical analysis of the e propose that in homogeneous and isotropic problem,
problem would be very complicated. However, in one di-with stirring correlation a&(r)~1—r7”, where in the present

mension it is shown that the closed master equation of Riecase;=2, there exists a universal scale-invariant solution of
mann equation gives some upper bounds for the tails of thgq. (18) in the following form:

velocity increment PDF in the corresponding Burgers prob-
lem. Here although we do not discard the viscosity term but Fo(u,r,s)=g(r)F(ur?s), g(r)=r—2s (24)
we will justify that it would be fruitful to study the inviscid
case,v=0, since some of the details of longitudinal PDFs This ansatz first introduced by Boldyrgé¥8] in the problem
are not sensitive to dissipation contributions. Hence we ainof turbulence with pressure in one dimension. Substituting
to extract as much information about the problem as possibléhe following form for the generating function fixes the ex-
without considering the difficulties related to anomalous conponent§ as §=(7+1)/3, so from Eq.(7) we find §=1.
tributions of dissipation terms. The limitations of validity of Invoking to the scaling invariance of the inviscid Burgers
the results will be discussed later. equation and continuity equation, we assume the existence of
Even forgetting the dissipation the generating functionconditional density-density correlation with the scaling form
equation involves some correlations between velocity increintroduced in Eq.(21). The scaling exponent of two-point
ments and density. Vaguely speaking, since the density fieldorrelation of density, i.e.qe3, can be found by taking the
is advected by velocity field, one expects that there would bémit of generating function whem— 0. Therefore it is nec-
strong correlation between density and velocity incrementsessary to find such a solution f&(wr?,s) that tends to a
So extracting information about density and velocity fieldsconstant in the limit ofu—0. Now the proposed scale in-
alone from such mixed correlations is a nontrivial task. Provariant argument aB(ur,s) can be interpreted as if we are
ceeding further we propose the following ansatz forseeking those solutions for velocity-increment PDFs that be-
Fo(u,r,s) have asP(Au/r,s). Based on this mean-field-like calculation
the parametera; enters in the dynamical equations of
Folu,r,s)=r""3F(u,r,s). (200 velocity-increment generating function. The goal would be
to fix this parameter according to the general consistency
In order to clarify the meaning of(w,r,s) we write  conditions like positivity or normalizability of velocity-
Fo(u,r,s) explicitly as follows: increment PDF. Proceeding further we focus our attention on

III. UNIVERSAL PROBABILITY DENSITY FUNCTION
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the longitudinal velocity components, i.es=1. Hence we erning the generating function in such a way that a positive,
assume the scaling ansdtgur,s)=F(urs) afterwhich we  finite, renormalizable PDF is founfil2,16,17. A simple
put s=1. The proposed form of the arguments will dictate comparison between E(R5) and Polyakov’s result will re-
that S,(r,s)~s"S,(r) for s—1 whenn<1. However, in veal that the structure df anomalyis similar to the term
Appendix A we rationalize the solution in more detail. Re- proportional to the scaling exponent of density-density cor-
writing Eq. (18) in terms of the variable= urs, the follow-  relation. In the problem of one-dimensional Burgers equation

ing equation is obtained in the casewf 1: and in the zero-viscosity limit the presence of thanomaly
generated by viscosity term ensures the existence of a posi-
20°F(z)+(3— a3)d,F (z) —32°F(2)=D,. (25  tive PDF for velocity increments in the universal regime and

the requirement of positivity will fix the value of anomaly
This is the projection of the three-dimensional master equacoefficient[12]. Boldyrev [17] shows that one can find a
tion on separation line between the two observation pointstamily of solutions for different values of the anomaly
Neglecting B term it is interesting that the above equation is coefficient if one relaxes the homogeneity condition for the
formally similar to the master equation first derived by universal part of the PDF. The value of this coefficient is
Polyakov[12] for the problem of one-dimensional Burgers related to the algebraic decay of the left tail of PDF in the
equation in theinviscid limit Treating more carefully the universal regime. Determination of the decay exponent has
origin of different terms in the master equation would revealbeen a controversial subject for which other methods have
the fact that although we are essentially looking at the propeen developed. Among them recent rigorous methods
jection of fluctuations on one line but at the same time theshould be mentioned within which the exponent of the alge-
fluctuations of transverse components contribute to the equaraic decay is fixed to 7/p20,21]. Since we are not able to
tion. The exponent of density correlation appears in the regive a closure for dissipation terms we cannot argue about
sulting equation that is necessary in order to find a positivehe left tail in the inviscid limit. However, the interesting
and finite PDF. One can readily deduce some informatiotpoint is that our calculations in three dimensions show that
about the tails of PDF by Laplace transforming of E25),  when density fluctuations are taken into account, even in the

that is inviscid problem whenv=0, it is possible to find a positive
) solution for the longitudinal velocity increment PDF. It is
P P easy to show that the requirement of the positivity on the
— — 2— _— = . . B . B
ay? y ay +(1-a3)yP=D», (26) PDF will fix the density-density scaling exponent tg;

=7/2. Left tail of the PDF in this case is sensitive to the
where y=Au/r. Right tail of the PDF, i.e., whem\u/r scaling exponent of the density-density correlator and is
—+ (for s=1), in three dimensions, is insensitive to dis- given by 1/@u)(*s™") whenAu/r — — . As we mentioned,
sipation terms. So we neglect the dissipation terms in théh one-dimensional Burgers equation neglecting the dissipa-
right hand of the PDF equation and it is immediatelytion term does not result in finding positive solutions for
observed that the asymptotic of PDF behaves a&DF while density fluctuations play such a role that even in
(1/r)exd — (Au/r)3]. This form has been confirmed by sev- inviscid case, i.e.p=0, one can in principle find a positive
eral other approachdd0-21. It is believed that the same solution. Because density is advected passively by velocity,
functional behavior of right tail is valid also when viscose this result may seem strange and one expects though that the
effects are present. The reason is based on our intuition abogfatistics of density would not affect the statistics of velocity.
Burgers equation in one dimension. Actually right tail is just The resolving point is already mentioned that conservation
built in by the contribution of ramps with positive gradients laws connect density and velocity dynamically so that there
much larger than the typical gradient imposed by the forcingshould be a back reaction of density on velocity too. In our
hence shock structures do not contribute to this part of th@nalysis the self-consistent determination of adjustable
PDF. Since almost all the dissipation is occurred by shocknean-field parametet; reflects this interrelation. We think
structures in one dimension, neglecting the dissipation terrfhat the exponent for left tail is valid until the typical time
somehow is equivalent to neglecting the effects of shock§cale of the singularity development. After singularity for-
that are corresponding to the large negative gradients anralation the anomaly terms would be considered that would
therefore the right tail of PDF would not be affected. Al- surely change the exponent. Still we think that the mixed
though the one-dimensional simple shock structures aréterrelation between density and velocity after singularity
changed in higher dimensions to more complicated objectéPrmation makes the result different from what one would
[5,22], however, we think that the same ideas would be apget for Burgers equation that is coupled naively to density
plicable in higher dimensions. The left tail of PDF strongly continuity. However, we are not able to resolve the dissipa-
depends on the structure Bf, terms. Therefore one would tion effects to include the anomaly in the calculations yet.
resolve the anomalous contribution of dissipation terms in
the PDF equation. In Polyakov’s work the effect of viscous
term is found in the limit ofv— 0 andr <L by appealing to
the self-consistent conjecture of operator product expansion.
It is found that consistent with the symmetries of the prob- In this section we consider the three-dimensional Burgers
lem, two terms would be generated by the viscous termturbulence supplemented with a continuity equation in the
These two anomaly terms modify the master equation govaonuniversal region, i.eJu(x) —u(x’)|>u,,ms. The force-

IV. STRUCTURE FUNCTIONS IN NONUNIVERSAL
REGION
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free Burgers equation is invariant under space-time translamines the equation satisfied by the joint probability density

tion, parity, and scaling transformation. Also, it is invariant of longitudinal and transverse components of velocity incre-

under Galilean transformatiorx—x+Vt and v—v+V,  mentsP(u,v,r), that is

whereV is the constant velocity of the moving frame. Both

boundary conditions and forcing can violate some or all of X ¢

the symmetries of force-free Burgers equation. However, itisr v

usually assumed that in the high-Reynolds-number flows all

symmetries of the dynamical equation are restored in the J_ .,

limit r—0 andr> 7. So in this limit the root mean square of T ;[uv Pluv)]= 55 gyl Puv)]

velocity fluctuationsu,ms= (v?) which is not invariant un-

der a constant shift/, cannot enter the relations describing k(0) J 9> 93

the moments of velocity difference. Therefore the effective ~ =——~| =3r"—~ — P(Uu,p)+r?—P(u,v) | +D,.

equations for velocity correlation functions in the inertial L du v

range must have the symmetries of the original Burgers (28

equations. Recent understandings of Burgers turbulel:ze

21] indicate that in the non-universal region the PDF of ve- The parametey is defined agy= ag—d+1 andD, black

locity difference depends on the one-paint,s and therefore box is resembling all the nonzero contributions buried in

is not universal that is meant to be sensitive on the details ofissipation term. Since dissipation contributions cannot be

large-scale forcing. This phenomenon is called breakdown ofritten in terms of generating function itself, the equations

Galilean invariance in the nonuniversal region. are not closed. However, we extract some valuable informa-
Possible generalization of these ideas for Navier-Stokeion about some specific moments of velocity increments in

turbulence are developed by Yakhot recerfthd]. In the  Which the dissipation terms are not relevant.

fo”owing we aim to give a possib|e ana|ytic mechanism Starting with the PDF equation, the structure functions

within which one-pointu, s enters in argument of the PDF Shm=(u"v™) generally satisfy the following equation:

in nonuniversal region.

Jd d

[uP(u,v)]— 7 70

d—2 ¢
[uP(u,v)]+ - g[vP(u,v)]

2

We shall be interested in the moments of velocity incre- <i+ m-1-x _ n(d—2+m)
; B : ; +1m—-1 -1m+1

ments. As we emphasized in the previous section, because of or r ’ r ’
the structure of convective terms we put+\,=0 without
any restriction in the phase space. Although correct, we can- =3@mn(n— 1)r?s,
not discard other solutions in which other complex depen- L2 —2m-1
dencies or\ _, and\ ., exist but at least the results derived
under this assumption are consistent. k(0) )

Specifically, we first aim to find the behavior ingitu- - ?m(m—l)(m—Z)r Shm-3tDa. (29)

dinal components of some of the structure functions, so fol-

lowing [19] it is more convenient to change the variables to  The equation of third moment of longitudinal velocity in-

no=(N_-1r)/r andnz= \/)\2— 735. Decomposing velocity in- crementS; ((r) is readily found since assuming the station-
crement asu =u and u, =v, then 7, and »3;, would be arity one can estimate the contribution of dissipation. Actu-
respectively the sources of longitudinal and transverse conelly it is simpler to think of generating function equation for
ponents of velocity increments. In terms of these variablesgvaluating the contribution of dissipation. To obtain the
we obtain the following differential equation for equation for S3, one needs the terms of the order of
Fo(ns,m3,1): O(7n575). Fortunately dissipation contribution at this order is

proportional to average energy-dissipation rate, ie€x)
52 d—1 9 ﬂz(z_d) i ps P =<(aui/axj)2> when v—0. However, in the statistical sta-

ST 303 tionary state the average dissipation rate would be equal to
73 129773 rate of energy pumping injected by forcing term. Due to the
Gaussianity of the forcing statistics the rate of energy pump-

Fo—r12(372+ 72)F,=D,. 27) ing is(f ,(x)u,(x))~Kk(0). So theequation ofS; , becomes

@D - —4k(0)+6%r2.

Hdn, T I ;| 7

e P
rans

(6|
Invoking the proposed mean-field interpretation we adapt the dr r S0
ansatzd,(n,,n3,r)=r—“F(n,,ns,r) from which one ob- (30
tains the equation of velocity-increment generating function. o
All the information regarding the moments of velocity incre- Since the above equation is coupled to g one should
ments can be determined just by suitable differentiation ofletermine it beforehand. Again the equation &, can be
F(7,,73.r) with respect to z, and 7, ie., (u"p™)  readfroms,, equation, so we have
=d5 95 Fl, - 4.—0- Unlike the universal part we do not re-

273t 1273 i ) ) d Y
strict the solutions of to the ones with scale invariant ar- 3(__ 2

1 k(O
_ \ S12+6-S; = —4k(0)+6 0
guments. Laplace transforming E¢(R7) one easily deter- dr r r

?r , (31)
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where the viscous term again is of the same order as in

previous case. Substituting the solution &, back in Eq. Sq(r,s)=J' u"P(u,r,s)du,

(30), we can solve the equation & (r). In the inertial

ranges the order db(r?) forcing term is negligible in com-  \hereu is now the modulus of velocity increment vector and
parison withO(1) dissipation terms. Since we will be inter- sis the angle between velocity increment an@witching to
ested in the integral-scale effects for structure function scalkthese variables it is straightforward to show that in the non-
ings we do not discard the forcing contributions. The generalinjversal region the PDF for the velocity difference in three

solution of Sz g is dimensions satisfies the following equation:
2(d—1 4k(0)  2(d+2)k(0 ags s(1—¢? d—2+¢°
S3O(r)=[ ( ) } ( )r+ ( M )r3+CrX, —dauuP—s&uuﬁrP— ( )a§P+ Js
‘ 3(3—x) 1-x L%(3— ) r
323 @ ) (1-%)
o ) ) ——(1-599P+(1—5)ds9,P— A udgP
The unknown coefficienC is determined by thdoundary r r
condition imposed by the statistics in integral scales. Al- +r2(1+252)(?ﬁP=D2, (34)

though we have no precise way for determination of integral

scalgL itis prggmaﬂc_ally definedf11,19,2§ by "?‘pp?a"”g o wheres= cosy=cosf#cosf’ +sindsind cosp—¢’) in three
the idea that_ln the mtegrgl scales the longitudinal PDF 'Yimensions and agaib, term is dissipation contributions.
Cv?)irllc)i/ \%?]Tsﬁ Iic':;]nt;gta&[;rl(()aXIirng;ely ?)yrtz?_)o iocl)-o;_orlleer gzrfrjentissuming all of the moments of velocity difference exist, the
fici 1 entd, " structure functionss, for given angley [or s=cos(y)] sat-

icient of homogeneous solution consequently is found to b?sfies the followina equation-
~k(0)LYx apart from some numerical coefficients. Requir- geq '
ing that the coefficient of third-order structure function be-

v — _ a2\ 12
comesL independent the exponegtis immediately fixed to [sn+(1=87)d5]r dr S NSagSy = S(1 =57 955

x=1. In the next section we will clear out the role of pa- +(d—2+52)9sS,— ag(1—5%)3sS,+n(1—5%)d:S,
rametery in our study. Thanks to the invariance of the basic s )
dynamical equations under simultaneous operatiops—x +r’n(n—1)(n—2)(1+2s98,-3=D5. (35

andu— —u, the underlying PDF equations would be invari- o )

ant under the same operations too. Due to the rotational il order to study longitudinal PDF we must consider the
variance it is interesting to note that combinations like@P0OVve equation in the limit g— 1. This limit is not trivial -
(v2"V2y) do not contribute to expansion of dissipation termsand _needs to be considered more ca_refu_lly. The_ cpntnbutlons
in powers of 7, and 53. However still the combinations of dlfferent ter.ms of the PDF equatlon in the Ilmlt when
(u2"V2u) may contribute. It is straightforward to see that 1 iS determined by the corresponding terms in the equa-
equations for all the even-order moments of longitudinal vefion of the structure functions. Again due to dissipation the
locity increments will involve such combinations in their €3uation is not at all trivial to be analyzed, however, as we
corresponding dissipation terms. Recently it is shown experiargued before one can safely drop tgterm in even-order
mentally that such contributions are z¢@9] in the Navier- moments of longitudinal components. Hence Bg(r,s)
Stokes turbulence. We think that such terms would be smaffatisfies a closed equation. The fqu'gg contribution to the
compared to the other terms in the equation because thé}POVze equation is the last term, i.e;n(n—1)(n—2)(1
involve the odd part of the PDF that is orders of magnitude™ 25°)Sn—3 and this term does not have any contribution to
smaller than the even part, so in principle one can approxithe exponent of stru_cture function. However, the e_lmphtude
mately neglect such terms at least in the equation of thé’f the structure functions does depend on thg de_talls of forc-
even-order moments of the longitudinal structure functionsing. It means that the exponents of multiscaling in the struc-
Therefore we study strict inviscid equations for investigatingture functions are not changed by the forcing term and they

the behavior 0B, ,, that is are determined by the structure of nonlinearity and the trans-
’ verse contributions to the Burgers equation. For solving Eqg.
-y d (2n—1)(d—1) (35 we examine the solutions in which their angular and
T+ a) Sono— . n-22 scale-dependent parts 8,(r,s) are separated whes—1,
i.e., the structure functions have the following form:
k(0)
:3r2%(2n—1)(2n—2)32n3,0. (33 Sn(r,8)—fa(8)Sy(r), (36)
where S,(r)=([u(x+r)—u(x)]"y~ré. Factorizing the
V. PROJECTION OF THE DYNAMICS ON A LINE angle and scale dependences in the limisefl is known
' AND LONGITUDINAL PDF for the N-S turbulence too[19]. Plugging the ansatz for

S,(r,s) in the structure function equation it is easy to see
Back to variables introduced in E¢L8) we aim to find  that the intermittency exponent fixes to
the structure functions of velocity increment that are defined
as §n=ag—d+1, (37)
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and f(s)xs" (details in Appendix B. So this observation P

encodes the information thgt's are constant. It is seen that ~ o = Lkm(UM)P,

the expression of scaling exponent is exactly the unknown

parametely that appeared i8;o(r) in the previous section. o g

The assumption of independence of the amplitude of the lon- Lam= > (— 1)n_n[D(n)(u,)\)p], (39)
gitudinal third-order structure function of the integral scale n=1 au

fixed y=1 hence&,=1. Heuristic argument§3,4,6,10,19 " \ . o
about one-dimensional Burgers equation based on the sho¥ereD™ (A,u)=o,u" [28]. We find that the coefficients
singularities also suggest to us that the exponents woulfn deépend omA andB through the relation

saturate toé,=1. Experiences withld-dimensional Burgers A

problem based on instanton analysis tell us that at least the on=(—1)" )
structure of PDF ird dimensions is very similar to one di- (B+1)(B+2)(B+3)---(B+n)

mensmns_ and the. angula_r _dependenmes indicate as Iqow it is easy to see that the solution of E§9) can be
F(u,r,s)=F(us,r) in the limit when s—1 [11,14,19. : .
written as a scale-ordered exponential:

Other methods like replica analysis in infinite dimensions

[11] also give the same picture regarding the saturation of N

scaling exponents. In spite of the obvious fact that the nature P(U,)\)=7'[eXp+J dN'Lgm(u,N")P(u,N\g) |

of singularities in three dimensions is much more compli- *o

cated becaus8y(r,s) separates as's"S,(r) conditionedto  ying the properties of scale-ordered exponentials the con-

Eq.(37), it leads toF (u,r,s)=F(us,r). This similarity also  gjtional probability density will satisfy the Chapman-

led us to accept that the saturation value of '”_ter_m'ttenckolmogorov equation. The same equat@e., Eq.(39)] ob-

exponents ig,=1. On the other h_a_nd, as soongss fixed viously governs the conditional PDF too but with another

because of the consistency condition we get boundary condition, i.e.P(u,A|u’,\)=38(u—u’). For a
simple case we proceed to find velocity difference PDF

ag=d. P(u,\), that is

Albeit we should emphasize that all our rationales are based , , ,

on the fact that dissipation is irrelevant to the equation of P(u')‘):f P(u,\u’,0)P(u’,0)du’. (40
even-order moments, so we are not claiming that the value

for aq is valid in all regions. For obtaining the proposed Since we know that in integral scale PDF is Gaussian with a
form of structure functions in the limit whes—1, it is  good approximation s&(u,0)~exp(-u?2u?,J), invoking
sufficient to have the scaling form P(r,u,s) the fact that conditional probability can be written as
—(1/s)P(r,u/s) for probability distribution of velocity in- N

cremgnts. Imposing this form in the PDF e.quatlon it is easy P(U,?\1|U’,?\2)=T[exp+f ld)\’LKM(ua)\l) s(u—u")|,

to verify that whens— 1 the following equation governs the Ay

nonskewed part of the PDF in three-dimensions: 41
P P A g pe and the property of the proposed KM operator, i.e.,
- —Uu—-B|—P+— —uP+3r>—P=
[ Bl P ey 3r 3U3P 0. (39 Lipu™= €mu™, (42)

whereé,,=1 is the scaling exponent of the longitudinal ve-
locity differenceS,,. Substituting the scale-ordered form of
the conditional PDF in Eq40), and expanding the assumed
Gaussian form foP(u,0) we get

where P(u,r) is the longitudinal velocity difference PDF,
and B approaches zero @3(1—s?) andA=¢,=1. TheA

coefficient in Eq.(38) is responsible for the scaling of the
structure functions while thB term is an infinitesimal coef-

ficient that is zero for the longitudinal components and its o u \2m(—pym
value is responsible fan independence of the scaling expo- P(uN)= >, exp(é:zmk)( )
nents. The same form of PDF equation has been conjectured m=0 Urms m!

recently by Yakhot for théN-S turbulence[19]. The forcing 5
contribution in the above equation is%>P and it is irrel- :(L) exd — u
evant in the small scale—0. We will take into account the L 2ur2ms ’
forcing contribution by imposing a matching condition for

PDF in the large scales with a distribution that is approxi-where we have useg,,= 1. This result is consistent with the
mately Gaussian. Accordingly this boundary condition in-proposed form of the PDF in the inner scales wherer
duces the breakdown of Galilean invariance. Equivalently<L and consistent with numerical simulations in the one
the probability density and as a result the conditional probdimensional Burgers turbulencgs,4,6,10,19 where the
ability density of longitudinal velocity increments satisfies anonuniversal part of the PDF fits withP(Au,r)
Kramers-Moyal(KM) evolution equation in terms of loga- =rG(Au/u,,s. The interesting point with respect to the
rithmic length scalex =In L/r [28]: possible Gl-breaking mechanism is that because the variance
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of the velocity-increment PDF in the integral scaless in  ness of the PDF in the inertial ranges are inherited in GI-
the order of the variance of thene-pointPDF matching breaking terms. This would be so, because the skewness is
between PDFs of inertial range and integral scale gives riseelated to finite energy flux from large scales to small scales
to appearance of one-poimi,s in the inertial range PDF. but the information of large-scale eddies or one-point infor-
Once again we would stress that the results are based on theation k(0)=u,,s/L are just contained in Gl-breaking
irrelevance of dissipation that is valid for even part of PDF.terms.

While dissipation terms do not matter for even part of the

PDF, the odd part of PDF is obviously sensitive to dissipa-

tion effects. In case of even order moments, although the V1. DISCUSSION

forcing terms are negligible with respect to the terms that \ye have studied the problem of three-dimensional Bur-
give the main scaling, however, their accounting wouldgers equation supplemented with continuity. Because of
cause nonuniversal behaviors of the amplitudes in thenany conservation laws mixing density with different com-
velocity-increment structure functions, i.e., they depend orhonents of velocity we think that the problem is basically
forcing correlation. In our case the forcing contribution to gifferent from Burgers equation alone. Based on a mean field

structure functions when—0 give some corrections as, analysis an adjusting parameter emerges through the calcu-
N(N=1)(n—=2) r3én-3 lations that is the scaling exponent of conditional density-
Sy(r)=A,rén+3A,_3 density correlations. We show that there are two kinds of

n+B 3+é&n-3—&n’ solutions for velocity-increment PDF. In the universal scale
(43 invariant regime we find the right tail of longitudinal velocity

increments. It is argued that unlike the inviscid Burgers

problem the inviscid case of the present problem develops a

positive solution for the PDF. When=0 positivity of PDF

is the consistency relation that fixes the scaling exponent of

éiensity correlation tavs= 5. This is one of the interesting

where §,=1. This leads to the nonuniversality of the PDF
shapes in the inertial rang&0,12—-19. For odd-order struc-
ture functions dissipation contributions a@€1) while forc-
ing are O(r?) so the dissipation corrections are order of

magnitudes more important. Although we cannot overcom results in this paper that resembles the back reaction of den-
the difficulty of dissipation terms we still think that the lead- pap

ing term in the scaling of structure functions for odd—orderzagluﬁgi%%ﬁ ;%;’S:;Srtﬁlnuecmitf;Sot:é?]ltjahhg?]n dsi(sa;\i/agt(i)gn
moments are not sensitive to dissipation contributions. TA : P P

find an intuition about the correction of dissipation terms Weanomaly is accounted for and that would call for more ng-
turn back to longitudinal third-order structure function orous methods to be developed in future. In the nonuniversal
S,(r) since at least in this case we could estimate the diSpart we relax the scaling invariant form for the PDF argu-

sipation effects due to stationarity. Returning to the expres[‘nent and as far as the nonskewed part of the velocity cas-

sion of S; (1) in previous section and pluggirgy=1 it is cade is concerned we develop the solution of PDF equation
) 3 P piugg for longitudinal velocity increments. The result shows that
immediately found that

the information of large scale forcing enters the argument of
3 B longitudinal PDF in the inertial ranges by matching condi-

Sgo(r):A3r+(d+5)k(O) r_+ Ad—1) k(O)r In. tion in the integral scale. We analyzed that dissipation con-

’ 2 2 3 tributions change the odd-order moments and contribute to

(44)  the skewness of the PDF. However, we guess that they do

S I _ _ L not change the leading scaling contribution of the structure
So the dissipation contribution gives rise to logarithmic COr¢ inctions in the limit ofr —0. Looking at the longitudinal

rections but still the'donjinant 'term is 'given by firs.t Sca”ngthird-order moment gives an indication that supports the
term whenr —0. This picture is very interesting since re- g ,a55 Through the calculation we conclude that scaling ex-
turning to Eq.(30) we see that scaling term$ are homoge-  honents in longitudinal-velocity-increment structure func-
neous solutions of the structure function equations in stationgons show the extreme independency to the order of the
ary state. Puttingm=1 one reaches the equation Of poment and they saturate to a constant. We conclude that the
longitudinal structure functiof$, o as exponent is saturated #,= 1. Fixing £,, the scaling expo-
5 K(0) nent of two-point density correlation function is also deter-
o X _ o) a2 mined simply asxg=d.
(ar r)sml'o 8 L2 N(N=Dr'Sy-20t D2 (49 Numerical analc;/sis of the present problem would be very
valuable for clarifying the ideas developed here and present-
Homogeneous solutions of these equations are behaving &gy a testing ground for the approximate picture in this paper.
r* while source terms included in the right-hand side areThe issues of density PDF and intermittency in density fluc-
forcing and dissipation contributions. Fixing=1 it is clear  tuations are worth studying too. Thanks to our recent deep
that inhomogeneous solutions for even-order moments bainderstanding of passive scalar the¢dp] we know that
come negligible. This picture preserves also in the projectiomighly compressible flow advected with white in time
of the dynamics whes— 1. In this sensel. x\ without GI-  Gaussian-correlated velocity does not lead to intermittency
breaking terms is responsible for intermittency. The othetof density. However, in our case the intermittent structure of
parts of thel x\, operator are consisted of forcing and dissi- velocity still may cause intermittency in density and it is a
pation contributions. All the information regarding the skew- challenge to understand this issue. In the case of decaying
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Burgers problem added with continuity equation it is showng 5 ) ) 5 )
recently that a careful analysis of density PDF necessitates tpSf“(s)+3f(s)f'(s)(1—s) +f'%(s)(—s+5%) =(1+2s7),
turn our attentions to geometrical properties of the underly-

ing singularities in the probleni22]. However, again we (A3
emphasize that the picture given in that paper cannot be ap- —s(1—s2)f"(S)+[(4— az)— (2— az)s?]f'(s)

plied when one starts with momentum and continuity equa-

tions. In any case, at this stage we cannot derive the PDF of

density fluctuation since we just treat the density fluctuations + ( 71~ pas|sf(s)=0. (A4)

in an effective way to obtain some information about the
velocity PDF and in this approximation detailed information Equation(A4) can be converted to hypergeometric differen-

regarding the density PDF cannot be analyzed. In order t@al equation[31] by changing the variablg’=w so that it is
enlighten the way toward understanding the density PDF on@rritten as

useful way is simulating the conditional averages like

(p(X1)- - - p(Xm)|[(Au)™) from which the dependence of d2f df

these conditional averages with respect to longitudinal veloc- ~ W(1—Ww) T2 +le—(atb+wl - —abf=0,

ity increments may be deciphered. w (A5)
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APPENDIX A: UNIVERSAL REGIME 2

In the present appendix we will include some of the de-Whenc is not an integer there are two independent solutions
tails of calculations related to universal regime. In the firstin the region|w|<1 of complex plane so the general solu-
part we dwell with the form of structure function scaling andtion is a linear combination of them
in the second part we will remind the proof of positivity of

PDF in the strict inviscid casev&0) from which the expo- f(w)=Cy,F1(a,b;c;w) +Cow! %F;
nentas is fixed. X(a—c+1b—c+1;2—c;w), (AB)
1. Solutions of the structure function equation where ,F,(a,b;c;w) is the hypergeometric functiof31].
in universal regime We are interested is=1 and since the hypergeometric func-
Plugging Eq(24) in Eq. (18) we find the following equa- tion 2F1(&,b;c;w) has branch points iw=1 andw=0 the
tion: parameters in the arguments may be strongly limited. The
coefficientC; becomes zero since the first function in the
5 s(1-s?) 5 1+¢? linear combination will diverge irs=1 and the only finite
S20;F+S0,F — agsd,F— ————dsF+ ——dsF solution will emerge if
—g? 7
—az— dF+2(1—5%)d0,F b-c+1=0=a=3. (A7)
—2%(1+28*)F=D,, (Al)  In fact this condition will cause the series expansion of the

second hypergeometric function to terminate trivially after
wherez= ur andaj is the density-density exponent. It can the first term since
be proved thafF(z,s) satisfying the above equation has the

important property thaf(z,s)=F(—z,—s), which is in ac- o a-b_a(atl)b(b+1) ,
cordance with symmetry properties of the Burgers equation, 2F1(&bic;X)=1+ —=x cc+1)-1.2
When u—o one can neglect the dissipation term and pro- (A8)

pose the following solution foF(z,s) as
Since the solution of (s) would be consistent with E4A1)
F(z,s)~exd z”f(s)], (A2)  simultaneously the undetermined coeffici€ntis fixed. Es-
sentially the Eq(A2) put a constraint orf(1)=2/\/3. The
wherey=3/2 andf(s) would be simultaneously satisfied in overall behavior off (s) is
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2 consistent in giving the same value as derived in the previous
f(s)= —=s2 (A9) section. Back to Eq(26) in the paper and following12,17
V3 we write the Eq(26) in terms of that is defined a®(y)

_a-yis
Substituting Eq.(A9) functional in Eq.(A2), the proposed =€ = #(¥). So we get

scaling in the paper, i.eF(ur,s)=F(urs) recovers. We v a2
would stress thaassuminghe proposed ansatz of E(A2) V| =+ 3 y|y=0. (A10)
the parametews=7/2 already is fixed in the level of positive 36 3

tail of universal generating function. Rewriting the following equation in terms af= ¢/y and

o o _ _ then changing the independent variableztoy®/9 one finds
2. Positivity of the left tail in universal regime

1 k mi-1/4

4 z 22

The calculations in this subsection just remind of some of
the general arguments for fixing the, due to positivity of
the PDF. Actually in previous subsection we already fixed
the value in the inviscid case but we did not argue about thevherek= (a3—2)/3 andm= 3. This is the well-known Wit-
positivity of the corresponding PDF since the ansatz that isaker equatiofi31] and we can immediately use the indepen-
used in the previous section just works in the right tail. Wedent solutions in terms of hypergeometric functions as fol-
want to remind how the arguments of positivity may becomedows:

)¢=o, (A11)

e 72 z>0

1
+C,z"3M (E -m—k,1— 2m,z)

1
C,7%*m ( >+m- k,1+2m,z
d(2)= (A12)

1 1
e?2 Cl(—2)%*M 5 Fmtk1+2m, —z +cg(—z)1’3|v|<§—m+k,1—2m,—z) z<0.
|
The functionsM(a,b,z) are hypergeometric functions that 4 2
are defined as I3 Il 3
C 3 3 =0
M(a,b,z)=,F,(a,b,2)=>, ﬂz“ 2F E+k) lr E+|< |
M, —1v1 M,y - - (b)nn! ’ 3 3
I'(a+n) . .
where (a)”:Ta)' (A13) For obtaining nontrivial result for the above system of equa-

tions determinant of the coefficients would be zero, that is

Continuity inx=0 requires thaC,;=C; andC,;=—C; so we get

that two unknown coefficients remain to be determined by

the asymptotic behavior of PDF. I'(4/3)I'(2/3) N ranRrer
In order to analyze the asymptotic form of the solution we [(2/3+k)I'(1/3—-k)  T(23-K)I(1/3+k)
remind that the series expansion in the definition of hyper- (A16)

geometric functiorM can be estimated by steepest descent
method in a simpler form as This condition, which is obtained by finiteness constraint,

T'(b) guantizes the allowed values of the paramétas
— a—baz
T(a)? o( Z) (A14) )
=n+z = c
Now with the above form foM functions we request th&t; k=n 2’ n=012 (AL7)
andC, be determined so that wher-« different diverging
terms cancel out, i.e., However, one can check that all of the integer values db
4 5 not correspond to a positive solution. However, the first
F(— F(—) value, i.e.,n=0, does gives rise to a positive solution from
c 3 +C 3 0 which one fixes the parametes; to
2 1 — Y,
2 1
F( 3K r ( 3 k) o 7
(AL5) =5=as=5. (A18)
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APPENDIX B: SOLUTION OF STRUCTURE FUNCTION
EQUATION IN NONUNIVERSAL REGIME

In this part some straightforward manipulations regarding

the scaling ofS,,(r,s) with respect to angle variabkein the

limit of s—1 in non-universal regime is reminded. In fact in
Eq. (35), neglecting the viscose and forcing contributions we

PHYSICAL REVIEW E 63 056308

—N ay f 3 ad—§ -n—d
”W>:C12F1(77‘§;§++;W

+ Cowl( -2~ (ag=&n—n=d)2 F

fn—i—d—ad—l d—ad—1.3

impose the ansat3,(r,s)=rf(s). From there we find an 2 2 2
equation that similarly to the equation of universal structure ag—é,—n—d
functions can be converted to a hypergeometric equation af- + - 5 W (B2

ter changing the independent variable wo=s?. The ob-
tained equation is again in the form of EGAl) but the
parameters, b, andc are defined as follows:

3+ag—d—&,-n
= . . (B1)

It is standard that the general solutiongiv <1 region can
be written as the following linear combination:

We are interested in the point=1 that is pathologic in the
sense that it is one of the branch points of hypergeometric
function. Since the first hypergeometric function is not finite
and real whem gets large, one would choo$g,=0. The
only way for getting a finite solution imw=1 in the second
term is terminating the series of hypergeometric function just
by trivially putting first or second argument to zero. So we
get

En=ag—d+1. (B3)
We note that terminating the series expansion spoils down all
the structure of hyper-geometric function and converts it to a
constant but this is the only way in which one is able to get
a finite and real solution fof(s) in s=1 [31].
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