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Under the framework of Yakhot @Phys. Rev. E 57, 1737 ~1998!#, we model intermittent structure functions
in fully developed turbulence, based on the experimentally supported Markovian nature of turbulence cascades
@Friedrich and Peinke, Phys. Rev. Lett, 78, 863 ~1997!#, and calculate the multiscaling correlation functions.
Fusion rules @L’vov and Procaccia, Phys. Rev. Lett. 76, 2898 ~1996!#, which were experimentally tested
@Benzi, Biferale, and Toschi, Phys. Rev. Lett. 80, 3244 ~1998!# to be compatible with almost uncorrelated
multiplicative process are analytically checked by direct calculations.

PACS number~s!: 47.27.Ak, 47.27.Gs, 47.27.Jv, 47.40.Ki

One of the most important issues in stationary turbulence
is the intermittent behavior of velocity fluctuations in the
inertial range. Understanding the statistical properties of in-
termittency is one of the most challenging open problems in
three-dimensional fully developed turbulence. The structures
that arise in a random flow of stationary turbulence resemble
high peaks at random places and random times. The intervals
between them are characterized by a low intensity and a
large size. Rare peaks are the hallmarks of probability den-
sity fundamental’s ~PDF’s! non-Gaussian tails. These
strongly non-Gaussian activities are statistically scale-
invariant processes responsible for energy transfer. Intermit-
tency in the inertial range is usually analyzed by means of
the statistical properties of velocity differences, dru(x)
5u(x1r)2u(x) @1#. The overwhelming majority of experi-
mental and theoretical works have been brought forward to
characterize structure functions, i.e., Sp5^(dru(x))p&. A
wide agreement exists on the fact that Sp(r) exhibits a scal-
ing behavior in the limit of high Reynolds number, that is
Sp(r);(r/L)zp for L@r@hk , where L is the scale of energy
injection, hk5(n3/e)1/4 is the dissipative scale, e is the mean
energy dissipation range, and n is the kinematic viscosity.
Rare peaks in the random flows are signaled by a nonlinear
form of z(p). In other words the velocity increments are
multifractal, and z(p)’s do not follow the celebrated K41
theory, z(p)5p/3. Recently @2–4# it was proposed that it
would be more natural to look at single time correlations
among velocity increment fluctuations at different scales,

Fn~xur1 ,r2 , . . . ,rn!5^dr1
u~x !dr2

u~x !•••drn
u~x !& ,

~1!

where all the scales r i are lying in the inertial range, i.e.,
h!r i!L . For simplicity we confine the discussion to longi-
tudinal velocity increments. Fusion rules @2–4# that describe
the asymptotic properties of n-point correlation functions
when some of the coordinates tend toward one other are
derived from two fundamental assumptions which are of
paramount importance for a description of nonperturbative
aspects of the analytic theory of stationary turbulence. The
fusion rules were tested experimentally, and a good agree-
ment between experiment and theory observed @5#. If p,n

pairs of coordinates of velocity differences merge, with typi-
cal separations r i;r for i<p and the remaining separation
at the order of R, such that r!R!L , the fused multi-scale
correlation is defined as

Fp1q~r ,R ![^@u~x1r !2u~x !#p@u~x1R !2u~x !#q&

[^@dru~x !#p@dRu~x !#q&. ~2!

It has been deduced that

Fp1q~r ,R !;Sp~r !Sp1q~R !/Sp~R !. ~3!

On the other hand, multiscale correlation functions in high
Reynolds number experimental turbulence, numerical simu-
lations, and synthetic signal were recently investigated by
Benzi et al. @6#, and it was found that whenever a simple
scaling ansatz based on uncorrelated multiplicative processes
@6# is not prevented by symmetry arguments, the multiscale
correlations are in good agreement with the fusion rule pre-
diction even if strong corrections due to subleading terms are
seen for small-scale separation r/R;O(1). All the findings
has led to the conclusion that multiscale correlation functions
measured in turbulence are fully consistent with a multipli-
cative, almost uncorrelated, random process for the evolution
of velocity increments in scale . Although a successful inter-
pretation of the fusion rules can be realized by considering a
multiplicative random process for the evolution of velocity
increments on a length scale, it is at most a phenomenologi-
cal model, and it is not based on first principles calculations.
Other experimental investigations of the behavior of condi-
tional probability densities of velocity increments in scale
have shown that the Markovian nature of velocity increments
in terms of length scale and in the inertial range would sup-
port the experimental data @7#. In fact the necessary condition
of ‘‘Markovianity’’ for velocity increments has been tested
experimentally, and from this phenomenological scenarios
for modeling the intermittency have been developed @7#. The
aforementioned ideas were later supported by invoking the
theoretical ideas inspired by Polyakov @8# and Yakhot @9#
based on the operator product expansion ~OPE! and general
invariances of the Navier-Stokes equation @9#. In this paper
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we show that, relying on Yakhot’s closure for an infinite
Reynolds number, the phenomenological interpretation given
by Benzi et al. @6# in finite Reynolds numbers can still be
achieved in some approximations. We will propose an un-
derlying dynamical process in scale which incorporates the
fusion rules of multiscale correlation functions in the infinite
Reynolds limit. The calculations are consistent with a picture
of an almost uncorrelated random multiplicative process, at
least in the Fokker-Planck description of turbulence cas-
cades. Furthermore we are able to connect the fusion rules to
the Markovian nature by a simple operator formalism, by
preserving all the terms in the Kramers-Moyal’s evolution
operator of velocity increments.

Let us start with the Navier–Stokes equation

vt1~v•“ !v5n“2v2

“p

r
1f~x,t !, “• v50 ~4!

for the Eulerian velocity v(x,t) and the pressure p with vis-
cosity n , in N-dimensions. The force f(x,t) is an external
stirring force, which injects energy into the system on a
length scale L. More specifically one can take, for instance a
Gaussian distributed random force, which is identified by its
two moments.

^ f m~x,t ! f n~x8,t8!&5k~0 !d~ t2t8!kmn~x2x8! ~5!

and ^ f m(x,t)&50, where m ,n5x1 ,x2 , . . . ,xN . The correla-
tion function kmn(r) is normalized to unity at the origin, and
decays rapidly enough where r becomes larger than or equal
to integral scale L; that is

kmn~r i j!5k~0 !F 12

r i j
2

2L2
dm ,n2

~rij !m~rij !n

L2 G ,

with k(0) and L[1, where r i j5uxi2xju.
Recently Yakhot @9# generalized Polyakov’s approach to

Burgers turbulence @8# for strong turbulence. He used the
OPE approach to close the equation for the velocity incre-
ment PDF, and showed that in homogeneous and isotropic
turbulence the PDF of the longitudinal structure function
Sq5^@u(x1r)2u(x)#q&5^Uq& satisfies the following equa-
tion in the limit r→0;

]

]U
U

]P

]r
2B0

]P

]r
52

A

r

]

]U
UP1

urms

L

]2

]U2
UP , ~6!

where A5(31B)/3 and B52B0.0 and for the Navier-
Stokes turbulence it has been shown that B;20 can be de-
rived by a self-consistent calculation @9#. The last term on the
right hand side is responsible for the breakdown of Galilean
invariance in the limited Polyakov sense, which means that
the single point urms induced by random forcing enters the
resulting expression for velocity increment PDF.

Now one can show that the probability density, and as a
result the conditional probability density of the velocity dif-
ference, satisfies the Kramers-Moyal ~KM! evolution equa-
tions @11#

2

]P

]r
5LKM~U ,r !P ,

~7!

LKM5 (
n51

`

~21 !n
]n

]Un
@D (n)~r ,U !P# ,

where D (n)(r ,U)5(an /r)Un
1bnUn21. We have found

that the coefficients an and bn depend on A, B, urms , and the
inertial length scale L. They are given as

an5~21 !n
A

~B11 !~B12 !~B13 !•••~B1n !

and

bn5~21 !n
urms

L

1

~B12 !~B13 !•••~B1n !
,

where b150 by homogeneity @11#. The coefficients
D (n)(r ,U) are the small scale limit of the conditional mo-
ments @10#. They fully characterize the statistics of eddy dis-
tribution in the inertial range, and are defined as

D (n)~U2!5 lim
r1→r2

1

r12r2
E ~U12U2!nP~U1 ,r1uU2 ,r2!dU1 .

~8!

It is noted that P(U1 ,r1uU2 ,r2) also satisfies Eq. ~7!, but
with a different boundary condition @10#. The Kramers-
Moyal coefficients are the main observables of a Markov
process from which all the terms in the Kramers-Moyal op-
erator will be determined. It is a well known theorem
~Pawula theorem! of Markov processes that whenever the
fourth order Kramers-Moyal coefficient tends to zero all
other terms with higher order derivatives tend to zero @10#.
Then there is a distinction between Markov processes in the
Fokker-Planck description, when just the first two terms in
the evolution operator in scale are important, and Markov
processes in which all the terms should be preserved and are
encoded in the coefficients. Thanks to the detailed analysis
carried over experimental data @7#, the functional form of the
first four Kramers-Moyal coefficients are obtained in the fi-
nite Reynolds number. It has been observed that the fourth
order conditional moment tends to zero, from which, by in-
voking Pawula’s theorem, the Fokker-Planck equation would
be a reasonable evolution equation. In the meantime the
present authors showed that Kramers-Moyal coefficients,
which are derived from the Yakhot modeling, are consistent
with the experimental observations @11#. It is interesting that
the functional forms of the different coefficients D (n)(U ,r)
up to the fourth order conditional moment, identically sup-
port the experimental observations @7#. Although the func-
tional forms of the drift and diffusion coefficients are the
same, the resultant Markovian process in the framework of
Yakhot’s model is a Kramers-Moyal type rather than a
Fokker-Planck one. However, one should be careful in com-
paring the phenomenological description of Friedrich and
Peinke @7# and the predictions of Yakhot’s model, since the
phenomenological picture is grounded in observations of
mostly accessible Reynolds numbers available in the experi-
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ments with free jets while Yakhot’s theory @9# was devel-
oped for the infinite Reynolds number limit. Still we need
much more reasonable data for making a quantitative judg-
ment about whether the theoretical predicted Kramers-Moyal
Markovian cascade from the Yakhot model is comparable
with the experiment or not. The intermittency exponent of
the structure functions can be derived from Eq. ~7!; z(p)
5Ap/(B1p). It is easy to see that the ratio of different KM
coefficients are controlled by the B parameter, as it is obvi-
ous when B→` K41 scaling is recovered and B→0 pro-
duces the extreme case of multiscaling related to Burgers
intermittency @9#. The Kramers-Moyal’s description of PDF
deformation in scale was also supported by an exact compu-
tation for the compressible turbulence in the high Mach num-
ber limit @12#. In that case the numerical values of the A and
B parameters are determined without any need for numerical
estimation. Recalling the original idea of the Markovian
property of energy cascade in scale, we take a step further
and calculate the more general objects of the cascade, i.e.,
the unfused multiscale correlations. Assuming the Markov-
ian nature of velocity increments in scale and the proposed
form of the evolution operator LKM(U ,r), one can in prin-
ciple calculate any correlation among velocity increments in
different scales:

Fn~xur1 ,r2 , . . . ,rn!5^U~r1!U~r2!¯U~rn!&

5E dU~r1!•••dU~rn!U~r1!•••U~rn!

3P~U1 ,r1 ;U2 ,r2 ; . . . ;Un ,rn!.

The joint probability P(U1 ,r1 ;U2 ,r2 ; . . . ;Un ,rn) can be
calculated by taking advantage of a Markovian property in
terms of conditional probabilities, i.e.,

P~U1 ,r1 ;U2 ,r2 ; . . . ;Un ,rn!

5P~U1 ,r1uU2 ,r2!P~U2 ,r2uU3 ,r3!•••

3P~Un21 ,rn21uUn ,rn!P~Un ,rn!. ~9!

The conditional PDF of velocity increments can be written as
a scalar-ordered operator

P~U1 ,l1uU2 ,l2!5T Fexp1S E
l2

l1
dlLKM(U1 ,l) D G

3d~U12U2!.

Thus in a calculation of n-point multiscale correlation, a se-
ries of conditional operators would emerge in the integrand
of Eq. ~9!. When some of the coordinates coalesce, the con-
ditional operator tends to a Dirac d function. The reduction
of the conditional probability between the coalescing coordi-
nates simplifies the calculations. The only remaining condi-
tional operator will be the probability of observing the typi-
cal velocity U1 increment between one subclass of fused
points, conditioned on observing the typical velocity incre-
ment U2 in the other subclass of fused points. We explicitly
examine the behavior of Fp1q(l1 ,l2) defined in Eq. ~1!,
where l15ln(L/r) and l25ln(L/R):

Fp1q~l1 ,l2!5^Up~l1!Uq~l2!&

5E dU1dU2d~U12U2!3P~U2 ,l2!

3~e2(l12l2)LKM
† (U1)U1

p!U2
q ~10!

We restrict the calculations to the Galilean invariance ~GI!
invariant approximation neglecting the O(urmsr/L) opera-
tors in LKM(U ,l). The crucial point in the above approxi-
mation is that in the GI regime the Kramers-Moyal coeffi-
cients are scale independent, so that the entry scale
dependence of the conditional probabilities would reveal a
simple subtraction of the two logarithmic scales, i.e. l1

2l2 in the exponent. Because LKM
† (U1)U1

p
5z(p)U1

p , we
will obtain the proposed form of the fusion rules in Eq. ~2!
with z(p)5Ap/(p1B). Any other multiscale correlation
function is also tractable under the same approximations.
The fusion rules were first introduced @2–4# by invoking two
Kolmogorov type assumptions. The first one assumes scale
invariance for all correlation functions in the inertial range.
The second, called ‘‘universality,’’ meaning that when some
arbitrary set of velocity differences in the correlation func-
tions is fixed in a scale L, the precise choice of differences
will affect the correlation functions just as an overall factor.
In terms of conditional averages the second proposition
means that

^U~r1!puU~r2!q&5Sp~r1!Fp ,q~r2!, ~11!

where it is also assumed that the scale of r2 is of the order of
integral scale, while r1 is in the inertial range. The function
Fp ,q(r2) is a homogeneous function with a scaling exponent
zn2zp , and is associated with the remaining n-p indices of
F. Mathematically the above conditional correlation is easily
verified:

^U~r1!puU~r2!q&5Sp~r1!U2
p/Sp~r2!

In Yakhot modeling the scaling hypothesis is taken into ac-
count from the very beginning, when the relevant OPE terms
are chosen to close the equation governing the generating
function of the longitudinal velocity increments. However,
we show that at least in the framework of Yakhot modeling,
the universality proposition is the result of the Markovianity
of the evolution of velocity increments in scale. On the other
hand, the necessary proof of the Markovian property was
verified through the special scalar-ordered form of the con-
ditional probabilities. This itself arose from the general in-
variances and scaling constraint of the Navier-Stokes equa-
tion. Thus the universality condition in the language of
multiscale correlation functions has in its heart a very robust
scaling invariance under as infinite parameter scaling group
@1#. We should emphasise that the nonuniversal effects of the
large scale motions can also manifest themselves through
scale dependent terms in the Kramers-Moyal operator. Still
the general form of the universality assumption would be the
leading behavior, while the O(urmsr/L) term will be the sub-
leading correction inducing large scale effects @13#.

Within the experimentally verified approximation that ne-
glects third and higher order KM coefficients @11,7#, one can
write the equivalent diffusion process on a scale which dy-
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namically gives the relation between velocity increments at
two different scales. In fact, approximating the KM equation
with a Fokker-Planck evolution kernel can be interpreted as
if a velocity increment U is evolved in ‘‘scale’’ l ~logarith-
mic length scale!, by the Langevin equation @10#

]U

]l
5D̃ (1)~U ,l !1AD̃ (2) ~U ,l !h~l !,

where h(l) is a white noise and the diffusion term acts as a
multiplicative noise. Using Ito’s prescription @10# the multi-
point correlation function can be written in the form of a path
integral as

F~l1 ,l2!5E DUUp~l1!Uq~l2!

3expF E
l1

l2S ]U

]l
2D1~U ,l !

AD2~U ,l !
D dlG

1/2

3P~U2 ,l2! ~12!

By a simple application of Bayesian rule probability density
in the outer scale, l2 can also be written as a path integral
entering the information of a nearly Gaussian PDF on an
integral scale @9#. Building up all the terms in a descriptive
way, the joint probability P(U1 ,l1 ;U2 ,l2) is represented as
a path integral over all possible paths between U(l1) and
U(l2), transferring all the information about of the integral
scale into the calculation in an intermittent way. Without a
further attempt at calculating the multiscale correlation by
the path integral representation, we turn our attention to the
Langevin dynamics instead. The resulting process is the well
known Kubo @10# oscillator multiplicative process. By using
the Ito @10# prescription, one can deduce that

dl1
U~x !5W~l1 ,l2!dl2

U~x !. ~13!

The multiplier W(l1 ,l2) can be easily derived in terms of
a1 and a2 and the Wiener process at two logarithmic scales
as.

W~l1 ,l2!5exp„$2a1~l12l2!

1Aa2@W~l1!2W~l2!#%…1/2.

Equation ~13! encodes a simple cascade process. Cascade
processes are simple and well known useful tools to describe
the leading phenomenology of intermittent energy transfer in
the inertial range. Both anomalous scaling exponents and
viscous effects @1# can be reproduced by choosing a suitable
random process for the multiplier. Cascade models, not re-
lated to the equations of motion, give quantitatively correct
values of j2n ; however, no model was able to address the
problem of the asymmetry of the probability density function
P(U ,r)ÞP(2U ,r), and as a consequence predict the scal-
ing exponents and amplitudes of the odd order structure
functions. Relying on the derived KM equation from the
Navier-Stokes equation in the infinite Reynolds numbers, we

have shown that an equivalent cascade model can be related
to the Fokker-Planck approximation. The approximate pro-
cess corresponds to an almost uncorrelated multiplicative
process over the cascade of velocity increments in scale. This
is equivalent to a log-normal description of scaling expo-
nents. Structure functions are described in terms of a multi-
plier W(l1 ,l2) through Sp(r)5Cp^@W(r/L)#p&, where
from the Langevin equation a pure power law arises in the
high Reynolds regime ^@W(r/L)#p&;(r/L)z(p). In this ap-
proximation the scaling exponents would be z(p)52pa1
1p(p21)a2/2. From a direct calculation of the Langevin
equation one can easily find the behavior of the multiscale
correlation function Fp1q(r ,R). In the same framework, it is
straightforward to show that

Fp1q~r ,R !;^@W~r ,R !#p@W~R ,L !#q&

; K FWS r

R D G pL K FWS R

L D GqL
;Sp~r !Sp1q~R !/Sp~R !. ~14!

The independence of multipliers in two different scales is
always assumed for the underlying cascade process; other-
wise the following relation would not be held. The present
framework equivalently encodes the following requirement
by the obvious independency of increments in a Wiener pro-
cess. Recently Benzi et al. @6# analyzed multiscale correla-
tion functions from finite but highest reachable Reynolds ex-
periments and synthetic signals. They elegantly sought to
find whether fusion rules ~3! are compatible with random
cascade phenomenology. Their main result was that all mul-
tiscale correlation functions are well reproduced in their
leading term r/R→0 by a simple uncorrelated random cas-
cade. In Yakhot modeling of the dynamics of the longitudi-
nal velocity increments in scale, all the above results are
recovered in the Fokker-Planck approximation. The predic-
tion of Yakhot theory for infinite Reynolds number turbu-
lence is consistent with fusion rules; however the almost
uncorrelated multiplicative process gives the statistics of
multiscale correlations only in Fokker-Planck approxima-
tion. Thus, qualitatively, the theoretical predictions of Ya-
khot and Benzi’s observations are consistent, but since there
are no data available for infinite Reynolds numbers we can-
not reveal anything quantitative regarding the compatibility
of theory and experiment. In addition, the question of a tran-
sition to an infinite Reynolds limit cannot be answered from
the theoretical modeling of Yakhot, since the theory does not
have any controlling parameter. Actually the proposed clo-
sure for the dissipation anomaly is written in the infinite
Reynolds limit, and seeking the transition to a finite Rey-
nolds numbers is quantitatively impossible within that
theory. It is also interesting to seek the limiting behavior of
the multiscaling correlation function for Burgers turbulence,
which is tractable by taking the limit of B→0 in our formu-
lation. Equation ~3! shows that the multiscaling correlation
function will be independent of the outer scale R, which is
consistent with our knowledge about Burgers turbulence
@14#. We think that preserving all the terms in the KM equa-
tion would provide complete information about cascade in
length scale, and this would answer the question of whether
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there are other subleading processes acting for energy trans-
fer from large to small scales. Preserving the GI breaking
terms in the corresponding stochastic processes would also
answer an important unanswered question regarding the ef-
fect of uneven PDF’s of velocity increments on the cascade.
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