
Nuclear Physics B 588 [FS] (2000) 630–637
www.elsevier.nl/locate/npe

Quenched averaged correlation functions
of the random magnets

M. Reza Rahimi Tabar
Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
Institute for Studies in Theoretical Physics and Mathematics Tehran, P.O. Box 19395-5531, Iran

CNRS UMR 6529, Observatoire de la Côte d’Azur, B.P. 4229, 06304 Nice Cedex 4, France

Received 25 May 2000; revised 10 July 2000; accepted 19 July 2000

Abstract

It is shown that the ratios of the quenched averaged three and four-point correlation functions of
the local energy density operator to the connected ones in the random-bond Ising model approach
asymptotically to someuniversal functions. We derive the explicit expressions of these universal
functions. Moreover it is shown that the individual logarithmic operators have not any contribution
to the connected correlation functions of the disordered Ising model. 2000 Elsevier Science B.V.
All rights reserved.

PACS:05.70.jk; 11.25.Hf; 64.60.Ak

1. Introduction

Random systems represent the spatial inhomogenuity where scale invariance is only
preserved on average but not for specific disorder realization. The understanding of the
role played by quenched impurities of the nature of phase transition is one of the significant
subjects in statistical physics and has attracted a great deal of attention [1]. According to
the Harris criterion [2], quenched randomness is a relevant perturbation at the second-order
critical point for systems of dimensiond , when its specific heat exponentα, of the pure
system is positive. Concerning the effect of randomness on the correlation functions, it
is known that the presence of randomness induces a logarithmic factor to the correlation
functions of pure system [3]. Theoretical treatment of the quenched disordered systems
is a non-trivial task in view of the fact that, one has to average the logarithm of the
partition function over various realization of the disorder in the statistical ensemble and
therefore find physical results. There are two standard methods to perform this averaging,
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the supersymmetry (SUSY) approach, and the well-known replica approach. Recently
using the replica approach it has been shown by Cardy [4], that the logarithmic factor
multiplying power law behavior are to be expected in the scaling behavior near non-
mean field critical points. It is shown also that the results are valid for systems with
short-range interactions and in an arbitrary number of dimensions. He concludes that in
the limit of n→ 0 of replicas the theory possess of a set of fields which are degenerate
(they have the same scaling dimensions) and finds a pair of fields which form a Jordan
cell structure for dilatation operator and derives logarithmic operator in such disordered
systems. Cardy proves that the quenched disordered theory withZ = 1 can be described
by logarithmic conformal field theory as well. The logarithmic conformal field theories
(LCFT) are extensions of conventional conformal field theories, which have emerged in
recent years in a number of interesting physical problems of condensed matter physics
[5–12] string theory [13–25], and nonlinear dynamical systems [26–29]. The LCFT are
characterized by the fact that their dilatation operatorL0 are not diagonalized and admit a
Jordan cell structure. The non-trivial mixing between these operators leads to logarithmic
singularities in their correlation functions. It has been shown [30] that the correlator of two
fields in such field theories, has a logarithmic singularity.〈

ψ(r)ψ(r ′)
〉∼ |r − r ′|−2∆ψ log|r − r ′| + · · · . (1)

In this direction we show that the quenched averaged connected correlation functions
of local energy density field can be written in terms of ordinary scaling operators which
can be constructed by the difference of energy operators in two different replicas. We
write the connected 3- and 4-point correlation functions of energy density explicitly in
terms of such ordinary operators. Furthermore we prove that the logarithmic operators
have no contribution in the quenched averaged connected correlation functions of the local
density operator. However, these operators play a considerable role on the disconnected
ones and produce some logarithmic factors in the correlation functions. We calculate the
various types of quenched averaged 3- and 4-point correlation functions of the local energy
density and show that the ratios of these correlation functions to the connected ones have
the specific universal asymptotic and write down these universal functions explicitly.

We consider a quenched random ferromagnet, for instance an Ising model, with random-
bond disorder. Let us describe this disordered system in the continuum limit by the
following Hamiltonian,

H =H 0+
∫
J (r)E(r)ddr, (2)

whereH 0 is the Hamiltonian of the renormalization group at fixed point describing the
pure Ising model. The fieldJ (r) is a quenched random variable coupled to the local
energy densityE(r). When the couplingJ (r) is independent ofx and not random, the
above Hamiltonian describes the behavior of the statistical model near it’s critical point.
For simplicity we assume that the random variableJ (r) is a gaussian variable which is
characterized by its two moments〈J (r)〉 = 0 and〈J (r)J (r ′)〉 = gδ(r − r ′). The standard
procedure of averaging over disorder is to introduce replicas, i.e.,n identical copies of the
same model for which



632 M.R. Rahimi Tabar / Nuclear Physics B 588 [FS] (2000) 630–637

Zn = Trexp

{
−

n∑
a=1

H 0
a −

∫
ddr J (r)

n∑
a=1

Ea(r)

}
(3)

averaging over the disorder gives rise to the following effective replical Hamiltonian:

HR =
n∑
a=1

H 0
a − g

∫ ∑
a 6=b

Ea(r)Eb(r)ddr, (4)

we keep only the non-diagonal terms, since using the operator algebra of the pure system
one can absorb the diagonal terms intoH 0

a . The replicas are now coupled via the disorder.
The scaling dimension of couplingg is yg = d − 2∆E and is relevant at the pure fixed
point if yg > 0. For smallyg it is possible to use standard perturbation theory and find the
possible random fixed point. It is noted by Cardy that then operatorEa are degenerate
at the pure fixed point and one can decompose them into irreducible representation of
permutation groupSn. It has been shown that the combinationEt =∑n

a=1Ea is a singlet
(symmetric under the permutation of the replica group) andẼa = Ea − 1

n

∑n
b=1Eb

transforms according to an(n− 1)-dimensional representation ofSn. The fieldsẼa satisfy
the condition

∑n
a=1 Ẽa = 0. The important observation is that the fieldsEt andẼa have the

proper scaling dimensions close ton→ 0 as∆Et =∆(0)Ea + 1
2(1−n)yg+O(y2

g) and∆
Ẽ
=

∆
(0)
E + 1

2yg +O(y2
g), respectively. It is clear that the singlet fieldEt becomes degenerate

with the(n− 1) operatorsẼa . This is true to all orders [4]. However, they do not form the
basis of the Jordan cell for the dilatation operator. To find the logarithmic pair according to
[4] we define the correlation function of〈Et (0)Et(r)〉 = A1 and〈Ẽa(0)Ẽa(r)〉 = B1 and
find the following relations forA1 andB1.

A1= n(a − (n− 1)b)≡ nA(n)r−2∆E(n),

B1=
(

1− 1

n

)
(a − b)≡

(
1− 1

n

)
B(n)r−2∆̃E(n), (5)

wherea = 〈Ei(0)Ei(r)〉 andb = 〈Ei(0)Ej(r)〉 with i 6= j . The above equations enable us
to write the quenched averaged connected two-point correlation functions of energy density
operator in terms ofa andb in the limit of n→ 0 as:〈E(0)E(r)〉c = a − b which is equal
toB(0)r−2∆E and it has a pure scaling behavior. However, the correlation functionsa and
b have the logarithmic singularities and behave as:〈

E1(0)E1(r)
〉= (A′(0)−B ′(0)+B(0)−B(0)yg

2
ln r

)
r−2∆E,

〈
E1(0)E2(r)

〉= (A′(0)−B ′(0)−A(0)yg
2

ln r

)
r−2∆E, (6)

whereA(0)= B(0). The prime sign in the Eq. (6) means differentiating with respect ton.
This means that in the limitn→ 0 the fieldsEt andEa form a basis of Jordan cell, i.e., their
two point correlation functions behave as:〈Et(0)Et (r)〉 = 0, 〈Et (0)Ea(r)〉 = a1r

−2∆E

and〈Ea(0)Eb(r)〉 = (−2a1 ln r +Da,b)r−2∆, wherea1 andDa,b are some constants. As
noted by Cardy the ratio of quenched averaged two-point correlators of the energy density
operator to the connected one has a universalr-dependence as:
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〈E(0)E(r)〉
〈E(0)E(r)〉c

∼ 〈E(0)〉〈E(r)〉〈E(0)E(r)〉c
∼ ln r. (7)

To understand the structure of Jordan cell, we note that in 2D one can define the operator
L0 as

L0=
(
∆E 0

1 ∆E

)
, (8)

so thatL0Et = ∆EEt and L0Ea = ∆EEa + Et in the limit of n → 0. Using this
representation forL0 one can show that the fieldEt with its logarithmic partnerEa
have the standard logarithmic correlation functions [31], (see the correlation above the
Eq. (8)). We note that in 2D we have dealt with two-dimensional conformal field theory,
relying heavily on the underlying Virasoro algebra. For an extension toD dimensions one
has to modify the representation of the Virasoro algebra to higher dimensions [32]. We
consider a doublet of fields (Jordan cell)Φ = (Et

Ea

)
and note that underD-dimensional

conformal transformationx → x′, we have,Φ(x)→ Φ ′(x′) = GTΦ(x) whereT is a
two dimensional matrix which has Jordan form andG = ‖ ∂x ′

∂x
‖ is the Jacobian. For our

particular caseT has the following Jordan form:

T =
−2∆E

D
0

1 −2∆E
D

 , (9)

and one can show that the two fieldsEt andEa , transform as:

Et(x
′)=G− 2∆E

D Et(x),

Ea(x
′)=G− 2∆E

D
(
ln(G)Et(x)+Ea(x)

)
. (10)

This expresses that the top-fieldEt always transforms as an ordinary scaling operator.
It can be verified that the correlation functions of fieldsEt andEa have the standard
D-dimensional logarithmic conformal field theory structure [31,32]. Using the above
results, it is evident that the dimension of field-differenceEa − Eb with a 6= b is ∆E
and it transforms as an ordinary operator under the scaling transformation. The interesting
observation is that the connected averaged correlation functions depends on the difference
fieldsEa − Eb only and therefore they behave as the ordinary correlation functions. For
instance, in the following we write the connected quenched averaged 2-, 3- and 4-point
functions of local energy density in terms of the field-difference operators explicitly

〈E(1)E(2)〉c =
1

2

〈
(Ea −Eb)(1)(Ea −Eb)(2)

〉
, (11)

〈E(1)E(2)E(3)〉c =
〈
(Ea −Eb)(1)(Ea −Ec)(2)(Ea −Eb)(3)

〉
, (12)

〈E(1)E(2)E(3)E(4)〉c
= 〈(Ea −Eb)(1)(Ea −Ec)(2)(Ea −Ed)(3)(Ea −Eb)(4)〉
− 1

2

〈
(Ea −Eb)(1)(Ec −Ed)(2)(Ec −Ed)(3)(Ea −Eb)(4)

〉
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−1

4

〈
(Ea −Eb)(1)(Ec −Ed)(2)(Ea −Eb)(3)(Ec −Ed)(4)

〉
−1

4

〈
(Ea −Eb)(1)(Ea −Eb)(2)(Ec −Ed)(3)(Ec −Ed)(4)

〉
,

where the last equation has only 15 independent terms.
To confirm this prediction also one can directly show that the quenched averaged

connected correlation functions have a pure scaling behaviour which is determined by
ordinary scaling operators and the logarithmic operatorsEa do not change its behavior.
This can be verified directly for the quenched averaged connected 3-point correlation
function of energy density.

We are interested in deriving exactly the various 3-point quenched averaged functions
as〈E(1)E(2)E(3)〉, 〈E(1)E(2)〉〈E(3)〉 and〈E(1)〉〈E(2)〉〈E(3)〉, which can be written in
terms of the replica correlation functions〈E1(1)E1(2)E1(3)〉 = a 〈E1(1)E1(2)E2(3)〉 = b
and 〈E1(1)E2(2)E3(3)〉 = c, respectively. One can derive the correlation functionsa, b
andc by means of 3-point functions ofEt andẼa as follows:〈

Et(1)Et (2)Et(3)
〉= na + 3n(n− 1)b, n(n− 1)(n− 2)c≡ nA1, (13)

〈
Ẽa(1)Ẽa(2)Et (3)

〉= n1a +
(
n2

1(n− 1)− 4n2
1+

1

n2 (n− 1)2+ 2

n2 (n− 1)(n− 2)

)
b

+
(
−2

n
n1(n− 1)(n− 2)+ 1

n2
(n− 2)2(n− 1)

)
c

≡
(

1− 1

n

)
B1, (14)

and finally,〈
Ẽa(1)Ẽa(2)Ẽa(3)

〉=(n2
1−

n− 1

n3

)
a

+
(
−3n2

1
n− 1

n
− 3

n3
(n− 1)(n− 2)+ 3

n2
n1(n− 1)

)
b

+
(

3

n2n1(n− 1)(n− 2)− 1

n3 (n− 1)(n− 2)(n− 3)

)
c

≡
(

1− 1

n

)(
1− 2

n

)
C1, (15)

wheren1 = (1− 1/n) andA1, B1 andC1 are pure scaling functions of variablesri,j .
To derive the above equations we use the replica symmetry and symmetry of the various
types of 3-point correlation functions under interchanging of positions. We note that replica
symmetry leads to have〈Ẽa(1)Et(2)Et (3)〉 = 0 and, therefore, dose not give any new
relationship betweena, b and c. Using the above equations, it can be found that the
correlation functionsa, b andc are as follows:

a = 3nB1− 3nC1+ n2C1+A1− 3B1+ 2C1

n2
,
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b= nB1− nC1+A1− 3B1+ 2C1

n2 ,

c= A1− 3B1+ 2C1

n2 . (16)

Using the above equations we can show that the connected quenched averaged 3-point
function behaves as:

〈E(1)E(2)E(3)〉 = 2c+ a − 3b= C1, (17)

which is a scaling function and confirms the observation that the logarithmic operators
(individually) have no role in the connected quenched averaged correlation functions. In
addition one can derive the correlation functions〈Ei(1)Ej(2)Ek(3)〉 for given i, j andk
in the limit of n→ 0 and show that they have the following form:

〈Ei(1)Ej(2)Ek(3)〉 =
[
αijk − βijkD1+ γijk

(
4D2−D2

1

)]
f (1,2,3), (18)

where

f (1,2,3)= (r12r13r23)
−2∆E ,

D1= ln(r12r13r23), D2= ln r23 ln r13+ ln r13 ln r12+ ln r23 ln r12.

It can also be shown that the ratio of various symmetrized 3-point functions to the
connected one behaves asymptotically as auniversalfunction

1

3

(
4D2−D2

1

)
. (19)

We generalize the above calculations to derive the various type of 4-point correlation
functions and show that the ratio of the various disconnected to the connected one have the
following universal asymptotic:

∼ 1

36

[
O3

1 − 6O2− 3O3− 12O4− 18O5
]
, (20)

whereO1 = ln(r12r13r14r23r24r34), O2 = (ln rij ln r2
kl + · · ·) with i 6= j 6= k 6= l, O3 =

(ln rij ln r2
ik + · · ·) with i 6= j 6= k, O4 = (ln rij ln rkl ln rlj + · · ·) with i 6= j 6= k 6= l, and

finally O5= (ln rij ln rik ln ril + · · ·) with i 6= j 6= k 6= l.
In summary, in this paper we have studied the correlation functions of disordered

random magnets [33] and obtain the various types of 3- and 4-point quenched averaged
correlation functions. One can check directly that these different types of the 3- and 4-
point correlation functions have the general property of a logarithmic conformal field
theory that the logarithmic partner can be regarded as the formal derivative of the ordinary
fields (top field) with respect to their conformal weight [31]. In this case, one can consider
theEa fields as the derivative ofEt with respect ton. We emphasise that the derivative
with respect to scaling weight can be written in terms of the derivative with respect ton.
These properties enable us to calculate anyN -point correlation function containing the
logarithmic fieldEa in terms of the correlation functions of the top-fields. The general
expression of the correlation functions of the LCFT’s are given in Ref. [31] and here
we determine the unknown constants in the logarithmic correlation functions in terms of
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details of the random-bond Ising model. It is noted that the formal derivations with respect
to scaling dimensions can not predict the unknown constants in the quenched averaged
correlation functions of the local energy density operators. The constant depends on the
detail of the statistical model. We have shown that the individual logarithmic operatorsEa

do not have any contribution to the quenched averaged connected correlation functions of
the energy density. We also obtain that the connected correlation functions can be written
in terms of the difference fields which transform as an ordinary scaling operator. However,
they will play a crucial role to the disconnected averaged correlation functions. Also we
find that the ratio of the various types of 3- and 4-point quenched averaged correlation
functions to the connected ones have a universal asymptotic behavior and give their explicit
form. These predictions can also be investigated numerically. Our analysis are valid in all
dimensions as long as the dimension is below the upper critical dimensions. To derive
the above results we have used the replica symmetry. Any attempt towards the breaking
of this symmetry will change completely the above picture and produces more than one
logarithmic fields in the block and produces higher order logarithmic singularities [31].

These results can be easily generalized to other problem such as polymer statistics,
percolation and random phase sine-Gordon model, etc.
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