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Abstract.  Jumps are discontinuous variations in time series and one expects 
that the higher jump activity will cause higher uncertainty in the stochastic 
behavior of measured time series. Here we study jump events in beat-to-
beat fluctuations in the heart rates of healthy subjects, as well as those with 
congestive heart failure (CHF). The analysis shows that the interbeat time 
series belong to the class of non-continuous stochastic processes. The estimated 
drift and diusion coecients and jump characteristics of healthy and CHF 
subjects reveal the distinguishability of two subjects.
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1.  Introduction

Physiological data and time series are generated by complex self-regulating systems and 
seem to be highly stochastic, represent nonstationary data, and fluctuate in an irregular 
and complex manner [1–14]. Among physiological time series, the study of the statis-
tical properties of heartbeat interval sequences has attracted much recent attention. 
Extensive analysis of interbeat interval variability has been carried out, as it repre-
sents an important quantity for elucidating the possibly nonhomeostatic physiological 
variability. In the conventional approaches to analyzing such data, the fluctuations 
are usually ignored because it is assumed that there is no meaningful structure in the 
apparent noise, so these studies focus on averaged quantities. Nowadays it is known 
that the eect of such fast dynamics can often be treated as dynamical fluctuations 
which is substantial when one aims to study the given complex beat-to-beat time series 
[12]. Such stochastic time series has many aspects to be studied due to their intrinsic 
complexities. Linear and non-linear correlations, fractal and multi-fractality and con-
tinuity are just a few examples of these aspects that might be related to each other by 
mathematical theorems [13, 14].

One particular model to analyze such processes was proposed by Stanley and co-
workers which is fractal Brownian motion (FBM). FBM is a non-stationary stochastic 
process which induces long-range correlations, the successive increments of which are, 
however, stationary and follow a Gaussian distribution [4]. The power spectrum of 
FBM is given by S( f) ∝ f−(2H+1) where H is Hurst exponent and they could distin-
guish healthy and congestive heart failures (CHF) by the value of H. Healthy data 
has Hurst exponent H  <  1/2 and CHF has H  >  1/2, but for the values of H near to 
1/2 there are ambiguities, so one needs a more ecient method [4–12, 15]. Another 
approach have been used by Ivanov et al [7]. They were able distinguish the healthy 
and CHF ones with multifractal detrended fluctuation analysis [16]. Bogachev et al 
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[17, 18], studied the statistics of return intervals between large heartbeat intervals 
of their multiplicative random cascade model above a certain threshold in order to 
obtain the probability density function of return interval, and a priori information 
about the occurrence of the next large heartbeat interval. In addition, Witt et al [19] 
have proposed a peaks over the threshold model, where high values of the superposi-
tion of a fractional noise and a white noise model the temporal occurrence of prema-
ture ventricular contractions.

It is known that the Kramers–Moyal (KM) expansion for the probability density 
of given stochastic process can reduce to the Fokker–Planck equation if higher-order 
(>2) KM coecients vanish [20]. There are, however, many physical experiments that 
indicate non-vanishing higher-order KM coecients [12, 21]. Nowadays, the non-van-
ishing higher-order KM coecients are related to jump events in given time series 
[14]. In practice jump events can participate in the observed non-Gaussian feature of 
increments (ramp up and ramp down) statistics of many time series [22]. This is the 
reason that most of the jump detection techniques are based on threshold values for 
the dierential of time series, i.e. y = dx/dt (it is standard to consider the events with 
|y| > 6σy as jumps).

Recently, it has been demonstrated that a finite sampling interval not only influences 
the first- and second order KM coecients but also causes non-vanishing higher-order 
ones [21]. Using information about these higher-order KM conditional moments, we 
utilize a novel criterion (as a necessary condition) to check whether, the underlying 
process has a continuous or discontinuous trajectory [21]. Also this novel approach is 
able to detect jump events in the time series.

This paper is organized as follows. In section 2, we describe Kramers–Moyal con-
ditional moments of conventional Langevin equation with finite sampling interval dt. 
In section 3, we provide a brief review of a non-parametric approach to estimate drift, 
diusion and jump characteristics of given time series. In section 4, we assert that the 
cardiac inter-beat intervals time series have jump contributions, and with estimating 
their stochastic characteristics, one can distinguish the healthy subjects from those 
with congestive heart failures. At the end, we summarize our studies in the conclusion 
part.

2. Continuous stochastic processes

Continuous stochastic processes are commonly modeled by conventional Langenvin 
equation,

dx(t) = D(1)(x, t)dt+
√

2D(2)(x, t)dW (t).� (1)

Here D(1)(x,t) and D(2)(x,t) are the first and second Kramers–Moyal coecients which 
are known as drift and diusion coecients, respectively and W (t) is a scaler Wiener 
process. The time series generated by equation (1) is a continuous diusion process [14]. 
The Kramers–Moyal coecients are related to the conditional moments for infinitesimal 
dt as follow

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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〈
(x(t+ dt)− x(t))1|x(t)=x

〉
= D(1)(x, t)dt〈

(x(t+ dt)− x(t))2|x(t)=x

〉
= 2D(2)(x, t)dt〈

(x(t+ dt)− x(t))2+s|x(t)=x

〉
= 0

� (2)

where s  >  0. Here, the KM coecients are given by D(m)(x, t) = M (m)(x, t)/m! =
limdt→0

1
m!dt

K(m)(x, t) with the conditional moments defined as

K(m)(x, t) = 〈(x(t+ τ)− x(t))m〉|x(t)=x .� (3)

The probability density function p(x, t) of given Markov process satisfies a partial 
dierential Kramers–Moyal equation, which is the infinite order in the state variable 
x and of first order in time t. According to the Pawula theorem, the Kramers–Moyal 
expansion could be truncated after the second term if the fourth-order coecient 
D(4)(x,t) vanishes. In this case, the time series will be statistically continuous.

To derive the equation  (2), we assumed that the time series is continuous, even 
though it is already sampled in discrete times due to the limited sampling frequency, 
which in turn will cause non-vanishing D(4)(x,t). So we should take care of whether non-
vanishing D(4)(x,t) is related to non-continuous behavior in the time series or just is an 
artifact of discrete sampling. The finiteness of sampling rate force us to derive the cor-
rection terms in the equation (2). One finds the following finite sampling expansions of 
the KM conditional moments as [21]; 

K
(2)
d (x, dt) = b2dt+

1

2

[
2a (a+ bb′) + b2

(
2a′ + b′2 + bb′′

)]
dt2 +O(dt)3,

K
(4)
d (x, dt) = 3b4dt2 +O(dt)3,

K
(6)
d (x, dt) = 15b6dt3 +O(dt)4

�

(4)

where D(1)(x,t)  =  a(x,t) and D(2)(x, t) = b2(x, t)/2. Here we omit the x- and t-dependence 
of a and b to enhance readability. In general, checking the Pawula theorem for given 
empirical data is not an easy task. With the second- and fourth-order conditional 
moments for small dt one finds K(4)(x)/3(K(2)(x))2, which confirms Wick’s theorem 
[20, 21] and follows from the fact that the short-time propagator of the Langevin 
dynamics (equation (1)) is a Gaussian distribution.

3. Non-parametric jump-diusion modeling

According to the Pawula theorem, if a process has non-vanishing D(4)(x, t) �= 0 (or the 
criterion K(4)(x)/3(K(2)(x))2 does not fulfil [21]), the higher order KM coecients will 
not vanish. Therefore the continuous diusion Langevin equation will not be appropri-
ate to model such systems. For such time series jumps will play important role [14].

A typical jump-diusion dynamics can be defined as [14]; 

dx(t) = D(1)(x, t)dt+
√

D(2)(x, t)dω(t) + ξdJ(t)� (5)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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where J(t) is a time-homogeneous Poisson jump process. Also {W (t), t � 0} is a scalar 
Wiener process, D(1)(x,t) the drift function and D(2)(x,t) the diusion function. The jump 
has rate λ(x), can be state dependent and size ξ which we assume it has zero mean 

gaussian distribution with variance σ2
ξ (x), which is known as jump amplitude.

For infinitesimal dt, it is shown recently [14] that; 

K
(1)
j (x, dt) = D(1)(x, t)dt,

K
(2)
j (x, dt) =

[
D(2)(x, t) + 〈ξ2〉λ(x)

]
dt,

K
(2m)
j (x, dt) = 〈ξ2m〉λ(x)dt, for 2m > 2,

� (6)

the subscript ‘j ’ denotes jumpy process. Using the relation 〈ξ2m〉 = (2m)!
2m(m!)

〈ξ2〉m, for the 

Gaussian random variable ξ in equation (6), the jump rate λ(x, t) and jump amplitude 

σ2
ξ  can be written in terms of KM coecients as:

λ(x, t) =
M (4)(x, t)

3σ4
ξ (x, t)

� (7)

σ2
ξ (x, t) =

M (6)(x, t)

5M (4)(x, t)
.� (8)

Once the jump components σ2
ξ (x, t) and λ(x, t) are identified, the second moment 

M(2)(x,t) identifies the diusion function D(2)(x,t) and the first moment gives us the esti-
mate for the drift function D(1)(x,t).

4. Result

4.1. Reconstruction of Ornstein–Uhlenbeck process with jumps

To demonstrate the ability of our approach, we estimate drift, diusion, and jump 
characteristics from time series of well-known jump-diusion processes (Ornstein–
Uhlenbeck process in the presence of jump) with preset coecients. We consider a 
linear drift D(1)(x,t)  =  −10x, constant diusion coecient D(2)(x,t)  =  1, with jump rate 

λ = 0.6 and jump amplitude σ2
ξ = 1 in equation (5) and then using the equations (6)–

(8), we reconstruct these functions with Gaussian kernel estimator. For all estimated 
functions and coecients, we obtain a very good agreement with theory (figure 1). In 
figure 2 the state dependence of K(4)(x) and 3(K(2)(x))2 for jump rates λ = 0 and λ = 0.6 
are plotted. When K(4)(x) equals to 3(K(2)(x))2, would Langevin equation proper for 
modeling. For jump-diusion processes the fraction K(4)(x)/3(K(2)(x))2 can be larger 
than unity [21].

4.2. Detection of non-diusive behaviour in time series

In order to distinguish that if the underlying process is jumpy or diusive, a novel cri-
terion Q is driven as follows [21]:

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Q(x) =
K

(6)
• (x, dt)

5K
(4)
• (x, dt)

≈
{
b2(x)dt, diffusive (•=‘d’)
σ2
ξ (x), jumpy (•=‘j’).� (9)

Here the subscript • is a placeholder for either ‘d’ or ‘j ’. For a jumpy process, Q(x) has 

the value σ2
ξ (x) which does not have dt-dependence. Also for a diusive process, Q(x) 

exhibits a vanishing behavior with decreasing time interval dt. We check the values of 
Q(x) and its dependence on dt for Ornstein–Uhlenbeck process with and without jumps 
in (figure 3).

4.3. Non-diusive behaviour in inter-beat intervals time series

Ghasemi et al construct Langevin dynamics for analyzing cardiac inter-beat intervals 
[23]. They distinguished the healthy subjects from those with CHF using estimated 
drift and diusion coecients. We take a closer look at heartbeat data which they used, 
and show that the data have non-diusive characteristics and one needs to model it 
with jump-diusion dynamics.

Figure 1.  Reconstruction of Ornstein–Uhlenbeck process with jump. The numerical 

integration has been done with dt = 10−3 with 107 data points for λ = 0.6, σ2
ξ = 1.

Figure 2.  Checking the criterion K(4)(x) � 3(K(2)(x))2 for diusive (left panel), 
for instance Ornstein–Uhlenbeck process without jump and jumpy (right panel) 
processes.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The data we analyze here were part of previous studies [23]. The number of data 
points is of the order of 30 000, taken over a period of about six hours which have been 
started on the morning, and the subjects are awake and at rest. The database includes 
ten healthy subjects (seven females and three males with ages between 20 and 50, and 
an average age of 34.3 years), and 12 subjects with CHF (three females and nine males 
with ages between 22 and 71, and an average age of 60.8 years). The data is available 
at www.physionet.org/challenge/chaos/. Two typical inter-beat time series of healthy 
and CHF subjects are shown in figure 4.

First of all, to check whether inter-beat time series are diusive, we calculate the 
value of K(4)(x)/3(K(2)(x))2 for healthy and CHF subjects and the results are shown in 
figure 5 for zero mean time series. As it is clear, by considering the error bars, K(4)(x) 
is not equal to 3(K(2)(x))2 which demonstrates that D(4)(x) �= 0, and therefore we can 
rule-out the diusive nature of the studied time series. However this cannot say that 
whether the time series is jumpy or not. Therefore, we use Q-criterion as it was intro-
duced in equation (9).

Before going into details, we briefly mention that in the case of empirically derived 
time series that were sampled with a fixed sampling interval ∆, equation (9) can be 
verified by scaling the time interval as dt = α∆, where α = 1, 2, 3, . . . (i.e. by consider-
ing data points {x(0), x(α∆), . . .} only). Checking the dependence of Q(x) on dt = α∆ 
then indicates a possibly diusive or jumpy behavior [21]. For coarse scales (α � 1), 
we expect Q(x) to take on non-vanishing values, given that data discretized at such 
scales appears as a succession of discontinuous jumps, even if the underlying trajectory 
is continuous. For small scales (α = O(1)) and diusive processes, Q(x) approaches zero 
since the Brownian-type (Wiener-type) behavior of the process produces a continuous 
trajectory [21]. Thus, the small-scale behavior of Q(x) for α = O(1) is an indicator for 
rapid changes or jumps in a given time series.

In figure 6, Q(x) versus coarse scale α for healthy subjects and CHF ones are shown 
and we can clearly see the Q(x) is not approaching zero when α → 0, which represents 
that time series is inherently jumpy. So, modeling inter-beat fluctuation of heart rate 
with jump-diusion equation is authentic in this case.

Figure 3.  Dependence of Q(x0) on time interval dt exemplary time series of Ornstein–
Uhlenbeck process with and without jumps with jump amplitude σ2

ξ = 1. We chose 

x0 around the mean of the respective time series. Lines are for eye guidance only. 
We have chosen dt ∈ {10−5, 2× 10−5, 4× 10−5, 6× 10−5, · · · , 10−2}, in integration 
of corresponding stochastic equations in Euler–Maruyama scheme.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
http://www.physionet.org/challenge/chaos/
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4.4. Jump-diusion modeling of inter-beat intervals time series

Now using the relations equations (6)–(8), we estimate the drift and diusion coecients, 
as well as jump rate and jump amplitude, in a range ±2σ for the interbeat time series, 

Figure 4.  Segments of inter-beat time series of healthy and CHF subjects. The 
x-axis is the number of data points of beat-to-beat data.

Figure 5.  Checking the Pawula theorem with criterion K(4)(x) � 3(K(2)(x))2. The 
plots show that interbeat time series of (two) healthy and (two) CHF subjects are 
not belong to the class of continuous stochastic processes.

Figure 6.  Dependent of Q(x0) on time interval α for inter-beat time series of 
healthy and CHF subjects. We chose x0 around the mean of the respective time 
series. Lines are for eye guidance only. The zero limit of α show that Q(x0)’s 
approaches to constants.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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and standard errors are shown in figure 7. As shown in the figure 7, the estimated 
drift coecient D(1)(x), D(2)(x) and jump characterises, i.e. jump rate λ and jump ampl

itude σ2
ξ  reveal the distinguishability of two subjects. The inverse of the slope of the 

linear portion of drift coecient estimates the correlation time scale, so by compar-
ing the drift coecient between these two groups, the slope of the D(1)(x) for healthy 
group is greater than CHF for the subjects which means they have shorter correlation 
time scales. The higher values of jump amplitude for healthy subjects show that they 
have stronger jumps than the ones with congestive heart failure. The higher values of 
healthy ones’ error bars show that we have a wide variety of healthy people, however, 
the heart disease causes their distribution to collapse in a narrow range.

5. Conclusion and discussion

Many empirical time series exhibit fluctuations that are interrupted by jumps in very 
short time between dierent states of a system. Examples include dynamics of stochas-
tic resonance, fluctuations of wind and solar power systems, transitions in financial and 

Figure 7.  Estimated drift and diusion coecients as well as jump rate and 
jump amplitude for inter-beat time series of healthy and CHF subjects, reveal the 
distinguishability of two subjects.

Figure 8.  Time-resolved estimates of Q(x(t)) ≡ Q(t) for the time series for the 
time series of a healthy (right) and a CHF subject (left).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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climate data, eye movements, or movement and foraging paths of animals, see [12, 21] 
and references therein. In this paper we provide evidence that inter-beat time series of 
healthy and CHF subjects are not continuous stochastic processes and then extract the 
functions and parameters in jump-diusion modeling. The estimated quantities reveal 
the distinguishability of two subjects.

We note that the inter-beat fluctuation time series belong to the non-stationary 
processes [24], and their stochastic properties will depend on time. Using a kernel esti-
mation of Kramers–Moyal coecients, one can find the local stochastic properties of 
given time series [21]. In figure 8 time-resolved Q(x(t)) for  ∼24 h inter-beat time series 
of healthy and CHF are given, which show high variability of jump properties during 
dierent hours of day. The temporal evolution of Q(x(t)) provides strong evidence for 
an intermittent switching between diusive and jumpy behavior [14, 21, 25].

We finally note that most of the previous works are model-based [17–19], while our 
proposed approach is a time-series-based approach and all the functions of the model-
ing can be found directly from data, therefore is applicable in analysing large class of 
complex time series. Modeling distribution of inter-beat time series with q-statistics 
will be one of the next steps in study of such time series [26–29].
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