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Abstract

Data sampled at discrete times appears as a succession of discontinuous jumps, even if the underlying
trajectory is continuous. We analytically derive a criterion that allows one to check whether for a given,
even noisy time series the underlying process has a continuous (diffusion) trajectory or has jump
discontinuities. This enables one to detect and characterize abrupt changes (jump events) in given
time series. The proposed criterion is validated numerically using synthetic continuous and
discontinuous time series. We demonstrate applicability of our criterion to distinguish diffusive and
jumpy behavior by a data-driven inference of higher-order conditional moments from empirical
observations.

1. Introduction

Many empirical time series exhibit fluctuations that are interrupted by jumps in very short time between
different states of a system [1]. Examples include dynamics of charge transport in various materials [2],
stochastic resonance [3], moving fronts [4], light curves of variable astronomical objects [5], fluctuations of wind
and solar power systems [6], early warning signals of systems near to their tipping points [7], transitions in
financial [8, 9] and climate data [10], ion channel dynamics [11], eye movements [12], or movement and
foraging paths of animals [13]. Jumps generate pronounced discontinuities in time series of observables and
apparently, the underlying trajectories are unlikely to be generated by statistical continuous, diffusion-type
processes. Such processes have been extensively studied [14, 15] and are commonly modeled by a Langevin
equation (using the It6 interpretation) as

dx(t) = a(x, t)dt + b(x, t)dW (¢), (1)

where {W (¢), t > 0} is ascalar Wiener (Brownian) motion, and a(x, £) and b?(x, t) denote the state-dependent
deterministic drift and the diffusion functions. A process x(f) generated with equation (1) is a continuous
diffusion process if a(x, t) and b(x, t) are smooth and do not change dramatically over a short time interval dt
[16]. The unknown functions a(x, t) and b(x, t) can be found non-parametrically [17]—i.e. directly from
measured time series—in terms of the first- and second-order Kramers—Moyal (KM) coefficients. For a
continuous diffusion process (equation (1) and for infinitesimal d¢), we have

(et + dt) — x(O)]x)=x) = alx, t)dt
((x(t + dt) = x())|xiry)=x) = b*(x, H)dt
((x(t + dt) — x())*le=x) = 0, )

withs > 0. Here the KM coefficients are given by M™ (x, t) = limg,_.¢ iK M) (x, t), with the conditional
moments K™ (x, t) = ((x(t + dt) — x())"|x(1)=x)-

For this type of process and using the conditional probability distribution, one can show that x(¢) satisfies
Lindeberg’s continuity condition, given some 6 > 0[16]

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aaf0d7
https://orcid.org/0000-0002-5529-8559
https://orcid.org/0000-0002-5529-8559
mailto:klaus.lehnertz@ukbonn.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaf0d7&domain=pdf&date_stamp=2018-11-30
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaf0d7&domain=pdf&date_stamp=2018-11-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 20 (2018) 113043 K Lehnertz et al

Ct) = lim DroPUAXMI > O]
dt—0t dt

where Ax(t) = x(t + dt) — x(¢).

When analyzing empirical data, one might want to ensure that the corresponding time series can indeed be
modeled by equation (1). For this purpose, one should check if the fourth-order KM coefficient M® (x, t)
vanishes. If this was the case, then—according to the Pawula theorem [18]—all higher-order (>2) coefficients
will vanish too (M® = 0 — M® = M® = M© = ... = 0), and the probability density of the underlying
process can be described by a Fokker—Planck equation [17].

In general, for a given time series, the non-vanishing of higher-order (>2) KM coefficients can be related to
the existence of jumps in the time series [16]. In this case, the KM coefficients provide an upper limit for the
continuity condition (equation (3)): C(f) < M(y:flx’ D which holds for anym > 3 (provided the first- and
second-order coefficients are non-vanishing) [16]. Therefore, any vanishing higher-order KM coefficients,
particularly the fourth-order one (M™ (x, t)), guarantee that the underlying process is statistically continuous.
Depending on the problem formulation, checking the boundedness of the aforementioned continuity condition
may be easier than estimating the tail of the probability distribution.

Here we demonstrate that a finite time interval d¢ not only influences the first- and second-order KM
coefficients [19] but also causes non-vanishing higher-order (>2) ones. We derive a novel criterion to check
whether for a given, even noisy time series the underlying process has a continuous trajectories or has jump
discontinuities.

This paper is organized as follows. In sections 2 and 3, we present higher-order conditional moments of
continuous, linear and nonlinear diffusion processes as well as of jump-diffusion processes. We then present in
section 4 a novel criterion to distinguish diffusive and jumpy behavior in time series. In section 5, we derive the
first- and second-order conditional moments of noisy empirical time series, and in section 6, we provide our
results from an analysis of two real-world time series. We summarize our paper in section 7. All derivations and
proofs are presented in appendices A and B.

2. Higher-order conditional moments of continuous, linear and nonlinear diffusion
processes

We begin by deriving conditional moments of the Langevin equation (1) for different orders of the time interval
dt (see appendix A and [20]). We find the following expressions for the conditional moments of orders

m € {2, 4, 6}, if we consider terms up to the order of the first non-vanishing power in O(d¢?) form = 2and
m = 4, respectively O(dt?) for m = 6 (here we omit the x- and t-dependence of a and b to enhance readability)

KP(x, df) = b2dt + %[Za(a L)+ b2+ b2 4 bbM]de? + Odry,

K (x, dt) = 3b*dt? + O(dr)?,
K$® (x, dt) = 156°d1> + O(dt)*, (4)

where the subscript ‘d” denotes diffusion, and where a’ and b’ denote the firstand a” and b” the second
derivatives with respect to state variable x. We check the validity of expansions in equation (4) as well as of those
for conditional moments of orders m € {1, 3, 5} (see appendix A) by reconstructing stochastic processes with
known drift and diffusion coefficients from synthetic time series sampled with time intervals d¢ spanning three
orders of magnitude.

For both linear and nonlinear continuous processes described by the Langevin equation (equation (1)), we
find a very good agreement between estimated conditional moments and the respective theoretical predictions
(see figures 1 and 2), demonstrating the validity of our approach for such systems. As expected, we find the
second-order conditional moment to depend linearly on dt while the fourth-order one scales with d¢? (see
figure 3). These findings demonstrate that—even for continuous diffusion processes—non-vanishing higher-
order (>2) conditional moments can originate from a finite time interval d¢.

With the second- and fourth-order conditional moments for small d¢ we find
K 34) (x, dt) ~ 3(K 52) (x, dt))?, which confirms Wick’s theorem [21, 22] and follows from the fact that the short-
time propagator of the Langevin dynamics (equation (1)) is a Gaussian distribution [17]. No such short-time
propagator, however, is known for general jump-diffusion processes (see below). In figure 4, we show this
relationship for the aforementioned continuous nonlinear diffusion process. Similar findings can be obtained
for a continuous linear diffusive process, and we note that a normalization of the time series leaves this
relationship between the fourth- and second-order conditional moments unaffected. For the analysis of
empirical data, we propose to use this relationship to judge whether the fourth-order moment tends to zero.
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Figure 1. Conditional moments Ké” (x, dt) to Kc(f’) (x, dt) estimated from exemplary time series of a continuous linear diffusion
process (equation (1)), generated with a(x) = —pxand b(x) = by (p = 10,by, = 1) and with a time interval df = 10~°. Time series
consisted of N = 3 x 10° data points. We observed extreme events up to about 43¢ for these time series (o denotes the standard
deviation). Error bars indicate the standard error of the mean (SEM) in each bin. Theoretically expected values are shown as red lines,
and in the range +20 more than two-thirds of these values lie within the SEM interval of estimated conditional moments. Deviations

due to low statistics.
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Figure 2. Same as figure 1 but for exemplary time series of continuous nonlinear diffusion process, generated with a(x) = —pxand

b(x) = by + bix*(p = 5,by = 0.1,b; = 0.05) and with a time interval dt = 10~°. Time series consisted of N = 3 x 10° data points.
We observed extreme events up to =40 for these time series. Theoretically expected values are shown as red lines, and in the range
+1.50 more than two-thirds of these values lie within the SEM interval of estimated conditional moments. Deviations in the tails are
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Figure 3. Dependencies of conditional moments K c(lz) (xg, dt) and K 54) (x¢, dt) for some x = x, on time intervals df for a continuous
nonlinear diffusion process (see figure 2; we obtained similar findings for the continuous linear diffusion process). Conditional
moments were estimated from normalized time series (zero mean and unit variance). When analyzing empirical data, the ratio
between fourth- and second-order conditional moment (see inset) is often used to judge whether the fourth-order moment tends to
zero. Lines are for eye guidance only.
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Figure 4. Relationship between the fourth- and squared second-order conditional moment K 54) (x0, dt) and (K 52> (xg, dt))? for
different time intervals d¢. Continuous nonlinear diffusive process generated with time intervals

dt € {107%,2 x 107%, 4 x 107%, 6 x 107°, ---, 10~*}. We chose xy around the mean of the respective time series. Lines are for eye
guidance only.

3. Higher-order conditional moments of jump-diffusion processes

As athird example, we consider a dynamical stochastic equation that is capable of generating a discontinuous
trajectory [16]
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dx(t) = a(x, H)dt + b(x, HAW (t) + £dJ (1), (5)

where {W (t), t > 0} is ascalar Wiener process, a(x, f) and b(x, t) are again the state-dependent deterministic
drift and the multiplicative functions, and J(¢) is a time-homogeneous Poisson jump process (we assume that
jump events are rare and can be modeled via a Poisson process). Jumps have state-dependent rate A(x) (which
defines the mean waiting time 7, = 1/ between successive jumps) and size & which we assume to be Gaussian
distributed with zero mean and variance 0’2 (or to follow any symmetric distribution with finite moments).

For infinitesimal dt, it was shown recently [16] that

KV(x, dt) = a(x, 1)dt,
KP(x, dt) = [b2(x, 1) + (€3 A(0)]dt,
K (x, dt) = (€™ A(x)dt,  for 2m > 2, (6)
(the subscript ” denotes jumpy), and in the following, we derive conditional moments for different orders of the
finite time interval d¢. From equation (6), we would expect for infinitesimal d¢ that all conditional moments
(except the odd-order ones with 1 > 1) are non-vanishing. Therefore the conditional probability distribution p

(x, t) of the process x(t) in equation (5) satisfies the KM differential equation (see appendix B). We find the
following expressions for the conditional moments of orders m € {2, 4, 6}:

KP(x, dr) = 2Bdt
+ %[2/\2 + 2ABYY 4+ 4BAY 4+ 2BB2} 4 8CABY 4+ 2CBi
+ 12DABY 4+ 2DB - O(6)]1de? + O(dr)?,

K®(x, dr) = 4!Cdt
+ %[4!AC“} + 4!B% 4 4!BC'?} + 4 - 41CAV)

+ (41)?2/2121CB2} 4+ 41CCH + 4 - 6! /31DAB
+ 6!/2!DB + 41DC!® + O(8)]1dt? + O(dt)?,
K (x, dr) = 6!Dd¢

+ %[6!AD“} +2-6'BC + 6!BD2} + 6 - 6!CCt2)

+6!CD™ + 6 - 6!DAY 4 (6!)2/412!DB?}

+ (61)2/412!DC"} + 6!DD(®} + 6 - 8! /3!EAB!

+ 30 - 8!/4!EB™} + 81/21EC(®) + 6!ED18)

+ O(61dt? + Odr)?, 7)

where the superscript {i} denotes the ith derivative with respect to x. The terms A—E are related to drift and
diffusion functions and jump properties as (see appendix B)

A=a(x, 1),
B b2(x, t) + (%) A(x)
2! ’
Cc— <£4>/\(x)’
4!

{9 A )

e

ECRYEO)
F=" ®

and the term O(6) comprises higher order-derivatives of A, B, etc. We note that jump events induce terms of
order O(dt) in the conditional moments of even orders. In addition, jump properties A(x) and a% induce terms
of order O(dt)? in all conditional moments.

We check the validity of expansions in equation (7) as well as of those for conditional moments of orders
m € {1, 3, 5} (see appendix B) by reconstructing a jump-diffusion process with known drift and diffusion
coefficients as well as known properties of jumps from synthetic time series sampled with time intervals d¢
spanning three orders of magnitude (for our examples, the fourth-order derivative of A and the fifth-order
derivative of B are vanishing. In addition, all derivatives of terms C, D, ..., in equation (7) are zero). We note that
finite-N synthetic data from equation (5) may not have jump number #; >~ AN for a constant jump rate. We find
again a very good agreement between estimated conditional moments and the respective theoretical predictions
(see figure 5), demonstrating the validity of our approach even for such systems.
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Figure 5. Conditional moments Kj(l) (x, dt)to K ;6) (x, dr) estimated from exemplary time series of a discontinuous jump-diffusion
process (equation (5)) generated with a(x) = x — x*and b(x) = x2, with jump rate A = 0.3 and size (7% = land with a time interval
dt = 107, Time series consisted of N = 3 x 10° data points. We observed extreme events up to about -=10¢. Error bars indicate the
standard error of the mean (SEM) in each bin. Theoretically expected values are shown as red lines, and in the range +5¢ more than
two-thirds of these values lie within the SEM interval of estimated conditional moments. Deviations in the tails are due to low
statistics.

In order to derive the unknown functions in equation (6), we use the slope of K. j(4) (x, dt) for small dt (see
figure 3) and estimate (%) A (x) . Similar analysis can be done for Kj@ (x, dt), and in this way we can estimate

(€% X (x). With Gaussian distributed jump amplitudes, it follows that (£2") = % (&%) and (£211) = 0, for
n=1,2,..,where O’% = (£%). Small dt limit both Kj(4) (x, dt)and Kj(6) (x, dt), and this leads to 30§A(x) and
3002 A(x). Now we can estimate both jump amplitude aé and jump rate A(x) from K j(4) (x, dt)and Kj(ﬁ) (x, dp).
Once the jump characteristics are identified, K j(z) (x, dr) identifies the diffusion function b and K. j(l) (x, dr)
provides an estimate for the drift function a.

In closing this section, we note that for jump-diffusion processes and for small d¢ the ratio between fourth-
and second-order conditional moments diverges as

K" (x, dr) (EH Ax)dt

~ ~ 1/dt, 9
3K (x, dn))? B[ (x) + (€ A0)Pde? /d ®

instead of approaching unity as observed for continuous diffusion processes (see section 2). The expansions
presented here (see appendix B) allow one to derive short-time expansion of the KM conditional moments for
jump-diffusion processes.

4. A criterion to distinguish diffusive and jumpy behavior in time series

With conditional moments K* (x, dt) and K® (x, dt) (the subscript * is a placeholder for either ‘d’ or ) and
using either relations 4 or relations 7, we now derive a function Q(x) that—for small time intervals dt—allows
one to detect and to distinguish diffusive and jumpy behavior in time series

K©(x, dt) b2(x)dt, diffusive (*=d")

Q) = k@ dn ~ Vo2, jumpy (=).

(10)

For non-stationary processes, the conditional moments K™, the diffusion function b, and the jump amplitudes
0'% are time-dependent.

For the exemplary time series of linear and nonlinear continuous stochastic processes generated with
equation (1), Q(x) exhibits a vanishing behavior with decreasing time interval d, where the slope depends on the

6
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Figure 6. Dependence of Q(x,) on time interval d¢ for exemplary time series of a linear (top) and nonlinear continuous stochastic
process (middle) and of a jump-diffusion process with jump amplitude 02 = 1 (bottom). We chose x, around the mean of the
respective time series. Lines are for eye guidance only.

diffusion function b (see figure 6). Any deviation from Q(x) ~ b?(x)dt will rule out that the underlying process
is diffusive. For the exemplary time series of the jump-diffusion process generated with equation (5), Q(x)
converges to the jump amplitude o¢. We note that Q(x) will approach (£°) /5(¢*) for jump amplitudes with a
non-Gaussian distribution.

5. Higher-order conditional moments of noisy empirical time series

We now consider the case that a time series x(#) is contaminated with some noise 7(t), which is not assimilated by
the stochastic process, leading to y(f) = x(#) + 7(t). The noise 7(¢) is supposed to be uncorrelated with x(¢), and
we assume that it has finite even-order statistical moments (") and vanishing odd-order ones. To reconstruct
the unknown dynamics x(#) from the measurement (%), it is essential to quantify n(f) and its influence on the
reconstruction of KM coefficients. One can derive the following expressions for the first- and second-order
conditional moments of y(f) (the subscript ‘n’ denotes noisy) [23]:

Ky, dt)y = KV (x, dt) + (),
KP(y, dt) = K@ (x, dt) + 72(»), (11)

where v, (y) = (x(t) — y)and 1, (y) = ((x(t) — »)?). In the weak noise limit (y/ (*(¢)) < 0.04{/DP(x)), we
find 7, (y) ~ 2(n?) [23]. We note that the averaged statistical moments ((x (t) — y)™) do not depend on dt.
These terms cause a strong overestimation of KM coefficients M™(y, t) = limg; .o iK.(’") (y, dr) for small dr
and thus of the functions of interest in equations (1) and (5). Now, equations (4) and (7) state that there are
extra df-independent terms contributing to the conditional moments and these constants can be subsumed
with the different statistical moments of the noise. These constants can easily be estimated by dividing the even-
order conditional moments for y(¢) by d¢ (because this leads to a divergence of KM y, dt)/dt)[23],and
averaged higher-order statistical moments of 77 can then be derived from the knowledge of the lower-order ones.
Having estimated the averaged statistical moments of the noise allows one to find conditional moments for the
time series x(¢), and with equation (10) one can check whether the underlying process has a continuous
(diffusive) or discontinuous (jumpy) trajectory.

6. Application to real-world time series

In this section, we demonstrate applicability of our criterion to distinguish diffusive and jumpy behavior
(equation (10)) by a data-driven inference of higher-order conditional moments from empirical observations.

7



10P Publishing

NewJ. Phys. 20 (2018) 113043 K Lehnertz et al

5/0'5

t [s]

—_

0.0

0 1 2 3
t[s] x10%4

Figure 7. Top: exemplary time series for the spatial position S of a bead trapped in optical tweezers. Bottom: section of the time series
for the clear-sky index I". Night times have been removed.

Before going into details, we briefly mention that in the case of empirically derived time series that were sampled
with a fixed sampling interval A, equation (10) can be verified by scaling the time interval as dt = oA, where

o = 1,2,3,... (ie. byconsidering data points {x(0), x(«A),...} only). This scaling changes the estimated drift
coefficient a to « g, the diffusion coefficient b to </a'b, and the estimated jump amplitude J% to 04202, sothat Q
(x) scales as @?Q (x). Checking the dependence of Q(x) on dt = A then indicates a possibly diffusive or jumpy
behavior. For coarse scales (o > 1), we expect Q(x) to take on non-vanishing values, given that data discretized
at such scales appears as a succession of discontinuous jumps, even if the underlying trajectory is continuous. For
small scales (« = O(1)) and diffusive processes, Q(x) approaches zero since the Brownian-type (Wiener-type)
behavior of the process produces a continuous trajectory [16]. Thus, the small-scale behavior of Q(x) for

a = O(1)isan indicator for rapid changes or jumps in a given time series. For our analysis, we expect that the
scaled sampling interval is lying in the interval ty; < A < 7,. Here, t\s denotes the Markov—Einstein time
scale, which is the minimum time interval over which the data can be approximated by a Markov process; t; can
be estimated from the investigated time series [17], for instance by directly checking the validity of the
Chapman-Kolmogorov equation [24]. The mean waiting time 7, between jumps is defined as in section 3 and
can be estimated from the investigated time series as described in [16].

The data we analyze here were part of previous studies [6, 25, 26]. The first time series is a measurement of
the spatial position of a dielectric bead (polystyrene, diameter ~1 pum, Bangs Laboratories Inc. USA) trapped in
optical tweezers. The setup consisted of a Nd:YAG laser (power: 73 mW, wavelength: 1064 nm, Coherent, USA)
focused using a water immersion objective (Olympus Corp., Japan) in an optimal condition [27, 28]. A SiPIN
quadrant photodiode (§5980, Hamamatsu Photonics K. K., Japan) was positioned at the back focal plane (BFP)
of the condenser allowing an accurate detection of the displacements of the trapped bead through the BFP
detection scheme [29]. The voltage output of the quadrant photodiode was first amplified and then digitized
using an A/D card (National Instruments Corp., USA). Trapping experiments were conducted under the
optimal condition with almost zero aberrations at a depth of ~10 pm in order to neglect the hydrodynamic
effect of the chamber walls. Once a bead was trapped, ten positional time series (see figure 7 top) were recorded
over a period of 3 s each with a sampling rate of 22 kHz (see [25] for further details; ty; = A). A data-driven
estimation of the first- and second-order conditional moments confirmed the diffusive nature of the bead
dynamics [25].

The second time series is based on a 12 months measurement (with a sampling rate of 1 Hz) of global solar
irradiance on horizontal and inclined surfaces conducted by the United States’ National Renewable Energy
Laboratory at Kalaeloa Airport (21.312° N, -158.084° W), Hawaii, USA, from March 2010 until March 2011
[30]. Measurement were performed using 19 LI-200 pyranometers (LI-COR, USA). Two pyranometers were
tilted by 45°, while the remaining ones were horizontally mounted and scattered across an area of about
750 x 750 m®. The data is available from http://nrel.gov/midc/oahu_archive/. We here investigate clear-sky
index data I*(¢t) = I(t) /I, where I(t) and I, are the measured solar irradiance and its theoretical prediction
under clear-sky conditions at a given latitude and longitude, respectively (see [6, 26] for further details; fy; = 4A;

8
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0 10 20 30

Figure 8. Dependence of Q(x,) on the scaling « for time series of the spatial position of a bead trapped in optical tweezers (black) and
for the clear-sky index (red). We chose x, around the peak of the respective probability distribution functions of the time series. Lines
are for eye guidance only.

see figure 7 bottom). A jumpy stochastic behavior of solar irradiance represents a major obstacle in the power

production as it influences not only the availability of energy, but also the stability of the entire power grid [6].
Moreover, it requires expensive technical solutions, such as fast reserves or storage systems in power supply to
overcome and compensate such fluctuations.

In figure 8, we show for both time series the dependence of Q(x) on the scaling coefficient a.. For the time
series of the spatial position of a bead trapped in optical tweezers, we obtain a clear indication for a continuous
diffusion process, as expected. For the time series of the clear-sky index, our analyses indicate a discontinuous
trajectory with jumps that can be traced back to on—off fluctuations of the cloud structure generated by
turbulence in the atmosphere [6]. In addition, it appears that for time-scales greater than 8 s (v = 8) this time
series contains jumps with amplitude 02 =~ 0.11 (for the chosen xy around the mean of data).

Before closing this section, we demonstrate that our approach to distinguish diffusive and jumpy behavior
can easily be extended to non-stationary time series, e.g. by employing kernel-based estimation techniques of
higher-order conditional moments [16, 31]. This allows for a time-resolved estimation of local characteristics of
a time series, such as drift and diffusion coefficients as well as the jump rate and jump amplitude. As an example,
we investigate the clear-sky index data (with @ = 1), which has strong nonlinear and non-stationary properties
on time-scales less than 10* s [26], and estimate Q(x(#)) in a time-resolved fashion (Gaussian kernel with
bandwidth 0.1). Its temporal evolution (see figure 9) provides strong evidence for an intermittent switching
between diffusive and jumpy behavior. A similar analysis for the spatial position of a bead trapped in optical
tweezers did not indicate a jumpy behavior (Q(x(#)) took on values in the order of 10~® only; data not shown).

7. Concluding remarks

The KM expansion for the probability density of some stochastic process can be reduced to the Fokker—Planck
equation if higher-order (>2) KM coefficients vanish. There are, however, many physical experiments that
indicate non-vanishing higher-order KM coefficients [17, 32—39]. A priori, itis not evident if such observations
are due to the finiteness of the respective sampling intervals or whether the measured time series do not belong to
the class of continuous diffusion processes [ 14, 40] and contain discontinuous, abrupt changes or jumps. The
latter were shown recently to have pronounced contributions to higher-order KM coefficients [16] and to
account for the non-Gaussian behavior of increment statistics of empirical time series [6]. Nevertheless, jumps
are notoriously difficult to identify since in practice, only discrete data are available from continuous-time
models. Here we have demonstrated that a finite sampling interval not only influences the first- and second-
order KM coefficients but also causes non-vanishing higher-order ones. For small time intervals d¢, the linear
relationship between the fourth- and squared second-order conditional moments enables one to judge whether
the fourth-order moment tends to zero (any deviation from this will rule out that the underlying process is
diffusive), thus allowing to reduce the KM expansion to the Fokker—Planck equation. Using information about
these higher-order moments, we derived a novel criterion (as a necessary condition) to check whether for a
given, even noisy time series the underlying process has a continuous or discontinuous trajectory. Our novel
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0.2 4
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0 1 2 3
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Figure 9. Time-resolved estimates of Q (x(t)) = Q(t) (lower trace) for the time series of clear-sky index data (upper trace).

approach to distinguish diffusive from jumpy stochastic behavior in time series enables the detection of jump
events in the data and provides a general avenue to better understand the dynamics of complex systems.
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Appendix A. Conditional moments of the Langevin equation for different orders of the
time interval

From equation (2), it is evident that only two KM coefficients, namely M 51) (x, t) = a(x, t)and

M é”(x, t) = b?(x, t) (the subscript ‘d’ denotes diffusion and Mé") (x, t) = limg;_,¢ iK é’”(x, dt)) are non-
vanishing. Therefore, the conditional probability distribution of the process x(t) satisfies the truncated KM
differential equation (Fokker—Planck equation) as

Op(x, t)x', t)

61,’ - EFP P(x> tlx,> t,) (Al)
with initial condition p(x, #|x’, t) = §(x — x’), and Lpp is given by
21 Y m
EFP = nz::l F(—a—x) Md (x, t) (AZ)

The formal solution of equation (A1) reads
p(x, t|x;, t + dt) = exp{dt Lgp} 6(x — x;). (A3)

The conditional moments K 5”) (x, dt) with finite d¢ can be written as

Ké”)(x,-, dt) = foo (x — x;)"exp{dt Lpp} 6 (x — x;)dx

= exp{dt Lp}(x — x)"|x=x,» (A)
where L], denotes the adjoint operator of Lgp and is given by
2 1 b n
Lip =3 — M (x, t)(—) . (A5)
w n! Ox
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An explicit expression of L}, reads

. 0 1 0?
Lp=alx, t)— + —b*(x, 1) —. A6
=l )8x 21 (x )8x2 (46)
For K é") (x;, dt), equation (A4) can be written as
1
K{"(x;, dt) = (1 +dtLfp + Edﬂ.cgpﬁgp + ~-)(x 75 L M- (A7)

We consider terms up to the order of the first non-vanishing power in O(dt?) for the conditional moments
Kc(l’”)(x, dt)withm € {1, 2, 3, 4} and up to order O(dt®) for moments with m € {5, 6}. We find the following
expressions (we omit the x- and ¢-dependence of a and b to enhance readability):

KO (x, df) = adt + %[aa’ + %hza”]dtz + oWdr),

KP(x, di) = b2dt + %[Za(a bbb+ B2+ b 4 b A + Odry,

K (x, dt) = 3b*(a + bb")dt* + O(dt)?,
K§P(x, dt) = 3b*dt? + O(dt)?,
K (x, dt) = 15b%(a + 2bb)dt> + O(dr)4,
K®(x, dt) = 15b°dt> + O(dt)*,
where a’ and b’ denote the first and a” and b” the second derivatives with respect to state variable x. In the limit

dt — 0, the first terms on the rhs of the first two equations will give the drift and diffusion coefficients, and for
finite dt all conditional moments possess some correction terms.

Appendix B. Conditional moments of the jump-diffusion equation for different orders of
the time interval

The KM differential equation is given by

o 0 1) _ i p, e, 1) (B1)
ot
with initial condition p(x, t|x;, t) = 6 (x — x;). The operator Lxy reads
1 [ R
Lxm = —| = M (x, 1), B2
- mzlm!( 3x) o (x, 1) (B2)
where Mj(’")(x, t) = limg,_¢ in(m)(x, dt). With the formal solution
px, tlxi, t 4+ dt) = edEng(x — xp) (B3)

of the KM differential equation (B1), the conditional moments can be written as

Kj(’")(xi, dr) = foo (x — xp)medtfxug (x — x;)dx

— 00

= e Ln(x — x;)"|gey,. (B4)

Here L), is the adjoint operator of Ly and has the following expression [14]:

EIT<M = il iMj(m)(x, t)(aa—x)m (B5)
With its explicit expansion
B
Liw = a(;: 5o | e+ (HAW] o2
T Ox 21 Ox2 e
L €@ oL o
4! Ox* 6! Oxc6
c D

in equation (B4), one can find the following expressions for the conditional moments up to order m = 6 of the
jump-diffusion equation
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Kj(l)(x, dt) = Adr
+ %[AA{” + BA?} + CA™ + DA®Y + O(8)]dt? + O(dt?),
K®(x, dt) = 2Bdr
+ %[ZAZ + 2ABM + 4BAYY 4+ 2BB1?) 4 8CAP) + 2CB
+ 12DAGY 4+ 2DB!%} 4+ O(6)]1dt? + O(dt)?,
K (x, dt) = %[IZAB + 12BB'"} + 36CA2} + 24CBB} 4 90DA*

+ 36DBPY + O(6)1dr? + O(dr)?,
K®(x, dr) = 4!Cdt

+ %[4!AC“} + 41B2 4 4!BC2} + 4 . 41CAY + (41)2/212!CB)
+4!CC™ 4 4. 6!/3!DABY 4 6!/21DBM + 41DCY) + O(6)]de? + O(dt)?,
K (x, dt) = %[z 51AC + 2 - 5!BC'} 4 5. (41)?/3!CB!" 4 4 . 51CCP)

+5-6!/21DA2 4+ 20 - 6!/31DB! + 6!DCI5} 4 5 . 81 /41EA%
+ 20 - 8!/5!EB) 4 8 - 51ECY} + O(8)]1dt? + O(dr)?,
K®(x, dt) = 6!Ddt

1
+ E[G!AD“} +2-6!BC + 6!BD?} + 6. 6!CC? + 6!CD™!

+ 6 - 6!DAY + (6!)2/412!DB?} + (6!)?/412!DC* + 6! DD}
+ 6 - 8!/31EABY 4+ 30 - 8! /41EB'4) 4 81 /21EC!®} 4 61ED18!}
+ O(8)]dt? + O(dr)?,

where the superscript {i} denotes the ith derivative with respect to x. The term O(6) comprises higher order-
derivatives of A, B, etc.
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