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Abstract

We study the logarithmic conformal field theories in which conformal weights are continuous subset of real numbers. A
genera relation between the correlators consisting of logarithmic fields and those consisting of ordinary conformal fields is
investigated. As an example the correlators of the Coulomb-gas model are explicitly studied. © 1998 Elsevier Science B.V.

1. Introduction

It has been shown by Gurarie [1], that conformal
field theories (CFT) whose correlation functions ex-
hibit logarithmic behaviour, can be consistently de-
fined and if in the OPE of two given local fields
which has at least two fields with the same confor-
mal dimension, one may find some operators with a
special property, known as logarithmic operators. As
discussed in [1], these operators with the ordinary
operators form the basis of the Jordan cell for the
operators L;.

The logarithmic fields (operators) in CFT were
first studied by Gurarie in the c= —2 model [1].
After Gurarie, thes logarithms have been found in a
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multitude of others models such as the WZNW-maodel
on GL(1,1) [2], the gravitationally dressed CFT [3],
C,1 and non-minimal c, . models [2,4-6], critical
disorderd models [7,8], and the WZNW-models at
level 0 [9,10]. They play a role in the study of
critical polymers and percolation [11,12], 2D-MHD
turbulence [13—15], 2D-turbulence [16,17] and quan-
tum Hall states [18—20]. They are also important for
studying the problem of recail in the string theory
and D-branes [9,21-24], as well as target space
symmetries in string theory [9]. The representation
theory of the Virasoro algebra for LCFT was devel-
oped in [25]. The origin of the LCFT has been
discussed in [26—28]. The modular invariant partition
functions for cy; = 1 and the fusion rules of logarith-
mic conformal field theories (LCFT) are considered
in [4], see also [29] about consequences for Zamol od-
chikov’'s C-theorem. Structure of the LCFT in D-di-
mensions has been discussed in [30].
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The basic properties of logarithmic operators are
that, they form a part of the basis of the Jordan cell
for L;’s and in the correlator of such fields thereis a
logarithmic singularity [1]. It has been shown that in
rational minimal models such a situation, i.e. two
fields with the same dimensions, doesn’t occur [14].

In a previous paper [27] assuming conformal in-
variance we have explicitly calculated two- and
three-point functions for the case of more than one
logarithmic field in a block, and more than one set of
logarithmic fields for the case where conformal
weights belong to a discrete set. Regarding logarith-
mic fields formally as derivations of ordinary fields
with respect to their conformal dimension, we have
calculated n-point functions containing logarithmic
fields in terms of those of ordinary fields (see aso
[31], about the role of such derivative in the OPE
coefficients of LCFT).

We have done these when conformal weights
belong to a discrete set. In [28], there is an attempt to
understand the meaning of derivation CFT with re-
spect to conformal weights. Here, we want to con-
sider logarithmic conformal field theories with con-
tinuous weights. The simplest example of such theo-
ries is the free field theory. The structure of this
articleis as follows. In Section 2 we study conformal
theories, in which conformal weights belong to a
continuous subset of real numbers, and calculate the
correlators of these theories. Specificaly, we show
that one can calculate the two-point functions of
logarithmic fields in terms of those of ordinary fields
by derivation. This is not possible in the case of
discrete weights. In Section 3 we consider the
Coulomb-gas model as an example.

2. Correlators of a logarithmic CFT with continu-
ous weights

In[27], it was shown that if there are quasi-primary
fields in a conformal field theory, there arises loga
rithmic terms in the correlators of the theory. By
quasi-primary fields, it is meant a family of operators
satisfying
[ Ln,<IJ(j)( Z)]

=z2"9,00(2) + (n+ 1) zZU0V( 2)

+(n+1)zZUPU"Y(z), (1)

where A is the conformal weight of the family.
Among the fields @), the field @@ is primary. It
was shown that one can interpret the fields @,
formally, as the j-th derivative of afield with respect
to the conformal weight:
@(i)( z) = i Lj @(0)( 2) (2)
jl dal ’
and use this to calculate the correlators containing
@) in terms of those containing @© only. The
transformation relation (1), and the symmetry of the
theory under the transformations generated by L, ,
and L,, were aso exploited to obtain two-point
functions for the case where conformal weights be-
long to a discrete set. There were two features in
two-point functions. First, for two families @, and
®,, consisting of n; +1 and n, + 1 members, re-
spectively, it was shown that the correlator
(DPPDW) is zero unless i + j > max(ny,n,). (It is
understood that the conformal weights of these two
families are equal. Otherwise, the above correlators
are zero.) Another point was that one could not use
the derivation process with respect to the conformal
weights to obtain the two-point functions of these
families from (@@L}, since the correlators con-
tain a multiplicative term &, ,,, which can not be
differentiated with respect to the conformal weight.
Now, suppose that the set of conformal weights of
the theory is a continuous subset of the real numbers.
First, reconsider the arguments resulted to the fact
that (D{'®YP) is equal to zero for i+j>
max(n,,n,). These came from the symmetry of the
theory under the action of L,, and L,. Symmetry
under the action of L_, resultsin

(DP(2)DP(W)) = (PP 2— W) DE(0))
=:Al(z—w). (3)
We dso have
(Lo, @ () (0)])
=(20+ A+ 4,) Al(z) + A (2)
+AI"1(z) =0, (4)
and
(L.20(2)2P(0)])
=(z29+22zA,)Ni(z) +2zA""I(2) =0. (5)
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These show that
(A, —4) Al(2) + A H(z) AT (2) =0

(6)
If A, +4,, it is easly seen, through a recursive
calculation, that A'’s are all equa to zero. This
shows that the support of these correlators, as distri-
bution of A; and A,, is A, — A, =0. So, one can
use the ansatz

Al(z) = Y Al(2)89(4,— 4). (7)
k>0

Inserting thisin (6), and using x8**Y(x) = —(k +
1)8™(x), it is seen that

I(Z‘,O[—(kﬂ“ 1) AL (2) +ATH(2) - A H(2)]

819(4; - 4,) =0, (8)
or

(k+1) Al (2) = A M(2) — A (2), k=0,

(9)
This equation is readily solved:
. 1k . :
A2 =g B (A (2), (10)

where AJ’s remain arbitrary. Also note that Al’s
with a negative index are zero. We now put (7) in
(4). This gives

(z0+ A+ A,)Al(z) + AT Yi(z2) + A Y(2) =
(11)

Using (10), it is readily seen that it is sufficient to
write (11) only for k= 0. This gives

(z0+ A+ A,)AJ(2) + Ay Vi(z2) + A5 Y(2) =

(12)
Putting the ansatz
i+]
Aj(z) =z A*42 ¥ 4li(Inz)" (13)
m=0
in (12), one arrives at
(M+D e, +a M +ali =0, (14)

the solution to which is

ij (-n" my i—m+sj-s
Oy = mi sgo(s ) o o (15)
From this
A2 =z 0 T (ing) " 2l
X ;O( ) i—m+s,j— s (16)
and
i+j—k _
Ni(2) = | = 2( D'(: QEk
i | k—=m+I+s,j—1-s 7z (A1+Az)
B (17
So we have
Al(2) =z 430 ¥ 509( 4, — Ay)
k>0
1 k i+tj—k -1 m
g Z () 2 ")
X Z (;n)a(i)—kferlJrs,jflfs , (18)

_ q+r+s
Aij(z) — 7= (4+4y) Z L
parsso Plairts

Xa'~Pi=475(Inz) TSP (A, — A,),
(19)

where
aij:=a(i,j. (20)

These constants, defined for nonnegative values of i
and |, are arbitrary and not determined from the
conformal invariance only.

Now differentiate (19) formally with respect to
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A,. In this process, a'’’s are aso assumed to be
functions of A, and A,. This leads to

dA( 2)
0A,
_aNOtTHs
=7 (4+4y) Z L
DTS p'qlr!s!
aaiipirJiQis r+s
X T(Inz) 6(p+q)(ﬂl—ﬂz)

1

a3 (Ing)

r+s

S(p+a+ 1)( A —A)

~(n2) (A -4} (@)
or
IA( Z)

A,

q+r+s

(-1

= 7= (A1+4y) A
z L p'qlr!s!

p.q.,r,s
X(Inz)" 8P O( A, — A,)

. ' doi—P-Ti—a-s
x|(p+r)al—Priza-sy

aA,

(22)
Comparing this with A*11 it is easily seen that
AL = iﬁ (23)

i+1 a4,

provided
daiPrizazs _ |
T=(i+l—p—r)a'+1’p’”’q’s.

(24)

Note, however, that the left hand side of (24) is just
a formal differentiation. That is, the functional de-
pendence of a'’son A, and 4, is not known, and
their derivative is just another constant. Repeating
this procedure for A,, we findly arrive at

1 9 9

= 00 25
“ T aAl aal” (25)

and

i 1 ai aj 00
A =WE@A . (26)

These relations mean that one can start from A%,
which is smply

AR (z) =727 (44425 A, — A)) a®, (27)

and differentiate it with respect to A, and A,, to
obtain A'l. In each differentiation, some new con-
stants appear, which are denoted by «'’s but with
higher indices. Note aso that the definition is self-
consistent. So that this formal differentiation process
is well-defined.

One can use this two-point functions to calculate
the one-point functions of the theory. We simply put
dP =1 So, A,=0,

(@(z)) =p%(4), (28)
and
. i 'ank )
(@9(2))= ¥ a0(4), (29)
k=0 :
where
L _1dp
Tl dAT (30)

The more than two-point function are calculated
exactly the same as in [27].

3. The Coulomb-gas model as an example of
LCFT

As an explicit example of the general formulation
of the previous section, consider the Coulomb-gas
mode! characterized by the action [26]

S= 4—17de2x\/§[—g“V(8M(D)(8Vq§) +iQR®],
(31)
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where @ isarea scalar field, Q isthe charge of the
theory, R is the scalar curvature of the surface and
the surface itself is of a spherical topology, and is
everywhere flat except at a single point.

Defining the stress tensor as

47 8S
Vg 89,
it is readily seen that
T = — (9P (9"P) + 29*'9**(9,®) (3 P)
—iQ[¢ — gV 2], (33)

THY = —

(32)

and

T(2):=T,.(2) = —(3¢)" — Q¥ (34)
where in the last relation the eguation of motion has
been used to write

®(2,2) =¢(2) + ¢(2). (35)
It is well known that this theory is conformal, with
the central charge

c=1-6Q> (36)
There are, however, some features which need more
care in our later calculations. First, this theory can
not be normalized so that the expectation value of

the unit operator become unity. In fact, using e® as
the integration measure, it is seen that

(1) x8(Q) (37)
one can, at most, normalize this so that
(1)=58(Q). (38)

Second, ¢ has a zindependent part, which we
denote it by ¢,. The expectation value of ¢, is not
zero. In fact, from the action (31),

(§) = (o) = N(Q)fd¢o¢oexp(2|Q¢o)

(39)
where N is determined from (38) and
1
(D = 7 [ dboexp(2iQeby). (40)
This shows that N(0) = 7, and
N’(0)
<¢0>——[ (Q+ J5 Q) (41)

More generally
1 1 d
00 = 1] 1 5 | )
1 d
-z ag)e@l @

Third, the normal ordering procedure is defined as
following. One can write

?(2) =+ ¢.(2) +_(2), (43)

where {0|l¢_(2) =0, ¢,(2)0) =0, and

[¢0,¢i]=0, (44)

The normal ordering is so that one puts al ‘-’ parts
at the left of al * 4+’ parts. It is then seen that

CH@]D = (o)) (45)

Here, the dependence of f on ¢ in the left hand side
may be quite complicated; even f can depend on the
values of ¢ at different points. In the right hand
side, however, one simply changes ¢(z) — ¢,.

Now consider the two-point function. From the
equation of motion, we have

(¢(2)p(w)) = —3In(z—w){1) +b; (46)
we also have
2

1
Co(2)p(w)) =(¢5) = —

3o M

(47)

Note that there is an arbitrary term in (46), due to the
ultraviolet divergence of the theory. One can use this
arbitrariness, combined with the arbitrariness in
N(Q), to redefine the theory as

d(2) (W) = 1= 3In(Z—w) + :¢(2) (W),
(48)

and

o001 5 g5 2@ (49
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these relations, combined with (45) are sufficient to
obtain all of the correlators. One can, in addition, use
(34) (in normal ordered form) to arrive at

W iQ/2

T(z2)p(w) = —— (Z_W)2+r.t., (50)
and
T(2)T(w) = B 2T(w) (1 6Q? )/2.
z=w  (z-w)’ (z-w)’
(51)
Eq. (50) can be written in the form
[Lod(2)] =2 b - i7Q(n+ 1)2" (52)

This shows that the operators ¢ and 1 are a pair of
logarithmic operators with A =0 (in the sense of
(1)). One can easily show that

9 :eiozl,b(W):
T(2)ewom: = =
Z—W
(@ H2Q)/4 sy 4,
(z— W)2
(53)

which shows that :€'“¢: is a primary field with

g - 2@*29) (54)
4

To this field, however, there corresponds a quasi

conformal family (pre-logarithmic operators [26]),

whose members are obtained by explicit differentia-

tion with respect to o (a is not the conformal

weight but is a function of it):

W = gpnelet: = ( —elet, (55)

To calculate the correlators of W's, it is sufficient
to calculate <W(°) W(°)>
One has, using chk’s ‘theorem and (48),
k
TIK @iad@): —gl/2 Y, aain(zi-z).oi ) ajé(z).
i=1 1<i<j<k j—1
(56)

From this using (45) and (48), we have
(ILE 1W“’)( z))

aja;]

2
= ici<(Z—7)

@2 505(Q)

aja;

2
=(1.ici<(2—7) 5

(57)

Obviously, differentiating with respect to any «;,
leads to logarithmic terms for the correlators consist-
ing of logarithmic fields W ™. The power of loga-
rithmic terms is equal to the sum of superscripts of
the fields W(".
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