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Statistical characterization of microstructure of packings of polydisperse hard cubes
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Polydisperse packings of cubic particles arise in several important problems. Examples include zeolite
microcubes that represent catalytic materials, fluidization of such microcubes in catalytic reactors, fabrication
of new classes of porous materials with precise control of their morphology, and several others. We present the
results of detailed and extensive simulation and microstructural characterization of packings of nonoverlapping
polydisperse cubic particles. The packings are generated via a modified random sequential-addition algorithm.
Two probability density functions (PDFs) for the particle-size distribution, the Schulz and log-normal PDFs,
are used. The packings are analyzed, and their random close-packing density is computed as a function of the
parameters of the two PDFs. The maximum packing fraction for the highest degree of polydispersivity is estimated
to be about 0.81, much higher than 0.57 for the monodisperse packings. In addition, a variety of microstructural
descriptors have been calculated and analyzed. In particular, we show that (i) an approximate analytical expression
for the structure factor of Percus-Yevick fluids of polydisperse hard spheres with the Schulz PDF also predicts
all the qualitative features of the structure factor of the packings that we study; (ii) as the packings become
more polydisperse, their behavior resembles increasingly that of an ideal system—“ideal gas”—with little or no
correlations; and (iii) the mean survival time and mean relaxation time of a diffusing species in the packings
increase with increasing degrees of polydispersivity.
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I. INTRODUCTION

This paper is devoted to microstructural characterization
of polydisperse packings of hard cubic particles. The study
has been motivated by our recent work on the development
of a new method of fabrication of porous materials [1]. In
this method, a salt, such as NaCl, which consists of cubic
crystals and is suspended in a nonsoluble medium, such as an
alcohol or ketone, is used to coat a nonporous surface, such
as a plastic film, metal foil, or a glass. A polymeric material
is then hot-pressed over the salt layer that fills the void space
between the salt crystals and solidifies upon cooling. The salt
crystals are then washed off with water, creating voids and
exposing the pore space. As the melting temperature of most
salts is very high, they preserve the shape of their crystals.
Thus, their packing retains its microstructure even at the high
temperature at which the polymeric material is hot-pressed
over the salt layer. The method has the advantage that the size
distribution of the salt crystals before being hard-pressed by
the polymeric material is the same as the pore-size distribution
of the porous medium after the salt crystals are washed off.
Thus, one has significant control over the microstructure of the
porous medium fabricated by the method.

In addition, packing of cubic particles is encountered in
biological materials [2], colloids [3], and other systems of
scientific importance. As an important practical example,
consider evaporation of saline water in soil [4]. As evaporation
proceeds, salt crystallizes and precipitates on the surface of the
pores in which the saline water flows, giving rise to a packing
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of cubic salt crystals that damages the surface and reduces the
permeability and porosity of the soil.

In a previous paper [5], hereafter referred to as part I, we
defined the essential part of the problem, and we reported
some preliminary results. In a subsequent paper [6], which
we refer to as part II, we presented the details of the
computational algorithm for generating a large packing of
cubic particles, the solution of which belongs to a class
of problems that are referred to as computationally hard
problems, and we presented the results for various two-
point correlation functions that characterize the packings’
microstructure. The computational procedure that we have
developed is a modification of the random sequential-addition
(RSA) algorithm, which, to our knowledge, had not been
developed before. Our study indicated that the maximum
packing fraction is ≈0.57, representing the boundary between
a liquid-crystal phase and a crystalline structure. In addition,
we studied the effect of the porosity and finite size of
the packings on their characteristics, demonstrating that the
packings possess both spatial and orientational long-range
order at high packing fractions.

In both parts I and II, we studied packings of cubic
particles with equal sizes. In practice, however, the particles
or crystals are most likely polydisperse, with their sizes
distributed according to a probability density function (PDF).
Examples include ceramic powders, paint pigments, and
colloidal suspensions. Using polydisperse powders leads to
considerable advantages, such as higher packing densities
[7] and increased fluidity of concentrated suspensions [8].
While the properties of packings of polydisperse spherical
particles have been studied by many researchers [9–26], the
same is not true about packings of polydisperse nonspherical
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FIG. 1. The SEM images of (a) cubic aluminosilicate zeolite particles (Advera R© 401) suspended in a Newtonian fluid of polyethylene
glycol (after Ref. [33]), and (b) self-synthesized LTA zeolite crystals (after Ref. [34]).

particles. Desmond and Weeks [19] studied the packing
fraction as a function of the polydispersity and skewness
of various particle size distributions. Baranau and Tallarek
[27] investigated random close packings of polydisperse
hard spheres. Furthermore, the effective flow and transport
properties of packed beds of polydisperse hard spheres, such as
the conductivity and permeability, have been reported in a few
studies [28–30]. However, random packings of polydisperse
nonspherical particles have rarely been explored.

In the present paper, we report a detailed simulation of
random packings of polydisperse hard cubes, as well as an
analysis of a variety of microstructural descriptors for such
porous materials. The present study, in addition to shedding
further light on the properties of packings of cubic particles,
also contributes to the more general problem of understanding
the properties of polydisperse packings of nonspherical parti-
cles. In addition to the aforementioned problem of fabrication
of a new class of porous materials, the present study is
motivated by other important applications. One example is
packings of zeolites, a highly important catalytic material
that has been used in the chemical industry for a long time.
More recently, zeolites have been proposed [31] for separation
of fluid mixtures. They consist of cubic particles [32], an
image of which, obtained by a scanning electron microscope,
is shown in Fig. 1(a), showing polydisperse aluminosilicate
zeolites (Advera R©401), suspended in polyethylene glycol [33].
Figure 1(b) shows self-synthesized Linde type A (LTA) zeolite
crystals with a variety of sizes [34].

The rest of the paper is organized as follows: In Sec. II, the
computational approach for generating random packings of
polydisperse cubic particles and the PDFs of the particles’ sizes
are described. We then present and discuss in Sec. III the results
for a variety of the important microstructural descriptors of
the packings. Section IV summarizes the paper and discusses
possible further research.

II. THE MODEL AND ALGORITHM

The most efficient numerical algorithms for generating
packings of hard spheres are a Monte Carlo (MC) method
developed by He et al. [13], and a modification of the
Lubachevsky-Stillinger algorithm [35] developed by Kansal
et al. [14]. Clusel et al. [36] introduced the “granocentric”
model for random packing of jammed emulsions by which

they simulated random packing of polydisperse frictionless
spheres [18], and they investigated the structure of its jamming
[20]. However, such methods cannot be used for generating
random packings of mono- or polydisperse hard cubes. We also
note that various molecular dynamics and MC methods that
have been used for generating hard-particle packings are not
applicable to packing of cubes, because the overlap potential
functions cannot be constructed for particles with nonsmooth
shapes, including all the Platonic and Archimedean solids.
For such particles, Torquato and Jiao [37,38] developed an
optimization algorithm that they referred to as the adaptive
shrinking cell (ASC) method, which is based on an MC
method with the Metropolis acceptance rule. Except for
tetrahedra, packings of other Platonic solids (cube, octahedra,
dodecahedra, and icosahedra) generated by the ASC algorithm
are their lattice packings. Since a cube is the only Platonic
object that tiles the space, its lattice packing generated by
the ASC algorithm is highly ordered with densities close to
unity [6,37,38]. Delaney and Cleary [39] proposed another
algorithm for generating packings of particles, the dynamic
particle expansion technique, which was originally developed
for the so-called superellipsoids, defined by(x

a

)p

+
(y

b

)p

+
(z

c

)p

= 1, (1)

in which p is a shape parameter, and a, b, and c are the
semimajor axes lengths. For large values of p, the particles
take on shapes that approach cubes. This method also generates
ordered packings of hard cubic particles.

In parts I and II we presented an algorithm that was based
on a modification of the RSA process, which is also used in the
present paper. The simulation begins with a large, empty region
of volume V in R3, in which cubic particles are inserted with
random edge lengths D drawn from a given distribution for the
particles’ sizes. The cubes are then placed sequentially in the
simulation cell at randomly selected positions and orientations,
taking into account the nonoverlapping constraint. Adding the
particles is continued until the desired packing fraction φ =
ρ〈v1(D)〉 is reached, where ρ = N/V is the total number
density, and 〈v1(D)〉 = 〈D3〉 is the mean volume of the cubic
particles.

A. The computational algorithm

The details of the computational algorithm are as follows:
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FIG. 2. The size distributions of the particles. (a) The Schulz distribution, and (b) the log-normal distribution.

Step 1. The total number N of cubic particles and the size
of the simulation cell, Lx × Ly × Lz, are specified.

Step 2. The cube’s edge length D is selected randomly from
a normalized PDF f (D) for the size of the particles.

Step 3. Three random numbers xc ∈ (0,Lx), yc ∈ (0,Ly),
and zc ∈ (0,Lz) are generated for the center of a new cubic
particle.

Step 4. Two random numbers u ∈ [−1,1] and φ ∈ [0,2π )
are generated for the normal vector n of the upper face of the
cubes, given by

n =
√

1 − u2 cos φi +
√

1 − u2 sin φj + uk, (2)

where i, j, and k are the three unit vectors in Cartesian
coordinates (x,y,z).

Step 5. The matrix R that rotates the unit vector k into the
unit vector n through

R = I + A + A2 (1 − k) · n
‖v‖2

(3)

is constructed, where I is the identity matrix, and the unit
vector v = (v1,v2,v3) is defined by k × n. Furthermore,

A =
⎡
⎣ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤
⎦. (4)

Note that if n = k, then R = I, and if n = −k, we have, R =
−I.

Step 6. The coordinates of the cube’s eight vertices, Vi ,
i = [1,2, . . . ,8], are computed by

Vi = Vi,n + Vc, (5)

where Vc is the coordinate vector of the
cube’s center, and Vi,n = RWi , in which W1 =
(−d0/2,−d0/2,−d0/2), . . . ,W8 = (d0/2,d0/2,d0/2).

Step 7. All the cube’s vertices are examined to see whether
they are outside the previously inserted particles. If so, the new
particle is accepted and one increases n → n + 1, where n is
the current number of accepted particles. If n � N , return to
Step 3, or if n = N , the simulation is terminated.

B. Particle-size distributions

We utilize two PDFs as the particle-size distribution. One
is the Schulz distribution, sometimes referred to as the Schulz-
Zimm distribution, which arises in a variety of problems

[40–43] and is given by

f (D,m) = 1

�(m + 1)

(
m + 1

〈D〉
)m+1

Dm exp

[−(m + 1)D

〈D〉
]
,

(6)

where m is an integer in [0,∞), �(x) is the Gamma function,
and 〈D〉 is the mean edge length of the cubic particles. The
nth moment of the distribution is given by

〈Dn〉 = (m + n)!

m!

1

(m + 1)n
〈D〉n, (7)

implying that as m increases, the variance 〈D2〉 − 〈D〉2

decreases. Hence, m → ∞ represents a monodisperse packing
with limm→∞ f (D,m) = δ(D − 〈D〉). Thus, the maximum
packing polydispersivity is obtained with m = 0.

A log-normal particle-size distribution is also encountered
in several problems [44–49], and is given by the well-known
equation

f (D,σ ) = 1

Dσ
√

2π
exp

{−[ln (D/〈D〉)]2

2σ 2

}
, (8)

in which ln D is distributed according to a Gaussian
PDF, with the mean 〈D〉 and the standard deviation σ =√

〈(ln D)2〉 − 〈ln D〉2. The nth moment of the distribution is
given by

〈Dn〉 = exp

(
n2σ 2

2

)
〈D〉n, (9)

implying that σ → 0 represents the monodisperse packings
with limσ→0 f (D,σ ) = δ(D − 〈D〉). Figure 2 presents sam-
ples of the two distributions for three values of the parameters
m and σ .

III. RESULTS

We assume that the mean edge length of the particles is
〈D〉 = 0.05L, where L is the linear size of the simulation
cell. For simplicity, we refer to the pore space and the solid
particles as phases 1 and 2, respectively. The porosity and
packing density of the system are therefore, respectively, φ1

and φ2. Figure 3 presents the top view of six packings whose
sizes are distributed according to the Schulz and log-normal
distributions with the packing fraction φ2 = 0.2. Most of the
results presented in this paper are for the packings shown in
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FIG. 3. Examples of the packings. Parts (a), (b), and (c) show packings with the Schulz distribution with, respectively, m = 0, 2, and 10,
while parts (d), (e), and (f) present those generated with the log-normal PDF with standard deviations that are, respectively, σ = 1, 0.6, and 0.2.

Fig. 3. The results for other packing fractions are qualitatively
similar to those that we present below.

We have computed the dependence of the particle density
at the random close packing (RCP) on the parameter of m

of the Schulz distribution and the standard deviation σ of the
log-normal PDF. Moreover, we have also computed several of
the most important microstructural descriptors of the packings
for the same ranges of m and σ . In what follows, all the
results were obtained with packings that contained at least
2 000 particles, while many of them were generated with up to
18 000 cubes. In addition, the results represent averages over
at least 10 realizations of each packing.

A. Random close-packing fraction

Before we present and discuss the results for the random
close-packing (RCP) fraction, we should point out that the
value of the RCP fraction depends on the method or protocol
by which a packing is generated. Thus, the RCP fraction is not
unique. On the other hand, the jammed state of a packing is
unique [50,51], and it has to do with the mechanical stability
of the packing. In fact, the jammed state of a packing of soft
cubic particles has been recently studied [52].

It is well known [7,11,13–17,19,21,24,25,27,40] that in-
creasing the polydispersivity increases the packing efficiency
because smaller particles pack more compactly by filling
the voids between adjacent large particles. Some expressions
for the packing fraction of polydisperse hard spheres that
depend on the parameters of the particle-size distributions used
[19,20], as well as some limits for their RCP [27] fractions,
have previously been reported. The highest achievable packing
fraction of polydisperse hard spheres is still unknown because,
as pointed out earlier, the RCP fraction depends on the
method by which one generates the packings [19]. Indeed,
the maximum packing fraction of the structures generated by

the RSA algorithm is different from those generated by the
growth [14] and the shrinking cell [21] algorithms.

Using extensive simulations, we computed the packing
density at the RCP point as a function of the Schulz
distribution’s polydispersivity parameter m ∈ [0,10] and the
standard deviation of the log-normal PDF, σ ∈ [0,1]. The
results are shown in Fig. 4. While the maximum packing
fraction for the most polydisperse packing generated by the
Schulz distribution—the limit m = 0—is around 0.81, the
corresponding estimate for the log-normal distribution is 0.71,
obtained with σ = 1. Moreover, the packing fraction is as
large as φRCP,0 + (1 − φRCP,0)φRCP,0 ≈ 0.82 for a bidisperse
packing with the size ratio D1/D2 → 0. In the monodisperse
limit, i.e., m → ∞ or σ → 0, the close-packing density for
both distributions approaches the maximum packing fraction
of the monodisperse packing, ≈0.57, which we calculated in
parts I and II (see also Refs. [53–56], as well as the discussions
below for monosized nonspherical particles). For example,
the maximum packing fractions for σ = 0.1 and m = 100 are
both close to 0.58. Moreover, while the close-packing density
appears to vary linearly with σ ∈ [0,1], it has a very sharp
negative slope for m ∈ [0,1] and varies slightly for m � 3.

Note that the maximum packing fraction for packings of
polydisperse hard spheres is ≈0.75 if their size distribution is
log-normal with σ = 0.6 [57], which should be compared with
0.64 [58] for random monodisperse packing of hard spheres.
The approximate formula given by Desmond and Weeks [19]
is also applicable only to close-packing densities with σ ∈
[0,0.6]. Note that the trends in Fig. 4(b) indicating that the
maximum random close-packing fraction increases with the
standard deviation of the log-normal distribution is consistent
with the reported experimental data reported by Brouwers [59]
(see also Ref. [60]).

Yu et al. [50] studied packings of nonspherical particles, and
they presented an approximate formula based on the Westman
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FIG. 4. Random close-packing density vs (a) the polydispersivity parameter m of the Schulz distribution, and (b) the standard deviation σ

of the log-normal PDF.

equation [61] for the porosity of a binary mixture of such
particles with intermediate size ratio D1/D2. For this purpose,
they approximated nonspherical particles with spherical ones
by introducing an “equivalent packing diameter,” and they
studied the porosity as a function of the volume fraction and
size ratio of small and large particles. Good agreement was
found between the empirical equation and experimental data.

B. Radial distribution function and the structure factor

One of the most important microstructural descriptors for
packings of polydisperse particles (and for any material for
that matter) is the radial distribution function g(r), defined
as the probability of finding a cube’s centroid at a distance r

from a given reference cube’s centroid at the origin. Thus, g(r)
describes how the density of the packing varies as a function
of r:

g(r) = 〈n(r)〉
ρvs

, (10)

where ρ is the total number density of the particles, and 〈n(r)〉
is the average number of particles in a spherical shell of volume
vs at a radial distance r from a reference cube’s centroid. The
importance of the radial distribution function is due to the fact
that it can be determined experimentally by x-ray or neutron
scattering via the structure factor S(k), which for isotropic

materials is given by [62–64]

S(k) = 1 + 4πρ

k

∫ ∞

0
sin(kr)[g(r) − 1]r dr, (11)

where k is the magnitude of the scattering wave vector. If there
is no long-range order in the system, g(r) and S(k) decay to
unity very rapidly as r → ∞.

Figure 5 presents the average radial distribution function for
several values of m, the Schulz distribution polydispersivity
parameter, and σ , the standard deviation of the log-normal
PDF. Also shown are the corresponding results for the
monodisperse packings. The average g(r) is a measure of
the packing’s structure, regardless of the cubes’ diameters.
A similar function was introduced by Stapleton et al. [65] for
polydisperse Lennard-Jones fluids represented by spherical
particles. For narrow symmetric size distributions, e.g., for
m = 10 and σ = 0.2, g(r) is very similar to that of monodis-
perse packings with the same packing fraction [5,6]. As the size
distribution of the particles is broadened with higher skewness,
the first peak of g(r) and its oscillations beyond the peak are
suppressed. Moreover, for higher degrees of polydispersivity,
the first peak of g(r) occurs at smaller distances r . Unlike the
monodisperse packings [5,6] for which g(r) has its first peak at
r � 1.3D and essentially vanishes for radial distances less than
1.3D, the polydisperse packings are characterized by radial
distribution functions that vary continuously, starting from
zero, until they reach their first peak. For example, for the most

FIG. 5. Dependence of the radial distribution function g(r) on (a) the polydispersivity parameter m of the Schulz distribution, and (b) the
standard deviation σ of the log-normal distribution. m = ∞ and σ = 0 represent the monodisperse packings.
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FIG. 6. Dependence of the structure factor S(k) on (a) the polydispersivity parameter m of the Schulz distribution, and (b) the standard
deviation σ of the log-normal distribution. m = ∞ and σ = 0 represent the monodisperse packings.

polydisperse packing generated by the Schulz distribution (the
limit m = 0), g(r) is nonzero at r � 0.6〈D〉, and it achieves
its first peak at r � 〈D〉.

Figure 6 presents the structure factor S(k) for the six
packings of Fig. 3, calculated via Fourier transforming of
g(r), along with those for the monodisperse packings. Another
way of computing S(k) is by direct Fourier transforming of
the particles’ positions rj , leading to S(k) = |∑N

j=1 exp(ikj ·
rj )|2/N , where N is the total number of particles. That is, S(k)
is computed by averaging it over k = |k|. As Fig. 6 indicates,
similar to g(r), the structure factor S(k) of the polydisperse
packings exhibits behavior similar to that of the monodisperse
packings if the particle-size distribution is narrow (such as, for
example, m = 10 and σ = 0.2 for, respectively, the Schulz and
log-normal distributions). Stronger polydispersivity results,
however, in the suppression of the first peak, followed by
oscillations around unity and loss of the structure since the
packings contain particles of all sizes. The first peak of
S(k) occurs at larger wave numbers k as the polydispersivity
increases (decreasing m or increasing σ ). All the radial
distribution functions and the structure factors are, of course,
finite and approach unity as r → ∞. The peaks beyond the first
one indicate the structured behavior of the packings (disorder
to order). As is well known, sharper and stronger oscillations
around unity indicate that the packings exhibit behavior closer
to long-range order or quasicrystalline behavior.

C. Analytical approximation for the structure factor

An important unsolved problem is the derivation of a
closed-form analytical formula for the structure factor of
disordered materials. In the absence of the solution of the
problem, analytical approximations have been proposed for
S(k). In particular, for the Percus-Yevick fluids represented
by polydisperse hard spheres with a Schulz distribution of the
particles’ size, the following accurate approximation has been
proposed [43,66,67]:

S(k) = [ρP (k)]−1I (k), (12)

with I (k) being the scattering intensity, and P (k) representing
the scattering amplitude, given by

P (k) = 16π2
∫ ∞

0
f (D)y2(k,D)dD, (13)

where, as before, ρ is the total number density of the particles,
and y(t) = sin t − t cos t , with t = kD/2. I (k), the scattering
intensity, is given by [43,68]

I (k) = ρ

[ ∫ ∞

0
f (Dα)F 2

α (k,Dα)dDα +
∫ ∞

0
dDα

×
∫ ∞

0
dDβf (Dα)f (Dβ)Fα(k,Dα)Fβ(k,Dβ)Hαβ(k)

]
.

(14)

Here, Fα(k,Dα) is the single-particle amplitude form, and
Hαβ(k) = (ραρβ)1/2hαβ(k), with ρα being the number density
of particles of size fraction α. The functions hαβ are the Fourier
transforms of the total correlation functions, and they have
a simple mathematical form for the Percus-Yevick solutions
of hard spheres [43,66,67]. To derive an expression for the
single-particle form amplitude, it is assumed [43] that the
distribution of the scattering contrast in the spherical particles
can be partitioned in a core of radius a1 = p1aM , followed by
a sequence of M − 1 concentric shells, with each extending to
an outer radius of ai = piaM with pM = 1. Then [69],

Fα(k,Dα) = 4π

k3

M∑
i=1

ni,i+1y(0.5kpiDα/p), (15)

where ni,i+1 = ni − ni+1, with ni being the electron density
in the shell i, p = 0.5Dα/aM , and the function y(t) was given
earlier. More details are given elsewhere [43,66,67].

Although the packings that we study are quite different from
the Percus-Yevick fluids, we used Eqs. (12)–(15) to predict
S(k) for the packings with a Schulz particle-size distribution.
The results are presented in Fig. 7, where they are compared
with the predictions of Eq. (12). All the qualitative trends
indicated by our computed S(k) are similar to those predicted
by Eq. (12). Note that one reason for the difference between
the computed and predicted S(k) for small k is due to Eq. (12)
not being able to precisely predict the scattering intensity at
zero angle at high packing fractions and for broad particle-size
distributions [67].

D. Loss of structure

To quantitatively investigate the “loss of structure” or
“loss of order” in the polydisperse packings relative to the
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FIG. 7. Comparison of the structure factor S(k), computed by
the numerical simulation, and the predictions of the analytical
approximation, Eq. (12). The sizes of the particles follow the Schulz
distribution with the polydispersivity parameter m. The monodisperse
packings correspond to m = ∞.

monodisperse ones, we use an order metric τ , introduced by
Torquato et al. [70] and defined by

τ ≡ 1

�3

∫ ∞

0
[g(r) − 1]2dr = 1

(2�π )3ρ2

∫ ∞

0
[S(k) − 1]2dk,

(16)
where � is some characteristic length scale, usually taken to
be unity in order to rescale the configuration of the system
and to make the number density ρ equal to unity [70]. The
second equality in Eq. (12) is based on the use of Parseval’s
theorem. For spatially uncorrelated systems of particles—the
“ideal gas”—τ = 0 and, therefore, the deviation of τ from zero
is a measure of order in the system. For perfectly crystalline
structures, τ = ∞.

Figure 8 presents the computed τ , with both the Schulz
and log-normal distributions. The corresponding value of τ

for the monodisperse packings at the same packing fraction of
φ2 = 0.2 (see Fig. 3) is ≈13. Consider the results for, e.g., the
Schulz distribution. As pointed out earlier, m = 0 corresponds
to the highest degree of polydispersivity. Figure 8 indicates
that τ is a monotonically increasing function of m, implying

that the more polydisperse the packings are, the weaker are the
correlations in the spatial distribution of the packings. That is,
the more polydisperse the packings are, the closer they are
to an “ideal gas,” one for which τ = 0. A similar trend is
also indicated by Fig. 8 with a log-normal distribution of the
particles’ sizes.

E. Two-point probability function

Another important microstructural descriptor of a given
phase i of a packing of particles is the two-point probability
function S

(i)
2 (x1,x2), defined by

S
(i)
2 (x1,x2) = 〈I (i)(x1)I (i)(x2)〉, (17)

which represents the probability of finding two randomly
selected points x1 and x2, separated by a distance r , belonging
to phase i of a multiphase material. The indicator function
is I (i)(x) = 1 if x ∈ phase i, and it is zero otherwise. For
statistically homogeneous and isotropic media, S

(i)
2 (x1,x2)

depends only on the distances, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (r). (18)

One also has S
(i)
2 (0) = φi , where φi is the volume fraction of

phase i. In addition, S
(i)
2 must satisfy limr→∞ S

(i)
2 (r) → φ2

i .
There are certain relations between S

(i)
2 and other microstruc-

tural descriptors [63,64], so that any knowledge about S
(i)
2

leads directly to information about such characteristics.
The computed S

(1)
2 (r) for the six packings of Fig. 3 are

presented in Fig. 9, along with those for the monodisperse
packings. Since the porosity φ1 of all the packings equals 0.8,
S

(1)
2 (0) � 0.8. Furthermore, S

(1)
2 (r) approaches 0.64 for large

r since, theoretically, limr→∞ S
(1)
2 (r) = φ2

1 . The approaching
rate to φ2

1 is, however, different for various degrees of
polydispersivity. The lower the degree of polydispersivity,
the faster is the approaching rate. For the highest degree
of polydispersivity, m = 0 in the Schulz distribution, S

(1)
2 (r)

approaches φ2
1 at radial distances r > 5〈D〉. Thus, the prob-

ability of finding two points separated by a distance r in the
pore space of a polydisperse packing is greater than that in
a monodisperse packing with the same porosity or packing
fraction.

In addition, S
(1)
2 (r) has a minimum at r = 〈D〉 for the

narrowest polydispersivity that we studied, namely for m = 10

FIG. 8. Loss of order in the polydisperse packings, as characterized by the order metric τ defined by Eq. (12).
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FIG. 9. Dependence of the two-point probability function S
(1)
2 (r) for the pore space of the packings on (a) the polydispersivity parameter

m of the Schulz distribution, and (b) the standard deviation σ of the log-normal PDF. m = ∞ and σ = 0 represent the monodisperse packings.

and σ = 0.2 in the two particle-size distributions. This implies
that in the monodisperse packings, the probability of finding
in the pore space two end points of a line segment r , which is
equal to the linear size of the cubes, is lower than any other
distance r . Thus, we may deduce that, compared with the
monodisperse packings, the polydisperse ones contain more
connected void space. This feature, which is more distinctive
for higher degrees of polydispersivity, affects the flow and
transport properties of such packings.

F. Specific surface

The specific surface s, defined as the interfacial area per
unit volume, contains information about the internal surface
of porous media. For the packings under study, s is computed
by

s = 6η
〈D2〉
〈D3〉 , (19)

where η = ρ〈D3〉 is the reduced density of the system,
equivalent to φ2. The surface area ratio A is the ratio of
the specific surface of a polydisperse system and that of a
monodisperse one with the same packing fraction φ2. Figure 10
presents the quantity versus m, the polydispersivity parameter
of the Schulz distribution, and σ , the standard deviation of the
log-normal PDF. In both cases, A decreases with increasing
polydispersivity, implying that the more dispersed the packings
are, the smaller is the specific surface they possess, which is

due to filling up the small holes between the large particles
with smaller ones.

G. Lineal-path function

A very useful statistical characteristic of random packings
of solid objects is their lineal-path function L(i)(z), the
probability of finding a randomly thrown line segment of
length z entirely in phase i. Since L(i)(z) quantifies connect-
edness along a lineal path, it is also known as the coarse-scale
connectedness function. Its limiting values are L(i)(0) = φi

and L(i)(∞) = 0. In the limit z = 0 one has, L(1)(0) = φ1,
the porosity of the packing, whereas the tail of the function
as z → ∞ yields information about the largest possible line
segment in the packing’s pore space.

Figure 11 presents the lineal function for the six packings,
three each with the Schulz and log-normal distributions. For
both distributions, the higher the degree of polydispersivity,
the more likely it is to find a line segment of length z entirely
in the pore phase. The longest possible line segment entirely
in the pore space belongs to the packing with the highest
degree of polydispersivity, the limit m = 0 in the Schulz
distribution. The maximum possible length of a line segment in
the pore space is a bit larger than 0.8〈D〉. For the monodisperse
packings, represented by the limits m → ∞ and σ = 0 in
the two particle-size distributions, the maximum length of a
line segment entirely in the void space is around z ≈ 0.4〈D〉,
almost half of that for the highest degree of polydispersivity.

FIG. 10. The surface area ratio A vs (a) the polydispersivity parameter m of the Schulz distribution, and (b) the standard deviation σ of the
log-normal PDF.
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FIG. 11. Dependence of the lineal-path function L(1)(z) of the pore space of the packings on (a) the polydispersivity parameter m of the
Schulz distribution, and (b) the standard deviation σ of the log-normal distribution. m = ∞ and σ = 0 represent the monodisperse packings.

This provides further evidence that the polydisperse packings
contain more connected pore space than the monodisperse
ones.

H. Pore-size distribution

The pore-size distribution function P (δ) of a porous
medium is defined such that P (δ)dδ is the probability that
a randomly selected point in the pore phase is at a distance
between δ and δ + dδ from the nearest point at the pore-solid
interface. Thus, P (δ) is related to the probability of inserting a
sphere of radius δ into the system. Since P (δ) is a probability
density function, it normalizes to unity, i.e.,

∫ ∞
0 P (δ)dδ = 1.

Note that P (δ) is not the same as the classical pore-size
distribution that is used to quantify the statistical distribution of
the effective sizes of the pore bodies and pore throats in a pore
space, which is measured by a variety of techniques [71]. The
associated cumulative distribution function F (δ) represents the
fraction of the pore space that has a pore radius larger than δ:

F (δ) =
∫ ∞

δ

P (r)dr. (20)

Hence, the limiting values of F (δ) are F (0) = 1 and F (∞) =
0. The mean pore size 〈δ〉 is then given by

〈δ〉 =
∫ ∞

0
δP (δ)dδ =

∫ ∞

0
F (δ)dδ. (21)

Figure 12 illustrates the cumulative pore-size distributions
F (δ), computed for the six packings of Fig. 3. For both particle-
size distributions, the area under the F (δ) curves is greater for
higher degrees of polydispersivity, implying that the mean
pore size 〈δ〉 in the polydisperse packings is greater than that
of the monodisperse one. While the largest pore size is around
≈1.75〈δ〉 for the highest degree of polydispersivity with the
Schulz distribution, it is around ≈0.75〈δ〉 for σ = 0.2 in the
log-normal distribution. This is due to the fact that the long
tail of the log-normal distribution generates some very large
particles that can be better filled up by very small particles,
hence reducing the pore sizes.

I. Mean survival time and principal relaxation time

Two other important physical quantities are closely related
to the cumulative distribution F (δ). One is the mean survival
time Tm of a diffusing species that undergoes a first-order
reaction among partially absorbing traps in the porous medium
that a packing represents. A lower bound to Tm is given by
[72,73]

Tm � 1

�

(∫ ∞

0
F (δ)dδ

)2

. (22)

The second property is the principal relaxation time T1 in
the same diffusion problem, which also arises in the problem
of the relation between nuclear magnetic resonance and the
effective permeability of a porous medium [68,74–76], with

FIG. 12. Dependence of the cumulative pore-size distribution function F (δ) on (a) the polydispersivity parameter m of the Schulz
distribution, and (b) the standard deviation σ of the log-normal distribution. m = ∞ and σ = 0 represent the monodisperse packings.
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FIG. 13. Lower bounds for the mean survival time Tm and the principal relaxation time T1 of a diffusing species in the two types of packings.

the permeability K given by K ∝ T
f

1 with f ≈ 2 [71]. The
following rigorous lower bound has been derived for T1

[72,73]:

T1 � 2

�

∫ ∞

0
δF (δ)dδ, (23)

where, as previously mentioned, � is usually taken to be unity.
The computed lower bounds for Tm and T1 are presented

in Fig. 13. According to Fig. 13, the monodisperse packings
have the shortest survival and relaxation times, but the times
increase as the polydispersivity of the packings increases.
The reason is due to the nature of the reaction-diffusion
phenomenon: Absorbing traps in a packing with equal-size
particles in which a species diffuses cannot be avoided for a
long time, since the diffusion paths are not too tortuous. On
the other hand, as the packings become more polydisperse,
smaller particles fill up the pores between the large particles,
hence providing more tortuous diffusion paths for the species,
implying that it takes longer to encounter the traps and be
absorbed by them.

J. Nearest-neighbor functions

The particle nearest-neighbor probability density function
HP (r) is defined such that HP (r)dr is the probability of finding
the nearest-neighbor particle’s center at a distance between r

and r + dr from an arbitrary reference particle’s center in the
packing. A second nearest-neighbor function, HV (r), referred

to as the void nearest-neighbor PDF, is defined in a similar
manner, i.e., HV (r)dr is the probability of finding the nearest-
neighbor particle’s center at a distance between r and r + dr

from an arbitrary point in the void region of the system. While
the first moment of HV (r) is related to that of the pore-size
function P (δ), the first moment of HP (r) yields the mean
nearest-neighbor distance lP between the particles:

lP =
∫ ∞

0
rHP (r)dr. (24)

To compare the results with those for the monodisperse
packings, we define LP as the ratio of the mean nearest-
neighbor distance of a polydisperse system and that of a
monodisperse packing with the same packing fraction φ2 (or
porosity φ1). Figure 14 presents the dependence of LP on the
polydispersivity parameter m of the Schulz distribution, and
on σ , the standard deviation of the log-normal PDF. In both
cases, the scaled mean nearest-neighbor distance decreases
upon increasing the degree of polydispersivity because smaller
particles can fill the void space between the large ones, hence
decreasing LP . With the Schulz distribution, LP varies from
0.35 for the highest degree of polydispersivity (i.e., for m = 0)
to around 0.8 for the narrowest distribution. It approaches
unity with a slight tilt as m increases. With the log-normal
distribution, on the other hand, LP varies from unity for the
monodisperse packing (i.e., for σ = 0) to around 0.48 for the
most polydisperse system that we simulated. The implications
are clear: (i) The distances between nearest-neighbor particles

FIG. 14. The scaled mean nearest-neighbor distance LP vs (a) the polydispersivity parameter m of the Schulz distribution, and (b) the
standard deviation σ of the log-normal PDF.
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FIG. 15. Dependence of the specific surface area s on the porosity for various values of (a) the polydispersivity parameter m of the Schulz
distribution, and (b) the standard deviation σ of the log-normal PDF. m = ∞ and σ = 0 represent the monodisperse packings.

in the polydisperse packings are considerably less than those
in the monodisperse packings, and (ii) due to the long tail of
the log-normal distribution that gives rise to some very large
cubes, the distances between the nearest-neighbor particles
with a log-normal particle-size distribution are smaller than
those in the packing with a Schulz distribution. In other words,
the presence of very large cubes also creates very large voids
in between the particles that are filled by multiple small par-
ticles, hence reducing the distance between nearest-neighbor
particles.

K. Effect of porosity

All the results presented so far were for packings with a
fixed porosity of φ1 = 0.8. In this section, we present the
porosity dependence of two important properties, namely the
specific surface area s and the mean nearest-neighbor distance
lp between the particles. Figure 15 presents the dependence
of s on the porosity φ1 of the packings with the two types
of particle-size distribution. As the porosity decreases, the
interfacial area between the particles increases, since the
distance between them decreases. Moreover, upon increasing
the degree of polydispersivity at a fixed porosity, the interfacial
area decreases since, once again, the small particles fill up the
void between the large ones. The trends are identical for both
types of particle-size distribution. In addition, for any m and σ ,
which are the parameters of the two distributions, the specific

surface area depends on the porosity more or less linearly,
which is then useful for estimating s for any other porosity.

Figure 16 presents the results for the nearest-neighbor
distance lp. Clearly, as the porosity increases, so also should
lp as the void space expands at higher φ1. The expectation is
confirmed by the results shown in Fig. 16 for both particle-
size distributions. Similar to the specific surface area s, the
nearest-neighbor distance lp varies linearly with the porosity.
The linear dependence of s and lp on the porosity is the
direct result of the nonoverlapping constraint that we have
imposed on the particles. If the particles are allowed a degree
of overlap—the so-called cherry-pit model [63,64]—the linear
dependence should disappear and be replaced by a more
complex dependence.

IV. SUMMARY

This paper reports on the statistical characterization of the
microstructure of packings of nonoverlapping polydisperse cu-
bic particles. Two types of particle-size distributions, namely
the Schulz and log-normal distributions, were utilized, and
the random close packing density of the porous media was
computed for various degrees of polydispersivity. In addition,
some of the most important microstructural descriptors, in-
cluding the radial distribution function and the corresponding
structure factor, the two-point probability function, the specific
surface and lineal-path function, as well as the pore-size

FIG. 16. Dependence of the mean nearest-neighbor distance lp on the porosity of the packings for several values of (a) the polydispersivity
parameter m of the Schulz distribution, and (b) the standard deviations σ of the log-normal PDF. m = ∞ and σ = 0 represent the monodisperse
packings.
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and nearest-neighbor functions, were calculated and analyzed
for numerous degrees of polydispersivity. With the Schulz
distribution with the highest degree of polydispersivity the
maximum packing fraction is computed to be about 0.81,
whereas the corresponding value computed with the log-
normal particle-size distribution with a standard deviation
σ ∈ [0,10] is about 0.71, computed with σ = 1.

Furthermore, it was demonstrated that the probability of
finding two points separated by a distance r in the pore space of
a polydisperse packing is greater than that in a monodisperse
one with the same porosity. The maximum length of a line
segment entirely in the void space of a packing with the largest
degree of polydispersivity, as well as the maximum pore size in
the same packing, are twice those of a monodisperse packing.
Hence, polydisperse packings contain better connected void
space. Their specific surface areas are also smaller than the
corresponding value in monodisperse packings.

More importantly, we showed that (i) an approximate
analytical expression for the structure factor of Percus-Yevick
fluids of polydisperse hard spheres in which the particles’ sizes
follow a Schulz distribution also predicts all the qualitative
features of the structure factor of the packings that have
been studied in this paper; (ii) as the packings become more
polydisperse, their behavior resembles increasingly that of an
ideal system—“ideal gas”—with little or no correlations; and
(iii) the mean survival time and mean relaxation time of a
diffusing species in the packings increase with higher degrees
of polydispersivity.
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