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Abstract
Wind and solar power are known to be highly influenced byweather events andmay rampup or down
abruptly. Such events in the power production influence not only the availability of energy, but also
the stability of the entire power grid. By analysing significant amounts of data from several regions
around theworldwith resolutions of seconds tominutes, we provide strong evidence that renewable
wind and solar sources exhibitmultiple types of variability and nonlinearity in the time scale of seconds
and characterise their stochastic properties. In contrast to previousfindings, we show that only the
jumpy characteristic of renewable sources decreases when increasing the spatial size over which the
renewable energies are harvested. Otherwise, the strong non-Gaussian, intermittent behaviour in the
cumulative power of the totalfield survives even for a country-wide distribution of the systems. The
strongfluctuating behaviour of renewable wind and solar sources can bewell characterised by
Kolmogorov-like power spectra and q-exponential probability density functions. Using the estimated
potential shape of power time series, we quantify the jumpy or diffusive dynamic of the power. Finally
we propose a time delayed feedback technique as a control algorithm to suppress the observed short
termnon-Gaussian statistics in spatially strong correlated and intermittent renewable sources.

1. Introduction

The renewable energy sources and their share in electricity production have increased constantly,mainly driven
by energy policies,markets and environmental issues. Among the renewable energy sources the use of wind
power and photovoltaics (PVs)has a priority. For instance in the EuropeanUnion, these renewable energies
shall account for about 20%of the grossfinal energy consumption by 2020 and 60%by 2050 [1]. These
renewable sources are commonly known to be highly intermittent, i.e. they are highlyfluctuating onmany
different time scales, see [2, 3] and references therein. Therefore, one of themost important future challenges for
the stability of a desired supply grid, based on renewable energies, will be control and suppressing of these
fluctuations.

In traditional power plants, the inertia of fast rotating generators is utilised as an automatic power reserve.
This is done simply by speeding up or slowing down the rotatingmasses, keeping the grid frequencywithin a
narrow range around the nominal frequency. In the ENTSO-E4 grid, the value of the nominal frequency is 50 Hz
and the tolerated deviation from this value is±10mHz [4]. Restoring the grid frequency to the nominal
frequency, in current practice, is provided by traditional frequency control, which has three categories: primary,
secondary and tertiary frequency control, see [5]. The primary frequency control is providedwithin a few
seconds after the occurrence of a frequency deviation. It provides extra power for stabilising the system
frequency (but not restoring it to the nominal frequency f0) [6]. The secondary frequency control acts after
approximately 30 s and restores both the grid frequency from its residual deviation and the corresponding tie-
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line power exchangeswith other control zones to the set-point values. Tertiary frequency controlmanually
adapts power generation and load set-points and controls the grid operation beyond the initial 15 min time-
frame after a fault event has occurred.

In the background of replacing the successively controllable conventional power plants by intermittent
renewable power systems, there are several recent works studying the grid stability under these new constraints
[7–9]. One practical approach is that synchronousmachines of old power plants are still connected to the grid
and providing the reactive power and inertia [10]. It has also been a practical topic to study how the stability of
the power grid can be kept in the lower rotational inertia case (because of high penetration of renewable sources)
using some faster control reserves [11, 12]. One possible option is to use battery storage providing primary
control reserve, see e.g. [13] for a very recent study on this topic.

Based on different aforementioned control techniques, one has to break up the grid stability consideration
into different time scales of the fluctuating renewable sources. Themost recent studies consider the fluctuations
inwind and solar powers in 15 or 60 min and investigate the effects of these fluctuations in power system [14, 15]
and the trading on the electricitymarket [15–17]. However, up to now, little work has been done in connection
with disentangling the time dependency of thesefluctuations. This is the topic thatwe address in this paper and
in particular we focus on short time scales. Indeed, we believe that understanding the renewable energy
characteristics in short time scales will be an important additional aspect to design the efficient control systems
in future power grids.

Generally, the short time fluctuations have been less investigated, as on the one hand it is hard to get the
high-frequency power data (such as 1 Hz data), and on the other hand it is commonly assumed that the fast
fluctuations average out geographically. Further for supply systemswith big shares of traditional power units the
primary and secondary reserve guarantee an easy automatic control. The situation of a power systemwith high
shares of wind and solar energies is different, as formodernwind turbines the transfer of wind power to the
supply grid is based on anAC/DC–DC/AC rectifier—inverter technique adapted thewind power to the supply
grid conditionswith 50/60 Hz [7]. By this technique the inertia of the rotating part of a wind turbine is
decoupled from the grid. Also PV systems do not automatically provide inertial response.

A future supply gridwith low rotational inertia will have implications for operational instabilities of power
systems [18]. For instance, in Irelandʼs power grid, currently the share of renewables is strictly limited to 50%,
because of the inertia problem [19]. The complexity of future power grids with increasing shares of renewable
sources requires a precise characterisation and understanding of the short termfluctuations of wind and solar
installations in the time range of seconds. On this basis, new solutions can beworked out to suppress the
undesired but natural fluctuations inmoremost efficient way.

In this contributionwewill present results of time series analysis of a unique data set for power output from
different solar andwind systems in several regions around theworldwith resolutions of seconds tominutes. The
data set is ranging frompower output of single power systems to the countrywide power production. The data
analysis is based on two approaches. On the one hand the characterisation of stochastic properties of power in
different short time scales is performed using power and irradiance increments X X t X t≔ ( ) ( )t+ -t . From
thesewe study how likely fluctuations of certain amounts will occur, for example 50% of the rated powerwill
emerge in a time lag τ in the order of a few seconds. On the other hand the increment statistics are
complemented by studying the temporal evolution of the power dynamics, as dynamical properties are not
grasped completely by the statistical two-point quantities Xt . Bothmethodswill give new insights into the
properties of the power fluctuationswith respect to time scales and geographical averaging. Besides these new
results, we also include some already published results about the characteristics in the short time fluctuations to
complete the discussion of power dynamics.

This paper is organised as follows. In section 2, we describe the analysed big data sets for wind power, solar
power and solar irradiance data. In section 3, we provide strong quantitative evidence that bothwind and solar
energy resources exhibit short time nonlinear variability which typically occurs at time scales of a few seconds
and show that the intermittency and strong non-Gaussian behaviour in cumulative power of the totalfield still
survives in both cases, even for a country-wide installation. In section 4, using the potential shape of power time
series, wefind that depending on the spatial size over which the renewable energies are harvested, there is a
critical phase transition of the stochasticity from jumpy, i.e. on–off type, to a persistent stochastic process. Also
we used the potential analysis to detect the tipping point of this transition. As a conclusion of our data analysis,
we propose in section 5 a time-delayed feedbackmethod for suppressing the short term extreme events of power
output of wind farms and solarfields. In the newpresentedmethodwe show that saving a portion of power
output of a single renewable source, and injecting it after a delay of about 2–5 s, will have noticeable impact on
the short time intermittency. The paper is summarised in section 6 and a resulting picture of high frequency
power dynamics is presented.
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2.Description of high frequency data sets ofwind power and solar irradiance

The paper is based on a large set ofmeasurements of high-frequency data for renewablewind power, solar power
and solar irradiancewhich are selected fromdifferent countries around theworld (see table 1). The sampling
rates range from0.001 to 1 Hz. The data sets includewind and solar power and irradiance time series fromwind
farms and solar power plants with different sizes, which enables us to study the changes in their statistical
properties as a function of the field size.

Thewind datawere obtained from:

• W1-wpdwindmanager GmbH, Bremenwhich includes 12 turbines and spreads over a rectangular area of
roughly 4×4 km2 [2], a subset of these data is available under [20].

• W2-Tennet recording thewholewind energy production ofGermany (here, the date between 2007 and 2012
has been used) [21].

• W3-Eirgrid recording thewholewind production of Ireland (here, the date between 2007 and 2012 has been
used) [22].

The solar data were recorded from:

• S1- An observational network on a platform roof of theUniversity ofOldenburg, Germany (53.152°N, 8.164°
E). It consists of up to 16 small (0.242 0.556´ m2 each)PVmodules spanning an area of about
250×250m2 andwas used by and presented in [23]. A subset of these data (clearsky index recorded by 11
sensors in June 1993) is available under [20].

• S2- TheUnited States’National Renewable Energy Laboratorywhich performed a one-yearmeasurement
campaign at Kalaeloa Airport (21.312°N,−158.084°W), Hawaii, USA, fromMarch 2010 untilMarch 2011
using 19 LI-CORLI-200 pyranometers tomeasure global solar irradiance on horizontal and inclined surfaces
[24]. Two of the instruments were tilted by 45 degrees, while the other 17were horizontallymounted and
scattered across an area of about 750×750m2. The data is available from [25].

• S3 and S4- TheBaseline Surface RadiationNetwork (BSRN)where solar and atmospheric radiation are
measuredwith instruments of the highest available accuracy andwith high temporal resolution.Multi-year
time series of global horizontal irradiancewere available for one station (S3) in northern Spain recording data
between July 2009 and February 2013, and one station [26] (S4) in Algeria (Sahara) recording data between
March 2000 andDecember 2013. The station in Spain is situated in an urban environment in amountain
valley (42.816°N,−1.601°W), while the station inAlgeria is surrounded by rock and desert (22.790°N,
5.529°E) [26].

• S5- Fraunhofer Institut für Solare Energiesysteme (ISE) recording thewhole solar energy production of
Germany in 2012.

For the analysis of the recorded data sets we first scale these time series to have dimensionless data for
drawing a comparison between the results. Therefore, we calculate the scaledwind power P t Pr( ) , where Pr is
the rated power and the clear sky index Z G t Gclearsky( )= , where G t( ) and Gclearsky are themeasured solar
irradiance and its theoretical prediction under clear sky at a given latitude and longitude, respectively.We used
themodel presented in [27] to compute the clear-sky index time series which needs to include parameters of
atmospheric conditions, such as air composition and turbidity [27]. The clear sky index has positive values and
itsmaximum is around unity.

Table 1.Data description.

Data set Rated power Data points Measurement duration Frequency

W1:wind farm (12 turbines) ∼25MW 15.3 106´ ∼8months 1 Hz

W2:wind farmGermany ∼30GW 2 105~ ´ ∼6 years 1/15 min 1-

W3 :wind farm Ireland ∼1000MW 106~ ∼10 years 1/15 min 1-

S1: solar irradiance, Germany (Oldenburg) — 12 106´ ∼16months 1 Hz

S2: solar irradiance, Hawaii — 14 106´ ∼12months 1 Hz

S3: solar irradiance, Spain — 1.3 106´ ∼31months 1/60 Hz

S4: solar irradiance, Sahara — 3.7 106´ ∼86months 1/60 Hz

S5: solarfieldGermany ∼30GW ∼17000 ∼1 year 1/15 min 1-
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3. Intermittency: non-Gaussian behaviour ofwind and solar increments statistics

In this sectionwe focus on the characterisation of short time power fluctuations.We use a two-points statistics
analysis based on increment statistics in lag τ, i.e. X X t X t≔ ( ) ( )t+ -t . The increment Xt mayhave positive
and negative values corresponding to the ramp-up and ramp-down events as seen from the present state X t( ).
The increment analysis can be done in two different ways. Onemay investigate the τ- dependence of the
incrementmoments, which is called the structure functions S Xn

n( ) ≔t áD ñt [28]. Alternatively, onemay
analyse the τ- dependence of the probability density functions (PDFs) P X ,( )tt , for whichwe use the short
notation P X( )t . Note that the second order structure function S X2

2( )t = áD ñt is related to the autocorrelation
X t X t( ) · ( )tá + ñ, which in turn is directly related to the power spectrumby a Fourier transform, after the
Wiener–Khinchin theorem. This factmakes clear that the often used power spectra only characterise the τ-
dependence of thewidth or standard deviations X2 2s = áD ñt t of the PDFs P X( )t . A remarkable feature of the
PDFs P X( )t is that they show formany systems, in particular for turbulence-like systems (and for small values of
τ) pronounced deviations fromGaussianity. If the PDFs are heavy tailedwith high probabilities of extreme
events, we define this as intermittency, following the commonnotion for turbulence [29]. This can also be
quantified by higher order structure functions [29–34]. Consequently, we analyse here thewind and solar data
sets with respect to the power spectra and the increment PDFsmainly for the normalised data sets, i.e. X st t,
where st is the standard deviation of Xt .

Let us beginwith known results about the power spectrumof solar andwind power. The power spectra
computed fromhigh frequency time series (with sample rate 1 Hz) of solar irradiance, wind velocity andwind
power exhibit a power-law behaviourwith an exponent 5 3~ (Kolmogorov exponent [2, 35]) in the frequency
domain f0.001 0.1 Hz< < , indicating that they are turbulent-like sources [35–37]. This is reconfirmed here in
figures 1(a) and (b) for Germany (W1) andHawaii (S2), respectively. As shown infigure 1(b), the fast
fluctuations of single sensormeasurements are partlyfiltered in high frequencies for the cumulative irradiance
fluctuations of a geographically averaged solarfield. A similar filtering effect has been observed also in the
cumulative power of wind farms [36].

Also the power spectra of oneminute averaged solar irradiance fluctuations in several regions around the
world (S1–S4) for frequencies f0.001 1 120 Hz< < again show a turbulence-type spectrum 5 3~ -law, as
shown infigure 1(c), indicating a universal characteristic of the power spectrum. The scalingwith the same
exponent for allmeasured high frequency time series (to the best of our knowledge first investigated in [38])
means that the power grid is being fed by turbulent-like sources.

Next we study the shapes of increment PDFs P X( )t , normalised to their standard deviations, expanding the
above analysis of the τ-dependence of increment PDFs standard deviation by the power spectrum. Results of
solar irradiance data (S2) andwind power time series (W1) are shown infigures 2(a) and (b) for the time lags

1, 10, 1000 st = . The normalised increment PDFs depart largely from the normal (Gaussian) distribution, as
they possess exponential-like fat tails. These tails extend to extreme values like 20 s1st= andmore. As such events
would not be expected fromnormal probability we refer to them as ‘extreme events’. Fromfigures 2(a) and (b), it
becomes clear how these increment statistics changewith the scale τ.

Figures 2(a) and (b)depict that not only the increment PDFs of the single wind turbine and the single solar
sensor depart largely from the normal distribution, but also thewind farm and solarfield deviate significantly
from theGaussian distribution. For instance, 20 s1st= fluctuations are observed on average once amonth for
wind power data (W1), and∼1000 times permonth for solar irradiance (S2). Characterising these data, as often

Figure 1. (a)Power spectra of wind velocity, wind power fluctuations in log–log scale, for a data set with a resolution of 1 Hz (W1). The
Kolmogorov exponent 5/3 is represented by dashed lines [2, 36]. (b)Power spectra of irradiance fluctuation for a single site (red) and
averaged over 16 sensors (black) in log–log scalemeasured inHawaii (S2)with a sample rate of 1 Hz. (c)Power spectra of irradiance
fluctuations forminute-averaged solar irradiance in several regions around theworld (Hawaii, Sahara, Spain, Germany), again show a
turbulence type spectrum5/3-law. In the inset of (a)–(c), log–log plots of the compensated energy spectra f S f5 3 ( ) versus frequency f
are shown. In the inset of (c) the compensated energy spectrum is plotted for the irradiance in Spain.
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done, only by the variance or power spectra, and assuming aGaussian process, such extreme events would be
expected only once every 3million years. Hence, it is worth to emphasise that, if instead of intermittent PDFs,
commonGaussian-distributed processes are used for grid stability studies, these extreme events will not be taken
into account, which can cause unrealistic results for grid stability analyses.

To compare the characteristics of solar andwind power production, we present infigure 2(c) the power
increment statistics for two units with the same rated power.Wind power features extreme events up to about 20

1st= , while up to about 40 1st= are recorded for solar irradiance in this time lag. The probability of observing 20
st fluctuations of solar irradiance in 1 s is three orders ofmagnitude higher than that of wind power. Solar
irradiance thus hasmuchmore frequent extreme events, which is again an important aspect for gird integration.

Note that in this study solar power systems are different fromwind power, as they are represented by
analyses of solar irradiance and not by solar electric power. This is justified by the direct and quasi-linear
transformation of plane-of-array solar irradiance into solar power, assuming horizontally orientedmodules in
this case [48]. Any deviations from this behaviour due to the physical characteristics of both solar cells and
additional system components (e.g. inverter) are small and thus neglected in this study. Especially, due to the
extremely fast response of PV systems to irradiance, they perfectly reproduce any intermittent pattern in the
irradiance time series. Statistical characteristics derived from solar irradiance time series are therefore valid also
for solar power time series with high accuracy.

Now let us study the non-Gaussian properties of the increment statistics of renewable wind and solar power
fromnationwide installations. Typical time series of aggregatedwind and solar power inGermany (and their
increments) are given infigures 3(a) and 4(a), showing very strong variability and fluctuations.

Infigures 3(b) and 4(b) and 5, increment PDFs for time lags 15, 60 mint = are shown for aggregatedwind
and solar power inGermany (both sources with a rated power∼30 GW), and forwind power in Ireland (with a
rated power∼1 GW), see also [39]. As a remarkable result, the non-Gaussian characteristics remain for the
aggregated power output of country-wide installations. Ramp events up to about±2000MW (±150MW) and
±4000MW (±300MW) are recorded for 15 and 60 min time lags inGermany (Ireland). This is a direct
consequence of the long-range correlations of wind velocity and cloud size distributions that are∼600 kmand
∼2100 km, respectively [40, 41]. Therefore, the central-limit theorem, predicting a convergence toGaussianity,
does not apply. Note also that infigure 4(b) the probability of observing±4000MWfluctuations of solar power
in 60 min is two orders ofmagnitude higher than that of wind power for nearly the same rated power in
Germany.

For further investigation, figure 6 depicts the increment PDFs of solar irradiance in several regions around
theworld, based on oneminute averaged data (S1–S4) and a corresponding time lag of 1 min. These data sets
exhibit similar non-Gaussian characteristics, with extreme events up to about 10–20 1 minst= having been
recorded.

To quantify the time scale dependence of the intermittency, the lag-dependence of the flatness is shown in
figure 7 for thewind velocity aswell as for thewind power and solar irradiance. The flatness increasingly deviates
from the value 3 (which corresponds to aGaussian distribution) on short time scales. For the time lag 1 st = ,
theflatness reaches values 30–120 for solar irradiance data, 20–40 forwind power data and 6 forwind velocity.
The results for the flatness quantitatively confirm thefindings from the PDF study as discussed above.
Intermittency decreases on larger time scales andwith averaging overmore units, but stays above theGaussian
limit. Figure 7 shows that theflatness, and hence non-Gaussianity, is larger for solar irradiance than forwind

Figure 2.Probability distribution functions (PDF) of increment statistics, P X( )t for solar andwind powerfluctuations. (a)
Continuous deformation of the increment PDFs for time lags 1, 10, 1000 st = in log-linear scale, for the solar irradiance
fluctuations of a single sensor and thewhole field (S2). The PDFs are shifted in the vertical direction for convenience of presentation
and X st aremeasured in units of their standard deviation st . (b) Same figure for the increment PDFs of onewind turbine and awind
farmpower for the same time lags. AGaussian PDFwith unit variance is plotted for comparison. (c)Comparison of the increment
PDFs ofwind and solar power time series having a similar rated powerwith time lag 1 s. Solid curves are fits based on q-exponential
functions equation (1). The obtained parameters are 0.64b = , q 1.12= for solar and 0.87b = , q 1.01= forwind power PDFs. The
dot size is chosen in the order of the statistical error.
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power on time scales 1 min< and becomes smaller for 1 min> .Wewould like to stress that the increments are
strongly correlated on short time scales, see [42] for a recent discussion.

For the practical purpose of predicting the likelihood of large powerfluctuations, we parametrise the
intermittent shape of the increment PDFs using the q-exponential function [43]

P X A q X1 1 , 1q1 1( ) [ ( ) ∣ ∣] ( )( )b= - -t t
-

withfitting parametersβ and q, and normalisation constant A q1 2 2( )b= - . As shown infigures 2 and 3 this
modelfits the observed PDFs of normalised increments X st t verywell. It is straightforward to show that the
relation between flatness f and parameter q in lag τ is:

f
q q

q q
6

2 3 3 4

4 5 5 6
2( ) ( ( ) )( ( ) )

( ( ) )( ( ) )
( )t

t t
t t

=
- -
- -

and that q can be expressed in terms of theflatness (for f 2.4 ) as

q
f f f

f

84 36 49 102

40 72
. 3

2

( )
( ) ( ) ( )

( )
( )t

t t t

t
= -

+ + - +

-

Figure 3. (a)Total wind power output and its increments in time lags 15 min and 1h inGermany for the year 2012, showing a strongly
intermittent behaviour. The installed capacity is about∼30 GW. (b)Deformation of the increment PDFs for time lags

15, 60 mint = in log-linear scale, for wind power inGermany (with a rated power∼30 GW). Extreme events up to about
±2000 MWand±4000 MWare recorded in time lags 15 min and 60 min, inGermany respectively. Solid curves arefits based on q-
exponential functions equation (1). Forwind power inGermany the obtained parameters are 0.003b = , q 1.03= and 0.009b = ,
q 1.02= for time lags 1 ht = and 15t = min, respectively.

Figure 4. (a)Total solar power output and its increments in time lags 15 min and 1h inGermany for the year 2012, showing strong
variability. The installed capacity is about∼30 GW. (b)Deformation of the increment PDFs for time lags 15, 60 mint = in log-
linear scale, for solar power inGermany (with a rated power∼30 GW). For a 60 min time lag, extreme events up to±6000 MWare
recorded in cumulative PVoutput inGermany. Solid curves are fits based on q-exponential functions equation (1).
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Aswe see from equation (2), theflatness is independent of parameterβ. For a given lag, we can first calculate the
parameter q from itsflatness and then parameterβ can be evaluated via variance, i.e.
X q q q q2 2 4 3 6 7 22 2 2{ ( )} { ( )( )}bá ñ = - - + - +t (tofind the parameters q andβwe can also use a
minimisation of distance between experimental increment PDFs and q-exponential, as infigures 2–5).

Figure 5.Deformation of the increments PDFs for time lags 15, 60 mint = in log-linear scale, forwind power in Ireland (with a
rated power 1 GW~ ). Extreme events up to about 150 MW and 300 MW are recorded in time lags 15 min and 60 min, in Ireland
respectively. Solid curves are fits based on q-exponential functions equation (1). Forwind power in Ireland the obtained values are

0.102b = , q 1.06= and 0.0466b = , q 1.02= for time lags 1 ht = and 15t = min, respectively.

Figure 6.Probability distribution functions (PDF) of increment statistics P X( )t in log-linear scale for a time lag of 1 min, based on
minute-averages of solar irradiance in several regions around theworld (S1–S4). The PDFs are shifted in the vertical direction for
convenience of presentation and X st aremeasured in units of their standard deviation st .

Figure 7.The lag-dependence of theflatness f S S4 2
2( ) ( ) ( )t t t= , (where S X t X tk

k
2

2( ( ) ( ))t= á + - ñ) for solar irradiance, wind
power andwind velocity fluctuations. They deviate strongly from the value 3 that corresponds to aGaussian distribution, especially on
short time scales.
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The τ-dependencies ofβ and q are shown infigure 8 for the data setsW1 and S2. For instance, for wind
power from a single turbine (data setW1)wefind 0.87b = , q 1.01= for 1 st = , and 1.15b = , q 1.04= for

10 st = infigure 2(b).We can conclude that the extreme events statistics of wind and solar power can be very
well characterised by q-exponential functions for a vast range of X st t values. These results can be used as a
basis for stochasticmodelling such intermittent time series.

As specified in equation (1), the absolute value of Xt has been used in the q-exponential function, which
means that symmetric increment PDFs are assumed for these calculations.We should note that the question of
symmetric increment distribution is important, as for ideal turbulent signals a pronounced skewness is
expected. To quantify asymmetric effects in the statistics of positive and negative power increments, the lag-
dependence of the skewness is shown infigure 9 for bothwind power (W1) and solar irradiance (S2). The lag-
dependence of the skewness shows that they deviate in short time scale from zero, which corresponds to a
symmetric distribution.Wind (solar) power exhibits positive (negative) skewness values, corresponding to a
higher (lower) probability of ramp up events than rampdown events. The skewness of country-wide
installations, such asW2,W3, and S5 data sets, ismuch closer to zero yet. Thuswe can take the skewness effect as
aminor additional contribution to the formof the PDFs, justifying the q-exponential formfits as themajor one.
This agrees with the good fits to the empirical PDFs shown infigures 2–5.

So far, we have presented a profound characterisation of the power fluctuation statisticsmeasured by
increments, with all data showing strong intermittency. Details of absolute values of the characterising
parameters like the exponent qwill changewith data sets and seasonal periods of time. It will also beworthwhile
to see if the estimation of q by theflatness is sufficient to get the bestfit, or if it is better to use a free parameter fit
for the tails of the PDFs.

Figure 8.The lag-dependence of (a) q and (b)β, for solar irradiance (S2) andwind power (W1), compare to PDFs infigure 2.

Figure 9.The lag-dependence of the skewness S S S3 2
3 2( ) ( ) ( )t t t= , for solar irradiance andwind power fluctuations. On short

time scales, they deviate strongly from zero, which corresponds to a symmetric distribution.Wind power (W1) and solar irradiance
(S2) have positive and negative skewness, respectively.
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4. Critical transitions at tipping points for dynamics of solarfield andwind farm

Beside the investigation of increment PDFs, in this sectionwe investigate the dynamics of the renewablewind
and solar variations.We aim tofind outwhich dynamical feature leads to the emergence of large increments and
how this alters with the geographical size. As shown infigures 10(a) and (b), the time series for a single sensor has
aflickering behaviour, while for the field, it has a diffusive stochastic behaviour (without strong jumps). From
these illustrations, clear changes in the flickering behaviour of the data sets become obvious.

To studywhether the rapid outputfluctuations are jumpy or diffusive (persistent), we construct the effective
potentials of corresponding time series after themethods explained in [28, 44–47]. The PDFs provide the shape
of the effective potential of time series as

P U PProb exp . 4eff( ) ( ( )) ( )~ -

Infigures 10(c) and (d)weplot the effective potentialU Zeff ( ) corresponding to the time series offigures 10(a)
and (b). The effective potential for a single sensor is asymmetric with a double-well structure. Note that the
valleys in the effective potential represent stable attractors which are separated by a transition point (local
maximum) for the single sensor at Z 0.8= for solar data set (S2). This double-well structure vanishes for the
solarfield data.

Thefirstminimum in the effective potential of figure 10(c) corresponds to a ‘cloudy’ state, while the second
minimum is related to a ‘clear sky’ or ‘sunny’ state. The depth of theminima correspond to the occupation
probability, the deeper aminimum the higher the probability of this state. Infigures 10(c) and (d), it is shown
that the increase of the number of sensors (the size of the solarfield) leads to shallower potentials, and the barrier
between the twominima approaches zero, causing a slowing down in the dynamics. For the solar irradiance data
inHawaii the behavioural transition occurs for a critical field size of about 1 1~ ´ km2. As a consequence of this
slowing down, the systemhas a longermemory and its dynamics are characterised by a small jump rate and a
higher correlation time scale, as will be discussed next.

A similar trend exists for the data from theGerman solarfield andwith the transition point at Z 0.65= for
the single sensor, as shown infigure 11.However, in this case the field size is not large enough to detect the
transition. Thismeans that the criticalfield size is not a universal length scale and depends on theweather
conditions of the area under investigation. The important observation is that largerfields have smoother clear-
sky indexfluctuations. A rapid change of dynamics with rapid ramp events remains for smallfield sizes. These
results are interesting additional aspects to the changes in the intermittent behaviour of the power increment

Figure 10.The clear-sky index of (a) a single sensor and of (b) the solar field forHawaii (S2). The single sensor time series has a
flickering behaviour, while the average of thefield exhibits a diffusive stochastic behaviour (without strong jumps). Illustration of the
transition and critical slowing downwhen increasing thefield size from (c) a single sensor to (d) the entirefield.

9

New J. Phys. 18 (2016) 063027 MAnvari et al



statistics as discussed in previous section, wherewe did not see an indication of such a clear change in the
structure of the dynamics.

Infigure 12, a two-dimensional contour plot of the effective potentialU Zeff ( ) is plotted for various field sizes
(estimated as the square root of the field area). It shows how the potential flattens as the spanned area increases,
for clear-sky index Z 1< . Figures 13(a) and (b) show the correlation between the clear sky index at two
subsequent times (t and t 1+ s) for single sensor and solarfield, respectively. For the entirefield the resulting
dynamics are characterised by a stronger correlation between subsequent states.

In a similar way, infigure 14, we plotted theU Peff ( ) for a wind farmwith a varying number of wind turbines
and identify a similar transition as in the solarfield. The distinct potential wells again represent two stable
attractors, at about 10% and 103%of the rated power for the single wind turbine.When increasing the number
of wind turbines in the farm, the double-well structure changes to a potential with a singleminimumat 10%~ .
The critical number of turbines for the behavioural transition is about n 10c  turbines (with an area∼4km2).

In summary, based on the temporal analysis we found the interesting new aspect of the power dynamics
changing from a bi-stable jumpy behaviour to amore diffusive one. As an important conclusion, increasing the
field size solely suppresses the jumpy behaviour in the aggregated power output, but the non-Gaussian
distributions of ramp events in terms of increment statistics remain even for country-wide installations.

5. Suppressing the non-Gaussian statistics ofwind and solar power

According to the results of the previous sections, bothwind power and solar irradiance are characterised by
abnormal statistics. Particularly on short time scales there are extreme power and irradiance fluctuationswith
high probabilities. Based on the temporal dynamics, accumulated renewable sources over smaller regions are

Figure 11. Illustration of the transition and critical slowing downwhen increasing thefield size from (a) a single sensor to the (b) entire
field, Germany data set (S1).

Figure 12.A two-dimensional contour plot of the effective potentialU Zeff ( ) of clear-sky index is plotted as a function of thefield size.
The data for this plot weremeasured inHawaii.
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more jumpy. Although, thesemulti-stable jumpy dynamics can be altered by combiningmore power units, the
non-Gaussian character of renewable energies does not change in principle. Thus, building a reliable power
supply in the presence of increasing shares of renewable energies remains as a challenge. In the actual discussion
it is commonly accepted that technical solutions, such as fast reserves or storage systems in power supply are
needed to overcome the intermittent fluctuations. In addition, intelligent technical solutions are promising as
theymay contribute directly to reduce the cost of energy possibilities. These intelligent solutions are of high
interest in the context of ‘smart grid’ discussions. Based on the above presented insight, in the followingwewill
present an idea of a simplemodification of the dynamics, which enables us to decrease the intermittency of
renewable sources in the range of seconds.

We propose here, a time-delayed feedbackmethod as an algorithm to generate the newpower data sets based
on the original data. Thismethod is originated from the idea of storing a fractionα of power for a short while,
and releasing it after a certain delay lagT. For this purpose, for instancewe can assume thatN number of
multiple wind or solar power plants are each equippedwith suitable short-term storage and their aggregated
power output equal to P t N p ti

N
i

1
1( ) ( )* = å-

= . In this way, the power output of the ith renewable source p ti ( )
could change to

p t p t P t T1 , 5i i
new( ) ( ) ( ) ( ) ( )*a= - + -

where, in general,   a ( a= for a power conservingmodel). Now,we analyse these newdata sets to consider
howmuch the intermittency of wind and solar power decreases in short time scales.

The new cumulative power output p ti
N

i
new( )å depends on the delay lagT and saving factorα. Their

optimal values can be determined fromminimisation of, for example, increment flatness. As an example, forW1
and S2 data sets we found that the optimal time delay-lag ranges between 2 and 5 s. For theseT values, the
flatness of the short-term increment PDFs decreasesmost strongly with increasing theα. For instance, with
T=5 s, the flatness of increments decreases from12.6 to 6.5 for thewind farm (W1), as shown infigure 15(a).
Results for increments of the solarfield are plotted infigures 15(b) and (d). The suppressing of strong non-
Gaussian statistics is evident in the tails of the distributions, i.e. the undesirable extreme events are strongly
influenced by our time-delayed feedbackmethod.

Figure 13.The resulting dynamics for single sensor (a) and entirefield (b) is characterised by amoderate correlation between the clear
sky index at two subsequent times.

Figure 14.Effective potential of thewind parkU P Preff ( ) and its dependence on the number of wind turbines.
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For a possible applicationwe suggest to use this time-delayed feedbackmethod as a control algorithm. Such
a new control system could be based on electricity storage subsystems like batteries or the rotational inertia of the
rotor of wind turbines. It is known that batteries can age rapidly in this way (for further details see [13] and
references therein) and other technical problemsmay emerge.Wewill leave a detailed technical discussion,
corresponding realisations andmethod cost for the future.

6. Concluding remarks

From a structural view point, power grids are complex networks which, due to economic factors, often run near
their operational limits. The nature of renewable energies will addmore andmore fluctuations to this complex
system, increasing intermittency and causing concern about the reliability and stability of the power supply.
With the decreasing shares of conventional fossil and nuclear power systems, new concepts are needed in
particular for short time aspects. In this workwe have presented new statistical and dynamical details of wind
and solar powerfluctuations for the short time range of seconds tominutes which should be considered for
designing the future power girds.

The complexity of weather dynamics leads to short time non-Gaussian statistics in the power production
from renewable sources. There are different origins to observe the strong variability inwind and solar power

Figure 15.The results of the time-delayed feedbackmethod to suppress the short term extreme events of a wind farm and solarfield.
Panels (a)–(d) show characteristic changes in stochastic dynamics of wind farm and solarfield, theirflatness (a) and (b) and probability
distribution function of increments (c) and (d), when applying the time delayed feedbackmethod to control the short time extreme
events. The suppressing of extreme events is evident in all panels. In the inset of panel (a) the optimumvalues of delay lagT and
amplification coefficientα in time delayed feedbackmethodwithminimising theflatness in time lag= 2 s, is shown for awind farmof
12 turbines. The optimumdelay lag isT=5with 0.5a = . In the inset of (b) the power output of the solar field is demonstrated,
showing smoother dynamics when applying the time delayed feedbackmethod. The results presented in panels (a) and (c) are derived
from 10 000 s of data with sample rate 1 Hz, belongs to a time interval duringwhich thewind farmhad strongly intermittent
fluctuations, as shown in the inset (c). The solar data in panel (b) belongs to a very variable cloudy day inHawaii (03.03.2011), see inset
(d).
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fluctuations.Wind turbulence, which converts towind power via wind turbine, is responsible for the short time
scale intermittency of wind power output [2]. For PVs the dynamics of the clouds and their size distributions are
the origin of its intermittent behaviour [36].Most interestingly, the intermittency of naturewill not be
diminished by the transfer to power. For solar power onemay argue that the shadows of the clouds cause an on-
off threshold enhancing thefluctuations of the cloud structure, which is given by turbulence in the atmosphere.
As a consequence of this increased complexity in the power dynamics, any centralmanagement of the grid is
likely to becomemore andmore difficult as the shares of renewable energies increase. Therefore the probability
of having grid instabilities will increase, whichmay result inmore frequent occurrences of extreme events like
cascading failures resulting in large blackouts. Any strategy under discussion, like upgrading the existing power
grid, the formation of virtual power plants combining different power sources, introducing new storage
capacities and intelligent ‘smart grid’ concepts, etc will further increase the complexity of the existing systems
and have to be based on the detailed knowledge of the dynamics of these renewable energies. Investigations of
power grid stability in the presence of stochastic renewable sources, including their extreme events, provide a
new emerging field of researchwhich is a combination of these so far disconnected fields of work.

In this contributionwe characterise the short time non-Gaussian statistics behaviour of wind and solar
power, using the increment statistics and effective potential of dynamics.Wefind distinct behaviour of wind
power and solar irradiance on different time scales, and quantify the likelihood of certain powerfluctuations by
parametrisation of increment PDFs. Furthermore, distinguishing jumpy and diffusive characteristics of short-
termfluctuationsmay pave theway to the design and robust evaluation of power grid stability. The short time
jumpy power output of small power units will demandmore sophisticatedmethods to compensate for their on-
off type behaviour and necessitates quick action in the order of seconds for solar, and a fewminutes for wind
power in response to observed power variability. Finally, we show that a simple dynamic variation using a time-
delayed feedbackmethod in themanagement of intermittent renewable sources will strongly suppress the non-
Gaussian statistics. Thismethod shows that the intermittent nature of renewable energiesmight not be a big
problem if the intermittency is properly characterised. Otherwise it definitelymight lead to grave grid problems.
Because of the statistical approach presented in this article, we considered only the statistical changes in the time-
delayed power and avoided technical discussions.

We propose our profound statistical analysis to be included in the guidelines of power systems to guarantee
an optimal design of resilient power grids. The challengewill be tofine tune the intelligentmanagement tools, as
well as technological possibilities, to achieve a stable and low cost power system that can handle the intermittent
renewable sources of power efficiently.
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