
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EDUCATION 1

Improving a Computer Networks Course Using
the Partov Simulation Engine

Behnam Momeni and Mehdi Kharrazi

Abstract—Computer networks courses are hard to teach as there
are many details in the protocols and techniques involved that are
difficult to grasp. Employing programming assignments as part
of the course helps students to obtain a better understanding and
gain further insight into the theoretical lectures. In this paper, the
Partov simulation engine and experience using this engine in a
computer networks course are discussed. Since 2009, various pro-
gramming assignments based on the Partov system have been set to
help students in their learning process. Student feedback has been
very good; this has been quantified in two surveys in which a ma-
jority of students expressed their satisfaction with this approach.

Index Terms—Computer networks, network simulator, Partov,
teaching tools.

I. INTRODUCTION

T EACHING an engineering course is a hard task, espe-
cially if the only tools available are presentation slides and

the teacher’s eloquence. The problem is that although students
listen and understand the underlying theory, they rarely grasp
its importance and how it applies to real-world scenarios. This
problem becomes immensely important in computer networks
courses. For example, the Spanning Tree Protocol (STP) [1] is,
on the surface, a straightforward protocol that creates a span-
ning tree among a set of devices at the link layer. The algorithm
is so simple that, given a small network layout, the student can
execute it on paper and draw the spanning tree. However, when
deployed in a real network environment, such protocols can be-
come quite complex, as instead of their being a single entity
with a global view of the network (as in the case of the student),
each node must execute the algorithm with only local knowl-
edge and with no global view of the network. In this example,
this change of perspective between the global and the local view
is immensely important to help students grasp the fact that in
computer networks, a number of elements interact to execute
an algorithm, without any central coordinated mechanism.
There are a wide range of approaches to mitigating this

problem and helping students obtain a deeper appreciation of
networking concepts. At one extreme, students are provided
with actual network devices (i.e., routers, switches, etc.) and
are assigned tasks that would require them to employ and ex-
periment with these devices in various network layouts. In such

Manuscript received February 23, 2011; revisedMay 18, 2011 and November
02, 2011; accepted December 12, 2011.
The authors are with the Department of Computer Engineering, Sharif Uni-

versity of Technology, Tehran 11155-9567, Iran (e-mail: b_momeni@ce.sharif.
edu; kharrazi@sharif.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TE.2012.2183597

cases, each student or group of students must have dedicated
devices, which requires hardware-laden laboratories. Such
laboratories [2], [3] are costly, bias the educational process
toward a specific vendor, require the students’ physical pres-
ence in the lab, and limit their understanding of the underlying
protocols. While this would be an ideal scenario for students of
a network administration course, it does not provide students
with the required in-depth knowledge of networking concepts.
For example, students may learn how to deploy STP between
switches in a network at the lab, perhaps biased by the hardware
vendor interface, but their knowledge of the STP operation will
remain abstract and only at an algorithmic level.
At the other extreme, students use a simulator software to

simulate different scenarios [4]–[6], which, unlike the hard-
ware-based approach, requires no dedicated network device
and allows students to work on the assignments outside of class
time by executing the simulator on their personal computers.
However, this approach does not allow students to go beyond
the predicted scenarios/features of the simulator software,
limiting the device experience they gain to that programmed
into the simulated world. For example, user traffic is generated
based on a model whose traffic resembles real user traffic
passing through other virtual nodes (i.e., routers, switches, etc.)
and which allows various simulation models (i.e., packet loss,
RTT variations, etc.) to be applied to the traffic. In short, there
is a lack of realness inherent in this approach. Nevertheless,
simulators are quite useful and facilitate analysis of protocols,
and they are very useful for a network researcher to verify
the validity of proposed ideas before going forward with their
implementation.
A number of packages are available in this category, like

packet tracer [7], which is released and maintained by Cisco
Systems, KivaNS [8], which is a free and open-source simulator
providing both an application programming interface and a
graphical interface, and Network Simulator (NS) [9], which
allows students to design topologies and execute arbitrary
simulations. OPNET [10] and OMNeT++ [11] are two other
well-known simulation frameworks that are somewhat similar
to each other in functionality and with which various types of
simulation models (such as network queues) can be employed.
A hybrid approach offers a middle road between the two

extremes discussed above. In the hardware-based solution, the
main limitation was the extensive dependency on the physical
network devices. This limitation does not exist in the case of
simulation, which also allows students to conduct experiments
anywhere and at anytime, thus avoiding the expense and lim-
ited access time of laboratories. On the other hand, simulation
limits the students to the simulated world and prevents them

0018-9359/$31.00 © 2012 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EDUCATION

from having any interaction with real-world network traffic and
the events that affect it. In a hybrid approach, however, simula-
tors are connected to a physical network topology, allowing stu-
dents to design, implement, and execute their code on a virtual
node (or nodes), while allowing this node (or nodes) to exist and
interact in a real network topology. For example, students could
implement a router on a virtual node and then observe how their
router interacts with real Internet traffic directed toward it.
This paper discusses the use of Portable And Reliable Tool

fOr Virtualization (Partov) as a new hybrid educational tool.
Partov provides a set of simulation models and a language for
building simulation topologies. It also supports the distributed
deployment of simulation codes with which students can imple-
ment/execute their simulation codes from their own computers
while employing the central Partov server to coordinate the dis-
tributed codes with the centralized simulation models.
In Section II, an overview of Partov and its architecture is

provided. Section III covers the various programming assign-
ments handed out in the Partov-based computer networks class.
Section IV discusses related works with a comparison to Partov.
Section V discusses the effectiveness of the Partov-based pro-
gramming assignments in the learning process, and Section VI
draws conclusions.

II. PARTOV ARCHITECTURE

This section discusses the general architecture of the Partov
system; the reader is referred to [12] for a more detailed discus-
sion of the system. In a high-level view, the Partov system con-
sists of two main components, the Network Simulation Server
(NSS) and the Client Framework (CF). The NSS is the central
component of the Partov system that contains both the Partov
kernel for creating virtual topologies and performing the simula-
tion and the plugin infrastructure for extending the kernel func-
tionality (explained in Section II-C). The NSS is responsible for
all interactions with outside network via the libpcap [13] library
and will cooperate with the CF in a client/server architecture.
The NSS in turn consists of three components: the Simula-

tion Server, the Virtualization Engine, and the Plugin Infra-
structure. These components and their relationship are shown
in Fig. 1. The Simulation Server component is responsible for
connecting the centralized virtualization framework to the dis-
tributed frameworks provided by the CF (see Section II-A).
Whenever a CF instance requests a connection to the Partov
server, the Simulation Server component will authenticate it via
a username/password, and then instantiate a new topology map
or locate a previously instantiated topology map instance and
assign it to the CF.

A. CF

This component is the key enabler to making Partov suitable
for easy educational use, allowing students’ programs—exe-
cuted on their own personal computers—to be connected to the
Partov central server and participate in the planned simulations.
For more information on how this framework can be used, the
reader is referred to the CF user manual located at [14].
The CF will be able to send/receive packets in place of the

connected virtual node. Whenever a packet is received by the
connected virtual node, it will be inspected by the simulation

Fig. 1. Partov component diagram.

server that decides whether the packet must be forwarded to
another component within the NSS itself or to the CF and in
turn to the student’s program. For example, the student could
have implemented a bridge, router, or network address transla-
tion (NAT) functionality. This logic can inspect packets and de-
cide whether it should ignore them, send replies, or send another
set of required packets to the network. This allows students to
implement algorithms that will interact with a real network en-
vironment.

B. Partov Topology Language

The Partov Topology Language (PTL) is an XML-based lan-
guage that allows declaration of the Partov topologies. Each
topology in PTL is defined in a separate file with a .map suffix
and consists of three sections for defining nodes, lists (used for
resource allocation to the nodes), and links.
Additionally, the PTL can include an optional Finite State

Machine (FSM) section, allowing the topology to change dy-
namically. A simplified PTL file, shown in Fig. 2, will be used
to describe each of these four sections. This sample PTL is ob-
tained from an assignment on IP mobility (see Section III).
1) Link: In the <links> tag, each virtual link of the

described topology could be defined by a <link> tag. For
example, the first link in Fig. 2 has the name lk-n1 and
is referenced by the second link, namely link1-d, via its
connected-to-link parameter. A wireless channel can
be modeled as a link by connecting multiple nodes to a link.
Furthermore, connecting links to other links can be used to
model the collision between wireless channels.
Each wireless channel covers an area, namely the propaga-

tion-area. This is the area that the wireless signal can reach
without a large attenuation. Each wireless receiver listens in an



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MOMENI AND KHARRAZI: IMPROVING COMPUTER NETWORKS COURSE USING PARTOV SIMULATION ENGINE 3

Fig. 2. Sample PTL file.

area, namely the receiving-area. This is the area across which
the wireless signal must reach in order to be detected by the re-
ceiver. Both the propagation-area and the receiving-area can be
modeled using the link concept. For example, the node1 node
(from Fig. 2) that is listening on lk-n1 link can receive packets
sent over the link1-d, meaning that the link1-d propaga-
tion-area collides with the lk-n1 receiving-area.
The links are used for connecting elements of the topology

and can be configured to provide different bandwidth, latency, or
loss probability rates. Additionally, traffic traversing each link
can be logged in the pcap [13] format. For example, lk-n1
is configured to log the delivered packets using log=“true”
parameter. These pcap logs can be used for further analysis by
tools like tcpdump [13], Wireshark [15], etc.
2) FSM: PTL can define a Finite State Machine that can

be used to create a dynamic topology structure. Examples of
this would be modifying the routing table entries of simulated
routers by adding a link between two separate routing areas
at runtime (useful for checking implementation of routers in a
class assignment), changing the network bridge topology by cre-
ating or removing loops between bridges at runtime, or making
nodes movable within the topology like the node1 in Fig. 2.
3) Node: In the <nodes> tag, each virtual node of the de-

scribed topology can be defined by its tag that provides infor-
mation about the node, such as its interfaces, buffer size, or
IP addresses, as for the node1 node (in Fig. 2), which is a
SimulatedNode plugin. It also uses theaccept-packets
parameter under the parameters tag for identifying the fact
that only valid IPv4 packets unicasted to it should be delivered
to the CF for processing. These parametric definitions in PTL
allow any plugin to be easily configurable via the standard PTL
notation.
4) List: Lists are used for allocating resources to maps.

Each topology can have multiple maps (i.e., instances), so
they can be used by multiple concurrent users. Hence, each

map requires its own resources, such as IP addresses. To ad-
dress this allocation requirement, each map has an assignment
index. This index can be used to distinguish between maps
of a single topology. Then, each map can use its appropriate
values from the lists. Thus, the first element in a list will be
given to the first instantiated map (first arriving user), and the
second element to the second instance (second arriving user),
and so on. For example in the first map, node node1 will
have 00:24:8C:01:79:01 as its MAC address, and in the
second map, it will have 00:24:8C:01:79:07 as its MAC
address.

C. Plugin Infrastructure

This component provides an infrastructure for implementing
plugins. Each plugin can use all of the utilities provided by the
Partov for processing packets and can be configured via para-
metric definitions of the PTL. Currently, four plugins have been
developed, and further plugins are being developed with the
help of the student community.
• Simulated Node is an essential plugin through which
packets are forwarded to the CF (i.e., student program),
and packets returned from CF are injected back into the
virtual environment.

• Router is an IPv4 router that accepts static routing tables.
It is used to make topologies scalable (by creating sepa-
rated network broadcast domains) and extensible (via hi-
erarchical network topologies).

• InternetGatewayNode is a special router for connecting
virtual maps to the real network that could be used for
seamless integration of virtual maps and the Internet.

• GeneralTCPReverseProxy offers a means of emulating
real outside servers within the virtual network by for-
warding all Transmission Control Protocol (TCP) packets
and their responses to/from real servers running in the
network.

D. Virtualization Engine

This component serves the Partov’s kernel. From each PTL
file, the description of a topology is extracted, and from each
topology, many instances—namely map—could be instantiated
for different users (students). Therefore, multiple users can
work simultaneously using the same topology, although a
unique map will be assigned to each student. Also, users can
create a common map serving multiple users, which could be
beneficial for group collaboration on an assignment. There is a
limitation that each student can only instantiate one map from
each different topology at the same time, which is necessary to
prevent denial-of-service (DoS) [16] attacks on the server.

III. DEPLOYMENT AND COURSE ASSIGNMENTS

Partov has been employed as a teaching tool for the Com-
puter Networks course taught at the Department of Computer
Engineering, Sharif University of Technology (SUT), Tehran,
Iran, since 2009 [17]–[19]. Before reviewing the assignments
handed out in class since the initial deployment of Partov,
a typical assignment on node mobility, Mobile IP over Eth-
ernet (MIPoE), is discussed in detail. The purpose of the
Mobile IP protocol is to let nodes move through different



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EDUCATION

Fig. 3. MIPoE assignment topology.

networks while preserving their IP addresses, and hence their
connections to those addresses. Students have to implement
wireless access points (APs) so that wireless mobile nodes can
keep their IP addresses while moving from one AP area to
another, and implement the mobile nodes so they can request IP
addresses from APs and speak with them while joining/leaving
each wireless area.
In the assignment, each student is given a virtual topology

consisting of three LANs as shown in Fig. 3. The PTL file shown
in Fig. 2 is a summarized version of the MIPoE topology de-
scription. Each topology contains two nodes (like node1 from
Fig. 2) and three APs. Each AP has a coverage area and can
receive packets from nodes in its coverage area. Also, packets
transmitted by the AP reach all the nodes in its coverage area.
For example, node1, which is connected to lk-n1, can send/
receive packets to the first AP node through the link1-d link
(which is similarly connected to the first AP node). Of course,
the coverage area of the various APs can overlap. Packets that
are sent in such overlap areas will be received by all of the re-
lated APs.
Using the FSM, it is possible to change a node’s location (dis-

connecting it from a link and connecting it to another link) like
thes1 state, which shuts downlink1-d and so pushesnode1
out of the coverage area of the first AP node. On the other hand,
each AP is connected to the Gateway node, and so to the Internet
via its second network interface.
Students are asked to prepare two programs using CF. The

node program should start by asking for an IP address from an
AP. The node will then move toward other APs, in the course
of which it may exit one AP coverage area and enter another
AP coverage area. It may also be in an area of overlap between
multiple APs. The node program is expected to communicate
with the AP program accordingly to find its current position.
The AP program is expected to detect the node position and
redirect packets from the home network to the visiting network
via IP tunneling. Students are also asked to design their own
protocol for receiving IP addresses in node programs, as well
as a protocol for node–AP communication so the APs can keep
track of nodes visiting the network at any one time.
The AP programs are expected to establish an overlay net-

work between themselves to exchange information on the mo-
bile nodes and establish IP tunnels to route node packets from

the home to the visiting network. In terms of workload, it is pos-
sible for a student to complete this assignment in a total of about
15–20 h. Hence, a two-week deadline is suggested for this as-
signment, considering the workload from other courses taken by
the student in the same semester. More importantly, after com-
pleting this assignment, the student is familiar with overlay and
with the design of networking protocols based on concepts such
as IP tunneling and IP mobility. The complete assignment state-
ment can be found at [14].
In addition to the MIPoE assignment, a number of other as-

signments have been developed and handed out to students; a
brief description of these follows.
• Bandwidth Throttler: In this assignment, which provides
good insight into the third and fourth network layers,
students are asked to implement a bandwidth throttler that
operates at layer 4 and throttles TCP and UDP flows. With
this assignment, students learn how to detect different
TCP/UDP flows by inspecting IP, TCP, and UDP headers,
how to determine a flow’s rates, and how to limit a flow
rate.

• Simplified FTP Over UDP:Here, students are asked to im-
plement a simplified file transfer protocol using UDP trans-
port layer. This assignment helps students learn concepts
like end-to-end reliability, packet reordering, packet cor-
ruption, and packet loss/timeout. Use of TFTP is avoided in
this assignment, as TFTP includes details and requirements
unrelated to the networking concepts that are the focus of
this assignment.

• DHCP and ARP: In this assignment, students implement
both the server and client components of theDynamic Host
Configuration Protocol (DHCP) [20], and the Address Res-
olution Protocol (ARP), which focuses the data-link, net-
work, and application layers. This teaches students address
resolution via ARP, acquiring IP and other network infor-
mation (like gateway address) via DHCP, and more on net-
work layering concepts.

• Simplified STP:Here, students are first asked to implement
a learning bridge to connect nodes in the topology. After-
wards, they are asked to upgrade their learning bridges and
implement a simplified version of the STP. This teaches
students how network nodes can participate in a distributed
algorithm through local decisions and interactions.

• Network Address Translation: This assignment goes a bit
further than the requirements of an NAT. It requires stu-
dents to implement a client, based on the UDP protocol,
and query for a file location from a location server, which
they also have to implement, at the edge of a server farm
located behind a NAT server. Seeing the query, the loca-
tion server should set up proper NAT rules, so that the
client can connect to the proper server and download the
requested file. This teaches students about public and pri-
vate IP addressing, UDP and TCP ports, and how NAT and
static NAT mechanisms work in practice.

• Transmission Control Protocol: As this is one of the
most important protocols in today’s computer networks,
students are asked to implement a minimal TCP and use
it to download a file from a socket-based Web server. The
correctness of the implementation and compatibility with



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MOMENI AND KHARRAZI: IMPROVING COMPUTER NETWORKS COURSE USING PARTOV SIMULATION ENGINE 5

an actual TCP stack is verified by having the student only
implement one side of the TCP connection and using a
complete and standard implementation at the other end
(i.e., socket-based Web server). This assignment teaches
students about the TCP internals including TCP window
management, flow control, ISN, sequence and acknowl-
edgment numbers, and TCP flags.

• Content Distribution Network (CDN): CDN [21] is a net-
work that allows fast response to large number of requests
for content. Students are assigned a topology consisting
of several geographically distributed server farms and are
asked to create an overlay network over those server farms,
redirecting requests to appropriate server farms based on
their loads and paths latency. After this assignment, stu-
dents should understand overlay networking and load bal-
ancing and have the ability to design a communication pro-
tocol for special purposes like between CDN server farms.

• DHT and the Chord Protocol: Distributed Hash
Table (DHT) allows information to be distributed and
stored among peers. In this assignment, the student’s
program will be deployed on distinct virtual nodes.
These nodes must establish a DHT, store information
about locations of some file hosting servers, and reply
to location queries. The DHT should be resistant against
random nodes leaving by storing information appropri-
ately on other nodes. It should also use newly joined nodes
and efficiently distribute information among them. With
this assignment, students learn about distributed protocols,
the DHT, and the Chord protocol.

IV. RELATED WORK

To the best of the authors’ knowledge, only two other sys-
tems within the hybrid category are comparable to Partov.
Emulab [22] was initially started by the University of Utah and
the Flux Research Group. Its primary installation [23] consists
of more than 500 computers as nodes that are connected to-
gether via 12 switches and routers and coordinated via several
other servers. Over this hardware deployment, the Emulab
software establishes the required emulated links, sets their
requirements like bandwidth, and creates various emulated
topologies. Topologies are created based on the various assign-
ment requirements. A large number of university courses [24]
are currently using this infrastructure. Similarly, the Emulab
infrastructure is currently deployed in a dozen other sites [25]
across the world.
A more closely related work, which was also motivational in

the design and development of Partov, is the Stanford University
Virtual Network System (VNS) [26] project. The VNS server is
connected to a number of physical servers running Web, SSH,
and FTP services. These services are then accessible via simu-
lated VNS topologies. Students can receive real Internet traffic
originating from various services (i.e., web, ssh, etc.) for pro-
cessing in the simulated topologies. Students can implement
programming assignments using client base code, which in turn
executes in the VNS infrastructure and processes packets re-
ceived from real Internet traffic by virtual nodes in the virtual
topology.

TABLE I
HYBRID SOLUTIONS: THEIR ASSOCIATED ASSIGNMENTS AND NETWORK ISO

OSI LAYERS COVERED

Table I compares Partov, VNS, and Emulab in terms of their
support for the assignments used in the class. Although all three
tools have the features required to be usedwith assignments 1–3,
5, and 9, assignments 4 and 6–8 are only supported by Partov.
For example, the Simplified STP assignment requires the net-
work topology to be changed at runtime. It would be possible to
execute these assignments over the sort of fixed topologies pro-
vided by Emulab and/or VNS, but these tools would not directly
support the checking of features such as the rearrangement of
a bridges’ tree (by adding or removing a link). Similarly, the
TCP assignment can only be properly evaluated when there is
the ability to simulate variable link loss and delay in order to
evaluate the congestion management techniques implemented
by the student. Furthermore, in the MIPoE assignment, neither
the VNS and Emulab will work, as the assignment requires the
nodes to be moved between various wireless areas at runtime.
Equally, the CDN assignment would have not been possible

with VNS and Emulab since this requires online Internet con-
nectivity, distributed processing for simulating multiple content
distribution areas, and fine-grained control over the simulated
network properties for simulating different load situations. This
would both require the simulation tools to be connected to the
Internet, processing real traffic and the dynamic nature for con-
trolling the simulated network properties like RTT and loss (for
different load situations).
Emulab has a far greater hardware requirement that easily

differentiates it from Partov. The main difference between VNS
and Partov could be described as the dynamic nature of Partov.
The VNS-like Emulab only supports static and predefined
topologies, while Partov allows the dynamic configuration of
virtual topologies.

V. DISCUSSION

The Partov system [14] is currently deployed at the De-
partment of Computer Engineering, Sharif University of
Technology, and was employed in the course Computer Net-
works for Fall 2009 [17], Spring 2010 [18], Fall 2010 [19],
Spring 2011 [27], and currently in Fall 2011 [28]. Before
Partov, VNS was employed in Spring 2009 [29] and at the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EDUCATION

beginning of the Fall 2009 [17] class. Assignments were de-
signed to reinforce the concepts taught in the class and covered
various network layers in the ISO OSI model [30] as indicated
in Table I. Furthermore, and in order to avoid handing out the
same assignment every semester, different assignment sce-
narios are being developed while the concepts being reinforced
remain the same.
Student feedback has been highly encouraging. Students

state that the assignments helped them gain deeper under-
standing of the networking concepts taught in class, even
though programming assignments are generally harder and
more time-consuming than theoretical questions answered
with pen and paper. This deeper understanding of the concepts
becomes evident when discussing issues with students who
have completed the assignments.
In order to obtain a more quantitative student opinion about

Partov, and also more generally about using programming as-
signments in the class, an e-mail-based survey was taken by
students who took the class between Fall 2009 and Spring 2011.
Overall, 50 students participated in this survey, answering five
main questions.
1) How helpful were programming assignments in better
learning/understanding networking protocols/concepts?

2) How helpful was Partov in better learning/understanding
networking protocols/concepts in class?

3) How easy was the programming [how much did the pro-
vided Partov client framework (CF) help]?

4) Were Partov or non-Partov assignments (i.e., Socket pro-
gramming assignments) more helpful in learning/under-
standing the protocols/concepts in class?

5) Have you used any other network learning/simulation
tools (i.e., Packet tracer, NS-2, VNS, OPNET, OMNeT++,
KivaNS, etc.)?

Responses to question 4 show that 74% of students think
Partov assignments were more helpful in learning protocols and
concepts than the Socket programming assignments handed out
in the course. In addition, responses to question 5 show that
81.25% of students had experience with other network learning
tools, to which Partov could be compared.
Students answered the first three questions by selecting one of

the five distinct levels, namely Extremely (100%), Very (75%),
Somewhat (50%), Not Very (25%), and Not at All (0%). A sim-
ilar survey was taken at the end of Fall 2010 [19], where 30 stu-
dents participated and only the first three questions were asked.
The average responses to the first three questions for both sur-
veys are plotted in Fig. 4.
Survey results support the student feedback received since

2009. By answering the first question, students indicate a base-
line for their opinion of the usefulness of programming assign-
ments, which is about 76.4% on average over the two surveys.
Then, by answering exactly the same question with just one dif-
ference, replacing programming assignments with Partov, they
indicate how much of this usefulness is related to use of the
Partov, which is about 67.4%. This assesses how this special
Partov environment affected their thinking about programming
assignments. The third question assesses the students’ view of
the quality and ease of use of the CF.
Also investigated was the correlation between grades for

the Partov programming assignments and the final exam.

Fig. 4. Result of two surveys on the Partov system.

Fig. 5. Average correlation coefficient of grades of Partov programming as-
signments with the final exam grades.

The correlation coefficient of the final exam grade and the
Partov assignment grades for each student was calculated; the
averaged correlation coefficient for each semester is plotted
in Fig. 5. This figure indicates the following: 1) performance
in the final exams was effected by performance in the Partov
programming assignments; and 2) this correlation increased as
newer versions of Partov system were released, which indicates
a continuous improvement in the Partov system.
The correlation between the Partov assignments and final

exam grades is not very high. The Partov assignment grades
were plotted against the final exam grades, as in Fig. 6, for
all students who had taken the course during the past four
semesters, from Fall 2009 to Spring 2011. The dotted line in
the figure indicates the average final exam grade, and clearly
students who did well in the assignments also did well in
the final exam. However, there are a few exceptions, as seen
with a few students who did well in assignments but not very
well in the final exam, which can always happen due to some
unpredicted personal issue. Alternatively, there were a few
students who did averagely well in assignments but well in the
exam, which again is understandable as there are always a few
students who do not receive full marks for the assignments but
nevertheless grasp the underlying concepts.
More importantly, Fig. 6 indicates that students with lower

grades in Partov assignments obtain a more distributed range
of grades in the final exam, while students with higher grades
in the Partov assignments have a narrower and higher range of
grades in the final exam. Therefore, although the assignment
grades and final exam grades are not completely correlated, it is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MOMENI AND KHARRAZI: IMPROVING COMPUTER NETWORKS COURSE USING PARTOV SIMULATION ENGINE 7

Fig. 6. Final exam grades versus Partov assignment grades during four
semesters.

evident from the figure that assignment grades clearly affect the
distribution of the final exam grades.
Nevertheless, it could be argued that any tool such as Em-

ulab, VNS, or Partov can improve student learning, but what
makes Partov different from previously proposed systems is the
fact that it allows more flexibility with respect to VNS by sim-
ulating dynamic environments and is more affordable than Em-
ulab, which requires extensive hardware deployment. These two
parameters are of importance for any instructor wanting to im-
prove a course by employing such tools.
Specifically, Partov’s ability to simulate dynamic environ-

ments, similar to that of the Internet, is an important feature that
allows a wider coverage of the concepts covered in class. For ex-
ample, the ability to model a variety of network links with full
control over properties like loss and delay is helpful in designing
and evaluating of the assignments and is specially helpful when
evaluating routing protocols implemented by students. Other as-
signments that could be based on Partov and are being devel-
oped include, but are not limited to, TCP congestion window
controlling algorithms, fast retransmission algorithms, P2P file
sharing, distributed hash tables, routing protocols, BGP, and so
on. For more up-to-date information on the project and devel-
oped assignments, the reader is referred to the Partov project
Web page [14].

VI. CONCLUSION

This paper has presented the experience of employing the
Partov simulation engine as a teaching tool in the Computer
Networks course. The architecture of Partov allows students to
easily implement real network devices and observe how they in-
teract with real Internet traffic. During this period, a number of
programming assignments were designed to help students ac-
quire a deeper understanding of the networking concepts. As-
signments covered various concepts, from the data-link layer
up to the application layer. Furthermore, student feedback has
been favorable and was quantified with the help of student sur-
veys. Partov is currently being expanded to include an online
judge for the automated grading of assignments, and work on a

graphical interface to help in generating PTL files given a net-
work topology is in progress.

ACKNOWLEDGMENT

The authors would like to thank the Computer Networks
course teaching assistants, including A. Abniki, S. Dorri,
H. Eslami, A. Fattaholmanan, D. Jalali, S. Khajouie,
K. Mirhosseini, F. Moghaddam, A. Nikravesh, S. Pooya,
A. Shaikhha, and M. Zolghadr, for their help and useful sug-
gestions on the development of the system and programming
assignments.

REFERENCES
[1] R. Perlman, “An algorithm for distributed computation of a span-

ningtree in an extended lan,” Comput. Commun. Rev., vol. 15, no. 4,
pp. 44–53, 1985.

[2] B. Smith, “CMPE 151, Network Administration, Spring 2010” Univer-
sity of California, Santa Cruz, CA, Dec. 5, 2011 [Online]. Available:
http://www.soe.ucsc.edu/classes/cmpe151/Spring10/

[3] Y. Liu, L. Zhang, and F. Jiao, “Teaching computer networking exper-
iment in the realistic network laboratory,” in Proc. CiSE, Dec. 2009,
pp. 1–4.

[4] J. Theunis, B. V. D. Broeck, P. Leys, J. Potemans, E. V. Lil, A. V. D.
Capelle, W. Lans, and V. Streaming, “Opnet in advanced networking
education,” opnetwork02 johan.pdf, Dec. 5, 2011 [Online]. Available:
http://www.esat.kuleuven.be/telemic/networking/

[5] N. Al-Holou, K. Booth, and E. Yaprak, “Using computer network sim-
ulation tools as supplements to computer network curriculum,” in Proc.
30th Annu. FIE 2000, 2000, vol. 2, pp. S2C/13–S2C/16.

[6] X. Yu, “The construction and application of simulation teaching system
for computer network curricula,” in Proc. 1st IEEE ISITAE, Nov. 2007,
pp. 524–527.

[7] Cisco Systems, “Cisco packet tracer,” Dec. 5, 2011 [Online]. Available:
http://www.cisco.com/web/learning/netacad/course_catalog/Packet-
Tracer.html

[8] F. Candelas Herias and P. Gil Vazquez, “Practical experiments with
KivaNS: A virtual laboratory for simulating IP routing in computer
networks subjects,” in Proc. m-ICTE, 2009, vol. 3, pp. 1414–1418.

[9] “The network simulator—ns-2,” Dec. 5, 2011 [Online]. Available:
http://www.isi.edu/nsnam/ns/

[10] R. Kaparti, “OPNET IT Guru: A tool for networking
education” MSCIT Practium Paper, Regis Univer-
sity, Denver, CO, Aug. 14, 2011 [Online]. Available:
http://www.opnet.com/university_program/teaching_with_opnet/
textbooks_and_materials/materials/ITGAE_Tool_Ntwrk_Ed.pdf

[11] A. Varga, “Using the OMNet++ discrete event simulation system in
education,” IEEE Trans. Educ., vol. 42, no. 4, p. 372, Nov. 1999.

[12] B. Momeni, “Hybrid virtual network system,” B.S. thesis, Sharif Uni-
versity of Technology, Tehran, Iran, 2010, portable And Reliable Tool
fOr Virtualization.

[13] “Tcpdump/libpcap public repository,” Dec. 5, 2011 [Online]. Avail-
able: http://www.tcpdump.org/

[14] M. Kharrazi, “Partov project,” Dec. 5, 2011 [Online]. Available: http://
sharif.edu/~kharrazi/partov/

[15] Wireshark, “Wireshark,” Dec. 5, 2011 [Online]. Available: http://www.
wireshark.org/

[16] S. de Vries, “Application level denial of service (DoS) attacks,” 2004
[Online]. Available: http://research.corsaire.com/whitepapers/040405-
application-level-dos-attacks.pdf

[17] M. Kharrazi, “CE 40-443: Computer networks,” Sharif University
of Technology, Tehran, Iran, Dec. 5, 2011 [Online]. Available:
http://sharif.edu/~kharrazi/courses/40443-881/

[18] M. Kharrazi, “CE 40-443: Computer networks,” Sharif University
of Technology, Tehran, Iran, Dec. 5, 2011 [Online]. Available:
http://sharif.edu/~kharrazi/courses/40443-882/

[19] M. Kharrazi, “CE 40-443: Computer networks,” Sharif University
of Technology, Tehran, Iran, Dec. 5, 2011 [Online]. Available:
http://sharif.edu/~kharrazi/courses/40443-891/

[20] R. Droms and T. Lemon, The DHCP Handbook (Networking), 2nd
ed. Indianapolis, IN: Sams, Nov. 2002.

[21] G. Peng, “Cdn: Content distribution network,” State University of New
York at Stony Brook, Stony Brook, NY, Tech. Rep., 2003.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EDUCATION

[22] Emulab, “Emulab—Network emulation testbed home,” Dec. 5, 2011
[Online]. Available: http://www.emulab.net/

[23] Trac, “Hardware overview, “Emulab Classic”,” Dec. 5, 2011 [Online].
Available: http://users.emulab.net/trac/emulab/wiki/UtahHardware

[24] Emulab, “Projects that have actively used emulab.net,” Dec. 5, 2011
[Online]. Available: http://www.emulab.net/projectlist.php3

[25] Trac, “Other Emulab testbeds,” Dec. 5, 2011 [Online]. Available: http://
users.emulab.net/trac/emulab/wiki/OtherEmulabs

[26] M. Casado and N. McKeown, “The virtual network system,” SIGCSE
Bull., vol. 37, no. 1, pp. 76–80, 2005.

[27] M. Kharrazi, “CE 40-443: Computer networks,” Sharif University
of Technology, Tehran, Iran, Dec. 5, 2011 [Online]. Available:
http://sharif.edu/~kharrazi/courses/40443-892/

[28] M. Kharrazi, “CE 40-443: Computer networks,” Sharif University
of Technology, Tehran, Iran, Dec. 5, 2011 [Online]. Available:
http://sharif.edu/~kharrazi/courses/40443-901/

[29] M. Kharrazi, “CE 40-443: Computer networks,” Sharif University
of Technology, Tehran, Iran, Dec. 5, 2011 [Online]. Available:
http://sharif.edu/~kharrazi/courses/40443-872/

[30] H. Zimmermann, “OSI reference model-the ISO model of architec-
ture for open systems interconnection,” IEEE Trans. Commun., vol.
COM-28, no. 4, pp. 425–432, Apr. 1980.

Behnam Momeni received the B.Sc. degree in information technology (with
first rank) from Sharif University of Technology, Tehran, Iran, in 2010, and was
accepted as a talented student in the M.Sc. computer engineering program at
Sharif University of Technology.
He is currently conducting research on computer and network security. His

research interests include network security, multimedia systems, peer-to-peer
networks, and software design patterns and methodologies.

Mehdi Kharrazi received the B.E. degree in electrical engineering from the
City College of New York. New York, in 1999, and the M.S. and Ph.D. degrees
in electrical engineering from Polytechnic University, Brooklyn, NY, in 2002
and 2006, respectively.
He is currently an Assistant Professor with the Department of Computer En-

gineering, Sharif University of Technology, Tehran, Iran. His current research
interests include network and multimedia security.


