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Partov: A Network Simulation and Emulation Tool
Behnam Momeni and Mehdi Kharrazi

Abstract—Network protocols design and evaluation requires
either full implementation of the considered protocol and evalu-
ation in a real network, or simulating it based on a model. There
is a middle approach in which both simulation and emulation are
used to evaluate a protocol. In this manuscript the Partov engine
is presented, which provides both simulation and emulation
capabilities simultaneously.

Partov benefits from a layered and platform-independent
architecture. As a pure simulator, it provides an extensible plugin-
based platform and can be configured to perform both real-time
and non real-time discrete-event simulations. It also acts as an
emulator, making interaction with real networks possible in real-
time. Additionally a declarative XML-based language is used,
acting as a glue between simulation and emulation modules and
plugins. It supports dynamic network modeling and simulation
based on continuous time Markov chains. Partov is compared
with other well known tools like NS-3 and real processes like
Hping3. It is shown that Partov puts less overhead and is much
more scalable than NS-3.

Index Terms—Network Simulator, Network Emulator, Discrete
Event Simulation, Plugin-based Extensible Infrastructure, Real-
time Simulation

I. INTRODUCTION

The world of networking has greatly evolved over the past
few decades and the protocols used have become more and
more complex. While conducting research on network proto-
cols, an instant of time comes at which it is required to exam-
ine the consequences and impacts of several design decisions
or evaluate the correctness and performance bounds of the
proposed protocol. This can be accomplished by implementing
all possible aspects of the protocol and evaluating the resulting
implementation on an actual network topology using real
hardware. But such approach would be time consuming and
costly as it would require a full and complete implementation
of the protocol and extensive hardware.

It is then that simulators become quite valuable tools as they
provide a relatively easy and fast way towards evaluating the
protocol under study. By employing a simulator the researcher
can simplify the implementation process, avoiding full imple-
mentation and deploying arbitrary topologies without requir-
ing physical devices. Nevertheless, this abstraction separates
obtained results from absolute reality which is a shortcoming
with all simulators (i.e. due to limitations of the simulation
models). On the other hand, networks such as the Internet are
large, dynamic, and complex systems which can not be fully
modeled. Hence, even though the simulator could simulate a
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Fig. 1. Spectrum of network simulation/emulation tools

protocol, it can not fully take into account the effects of the
protocol and network on each other.

So there will be a trade-off between accuracy (and having
more details) and early results (and simulating abstract models
of reality). This trade-off forms a spectrum of solutions,
as illustrated in Figure 1. In one extreme of the spectrum,
hardware-laden solutions (PlanetLab — An open platform for
developing, deploying, and accessing planetary-scale services
2012; Emulab - Network Emulation Testbed Home 2014)
sit which are of course more costly and troublesome to
be established. In the other extreme simulation-based solu-
tions (Kaparti, 2005; The Network Simulator - NS-2 2011)
sit, where their effectiveness is heavily dependent on the
employed abstract model and how well the important details
are considered in them. Of course, some solutions (Wang and
Huang, 2012; Zec and Mikuc, 2004; Casado and McKeown,
2005; Henderson, 2010; Nethi et al., 2007; Varga and Hornig,
2008) within this spectrum can provide benefits of both sides.

Ideally in a middle-way solution, the protocol/system under
research is simulated based on available models and other
interacting components are emulated (keeping as much de-
tails as possible). Indeed as the evaluated protocols/systems
become more complicated, they are more likely to imply
non-obvious impacts which are not drawn in simulations
due to the simulation models’ applied abstraction. Emulated
environment alleviates this situation by restoring some details
without complicating the simulation’s abstract model. This
paper introduces the Partov, a middle-way solution which
provides simulation and emulation capabilities and allows real-
time synchronization/interaction of virtual and real worlds.

There are interesting applications possible with Partov and
more generally the middle-way solutions. For example in order
to evaluate the call performance in the Skype network, as
studied in (Lisha and Junzhou, 2006), one can abstract out
the network topology using a simulator, instead of testing
Skype in different network topologies/scenarios, but can not
replicate the closed Skype protocol in the simulation world.
However, it’s possible to install the Skype clients on a number
of virtual machines and connect them to the simulated network
by emulation. This methodology can be extended to any closed
source component interacting with the network.

Similar to the above, one can also consider complex com-
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Fig. 2. Sample network of geographically distributed routers

ponents which interact with the simulated protocol/system,
but are implemented independently. Consider designing a new
geographical routing protocol, depicted in Figure 2, to route
users towards the geographically nearest servers, as is common
in content distribution networks (CDN). While the researcher
concentrates more on the designed topology and protocol,
he/she may miss side effects created by the design decisions.
For example, the protocol may route all users through path
s, due to shortest path selection rule, while in the real world
other factors like high processing load in R4 may make the
total delay of longer paths, like the path l, less than the selected
route.

More specifically, the total service time depends on many
factors which generally can be divided to: 1) delay of
the network’s selected path which depends on the CDN’s
design, and 2) web server processing time, which depends
on implementation of the web server (e.g. apache), given the
workload conditions. Therefore, the independent part (i.e. the
web server) will be deployed physically, avoiding abstraction
of the web server, and interfaces with the simulated CDN.

In this paper an engine, namely Partov, from the middle-
way solutions will be discussed which enhances the interaction
of virtual and real networks. The main contributions of this
paper can be summarized as follows:

1) Providing a network simulation engine with increased
extensibility via its plugins infrastructure,

2) Providing a portable emulation method allowing the sim-
ulated network to be placed on any machine and interface
with the real network as needed,

3) Introducing a declarative network modeling language
which allows one to describe a dynamic network (see
Section III-E),

4) Achieving more reliable experimental results via coordi-
nation of simulation and emulation capabilities,

5) Providing an objective analysis of requirements that a
simulation/emulation tool is required to provide.

In the rest of this paper, Section II proceeds with an objective
analysis of requirements a simulation/emulation tool should
satisfy. Afterward, Section III describes the Partov system, its
architecture, and corresponding practical details. Section IV
discusses test scenarios and evaluation of the proposed so-
lution. Then Section V continues enumerating related works
in the same direction, briefly discussing their features, and
comparing Partov and other related solutions based on their ca-
pabilities. Finally, the manuscript is concluded in Section VI.

II. REQUIREMENTS ANALYSIS

As with any tool development project, the work should
be based on analyzing the required features for a network
simulation/emulation tool. To that end, and in order to motivate
the requirements, the CDN example which was noted earlier
is reused. It’s notable that this analysis and its results are not
limited to the studied CDN example and could be motivated
by any other generalized scenario.

In the noted CDN scenario, the goal is to design the network
topology, best placement of the servers, and optimal mapping
of the clients/servers pairs. The CDN can be separated in to
the network, client, and server elements. Indeed the servers are
real world implementations (e.g. apache) and won’t change
based on the network’s and client’s design. This requires
the ability to simulate (requirement R0) networks and
clients and interconnect them with the already implemented
servers. Interconnection of these worlds requires an emulation
capability; requirement R1.

The network part in turn consists of a number of routers
distributed around the world. The router is a basic component
and plays an important role in the network. So it’s desired
to have router simulation models ready out of the box.
Having more pre-made simulation models (requirement
R2) leads to less ad-hoc coding time. But each experiment
may uncover some untouched areas which are unique to that
experiment. For example, in the CDN design scenario, clients
may be required to compose special web requests, their sizes
obeying the Pareto distribution (Arlitt and Williamson, 1996)
(considering the hosted pages) and send them at exponentially
distributed (Arlitt and Williamson, 1996) intervals. Thus the
simulation tool, while reasonably unable to support all models
out of the box, must facilitate addition of new simulation
models; requirement R3.

Afterward, both existing simulation models (e.g. routers)
and newly implemented models (e.g. web clients) should be
connected and form a network topology. The network topology
is about what to do, in other words which network components
with which interconnections, applications, etc. must exist,
in contrast to how to do it. There are two general types
of languages: 1) declarative languages, aimed at describing
what should be done, and 2) imperative languages, aimed
at dictating how each job should be performed. Considering
the nature of network topologies, it’s preferred to employ
a declarative language for describing them; requirement
R4.

The requirements elaborated so far are sufficient to make
the simulation/emulation of a desired static topology possible.
However, a lot of scenarios remain uncovered. In most real
cases, some parts of network and/or its nodes may change
dynamically. So being able to take these dynamic aspects into
account adds a lot to the modeling flexibility. One of the
useful concepts in modeling dynamic behaviors is Continuous
Time Markov Chain (CTMC) (Ross, 2009, chap. 6). CTMC is
capable of modeling many networking concepts. An example
is the M/M/1 queue, a router receiving packets according to
the Poisson distribution and serving them according to the
Exponential distribution, which can be used in modeling of
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navigation bursts in web traffic requests (Park et al., 2006). A
complete simulation solution can not leave dynamic aspects
and should provide some mechanism for simulating dynamic
parts too; requirement R5.

Now consider the scenario in which interaction with some
real applications may be required at different locations. For
example, consider some thermal sensors distributed in an
area, collecting temperature data at regular intervals. Each
sensor can report its data to a stable super node close to
it. Here it’s desired, for example, to design the thermal
sensors communication protocol. This can be accomplished
by bringing generated events in a shared simulated network.
So different communication scenarios can be tested without
changing physical sensors themselves. For supporting such
scenarios, the simulation tool requires a method for distribut-
ing the simulation at logically different locations and allowing
distributed simulation models to gather events of interest from
distributed real applications; requirement R6.

Next considerable fact, is about the deployment infrastruc-
ture. A suitable tool should not impose any restriction in
this area. It’s also preferred to support and facilitate different
deployment scenarios. Starting from a simple personal com-
puter till a powerful server shared within a laboratory and
so on. Employing more widespread hardware infrastructures,
motivates the need of multiuser support (requirement
R7). Hence multiple users can connect to one installation
and perform their own simulations and/or possibly share some
simulation models.

The above requirements cover what a simulation/emulation
tool should provide. And clearly all items should be satisfied
at acceptable performance levels (requirement R8). For
example while emulating a network, the virtual and real clocks
must be kept synchronized. Or when a dynamic network is
being simulated, changing factors should not have any effect
on accuracy of packet loss, delay, or jitter performance metrics.

Having reviewed the requirements through different exam-
ples, in the next section Partov is introduced while noting how
it satisfies the above stated requirements.

III. THE PARTOV ENGINE

Portable And Reliable Tool fOr Virtualization (Partov) sys-
tem is built to answer a variety of needs as were elaborated
in Section II. In answer to those requirements, the Partov
system uses the architecture shown in Figure 3. The Network
Simulation Server (NSS) in the central server consists of three
subcomponents:

1) Virtualization Engine (see Section III-A) providing basic
facilities (e.g. parsing packet headers) for implementing
simulation/emulation models in response to R0, R1, and
R2 requirements,

2) Plugin Infrastructure (see Section III-B) which has been
provisioned in response to needs and demand of extensi-
bility (R3), and

3) Simulation Server which has the responsibility of con-
necting the centralized virtualization framework to the
distributed frameworks (R6), identified as the Client
Framework (CF) component (see Section III-C). It is

Fig. 3. The Partov System Component Diagram

also critical in managing multiple concurrent users (R7)
through the user management interface (UMI).

These sub-components and their relationships are illustrated
in Figure 3. Next a method is required for reusing and
integrating simulation/emulation models. All models, pre-built
and plugins, can be combined in arbitrary topologies (R4)
via a declarative language (viz., Partov Topology Language
(PTL)) which is discussed later in Section III-D. Lastly, for
covering dynamic events (R5) and defining dynamic networks
the Continuous Time Markov Chain (CTMC) concept is used
(see Section III-E). Dynamic networks can be used in many
cases like physical link failure, LAN topology changes (TC),
node mobility, wireless varying background noise and so
on. CTMC is described as a finite state machine in PTL,
depicting Markovian states and transitions between them. So
the Virtualization Engine component can control dynamic
behavior by executing a CTMC model. Also the idea of a small
and fast core Virtualization Engine is influential in bringing
good performance (R8) for the system as a whole. In what
follows each of the above noted components are discussed in
detail.

A. Virtualization Engine

The Virtualization Engine component is the heart of the
central server which is responsible for virtualizing topology
descriptions (.map files). It reads map files in the PTL format
and creates Object Oriented Networks (OON) to be simulated,
viz., one object is created for each virtual node, having a list
of network interfaces objects, and one object is created for
each virtual link.

To simulate a topology, an event-driven approach has been
used. Link and interface objects emit signals to pass packets.
All generated events are trackable by subscribing for emitted
signals. For example, and in order to demonstrate the granu-
larity of the generated events, a node which asks its interface
object to send a packet, first emits a packet-sending signal.
Upon receiving it, the link object emits a signal for propagating
frame through other links and nodes. Third event is generated
by destination’s interface object which passes the packet to
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node/plugin for processing. Thus, frames objects, which are
indeed a chain of objects responsible for different network
layers tasks, walk through the virtual topology while the
minimum dependency is imposed between involved objects.

B. Plugin Infrastructure

The core functionality of Partov can be extended by plugins.
Each plugin is an encapsulated simulation and/or emulation
module which is implemented based on the infrastructure
provided by this component. Each plugin can use all of the
utilities provided by the Partov for processing packets and can
be configured using PTL parametric definitions. For example,
routing functionality is implemented as the Router plugin, or
the ability to connect to the real world and emulating packet
sending is made available by the InternetGatewayNode plugin.

C. Simulation Server

NSS can do its best for simulating a network on a single
powerful server. But it may be desirable to distribute the simu-
lation over several machines. Not only for better performance,
but also it may be desired to integrate an independent appli-
cation to participate in a simulation. This is where the Client
Framework (CF) comes in handy. Using CF makes it possible
to implement a simulation module, connect it to the central
NSS component, and participate in the distributed simulation
via a plug-and-play solution. Each simulated topology can
select its own scheduling algorithm to be either real-time, in
which simulation clock is kept in sync with wall clock, or
compact-time, in which CPU is utilized completely and instead
elapsed wall clock time can vary.

Each CF instance has a corresponding remote agent within
the Simulation Server component. This agent is responsible for
speaking the Server-CF Communication Protocol (SCFCP), a
TCP-based application layer protocol, in one distinct thread
of execution. Also each topology in the server is scheduled
independently in its separate thread of execution. Within
each virtual topology, nodes and CF instances’ remote agents
work with the same priority and can register periodic and/or
individual events with microseconds precision.

SCFCP performs three tasks: First, allows the user to
instantiate/terminate virtual topologies remotely; emphasizing
the role of Partov as a simulation server. Second, transfers
all packets which are received by a virtual node to its corre-
sponding CF instance and vice versa; so CF can act just like a
plugin within the server. Third, allows a third party application
to connect to different virtual topologies and to query their
simulation states. As an example usage, one can implement a
generic adapter by coding a CF which upon arrival of packets,
writes their contents to standard output and sends out packets
by reading them off the standard input. Similar to the relation
of sshd and inetd (FreeBSD® programs), such generic adapter
can connect a lot of services to Partov without changing their
codes.

D. Partov Topology Language

The Partov Topology Language (PTL) is an XML-based
language for declaring topology descriptions in .map files. It

defines the network’s topology and how single nodes should
communicate with each other. A sample topology is shown in
Figure 4a and its corresponding PTL definitions are provided
in Figure 4b, where a general example of map files including
three mandatory parts (i.e. nodes, links, and lists) and two
optional elements (i.e. authorization and FSM) are presented.
Figure 4c expands on the nodes definitions of the example.
These definitions are discussed in the rest of this section.

It should be noted that Partov supports two scheduling algo-
rithms: Real-time and compact-time. With the compact-time
approach, Partov moves the clock forward in order to finish
simulation as fast as it could, depending on the processing
power at hand. In the real-time mode, Partov executes the sim-
ulation in sync with real world events by additional wait/sleep
calls. In this latter case, the Partov engine could connect the
simulated toplogy to a real network and keep both synced
time-wise. By default, Partov employs the real-time scheduler.
However, when using the realtime=false option in the
map tag (i.e. main tag of the topology description), assuming
that no emulation is in use, compact-time scheduling will be
enabled instead.

1) Nodes: The nodes element identifies network nodes
which perform the core simulation like routing packets. These
tags specify type of nodes (e.g. Wireless Access Point),
assign some unique names to them, define their properties
like network interfaces through the interfaces tag, and/or
configurations through the parameters tag. Each node may
operate in either of the following states: 1) As a basic node,
like smp1 from Figure 4c, replying to ARP and ICMP ECHO
messages; used for testing functionality of more complicated
nodes, or 2) As a plugin node, like gw, which can do from
very basic simulations like connection bandwidth throttling to
very complicated simulations like running a virtual application
server.

For example the gw node, shown in Figure 4a and defined
in Figure 4c, can be noted which is an InternetGateWayNode
plugin. This plugin has two interfaces. Its first interface is
connected to the loopback network device of hosting server
and the second interface is connected to lk2 virtual link. It
also has two plugin specific parameters, the param subtags
of the parameters tag. These parametric definitions in PTL
allow any plugin to be easily configured via the standard PTL
notation. Parameters can be used for any special configuration
like configuring routing table of a Router plugin, advertised
networks of an InternetGateWayNode plugin, and so on.

2) Links: The links element shapes the virtual topology.
The links should be named so that it could be referenced,
have a specified protocol (e.g. CSMA/CD or 802.3), and
possibly annotated with link latency, packet loss probability,
and maximum bandwidth. For example the third link in the
Figure 4b is named lk3 and is referenced by the forth link
(viz., lk4) via its connected-to-link subtag. A link can
be connected to other nodes’ interfaces or links. Connecting
links to nodes allows the node to send/receive packets over
the link to/from other nodes. This is the common case in
networks but consider the case that a node sends packets over a
wireless channel. In addition to connecting two nodes together,
a wireless channel can be modeled as a link where multiple
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(a) The sample topology 1

<?xml version="1.0" encoding="UTF-8"?>

<ptl:map xmlns:xsi="http://www.w3.org/2001/XMLSchema-←↩
instance" xmlns:ptl="http://partov.ce.sharif.edu←↩
/2013/PTL/Map" xsi:schemaLocation="http://partov.ce.←↩
sharif.edu/2013/PTL/Map map.xsd" ptl:name="sample" ←↩
ptl:version="3.1" ptl:realtime="true" ptl:count="12">

<ptl:authorization ptl:resumable-by="instantiator" ptl:←↩
max-ipu="5">

<ptl:instantiator>
<ptl:group>lab1</ptl:group>
<ptl:group>lab2</ptl:group>

</ptl:instantiator>
<ptl:connection-restriction>
<ptl:host>127.0.0.1</ptl:host>
<ptl:host>213.233.185.152</ptl:host>

</ptl:connection-restriction>
</ptl:authorization>
<ptl:fsm ptl:initial-state="functional">....</ptl:fsm>
<ptl:links>
<ptl:repeat ptl:count="10">
<ptl:link ptl:name="lk1" ptl:protocol="802.3"><ptl:←↩

bandwidth>10Mbps</ptl:bandwidth></ptl:link>
</ptl:repeat>
<ptl:link ptl:name="lk2" ptl:protocol="802.3"><ptl:←↩

bandwidth>10Mbps</ptl:bandwidth></ptl:link>
<ptl:link ptl:name="lk3" ptl:protocol="csma-cd"><ptl:←↩

latency>45ms</ptl:latency></ptl:link>
<ptl:link ptl:name="lk4" ptl:protocol="csma-cd" ptl:log←↩

="true">
<ptl:connected-to-link ptl:name="lk3" ptl:direction="←↩

inout"/>
<ptl:loss>10%</ptl:loss>

</ptl:link>
</ptl:links>
<ptl:nodes>....</ptl:nodes>
<ptl:lists>
<ptl:mac ptl:name="smp1-mac0">
<ptl:item>00:24:8C:01:79:01</ptl:item>
<ptl:item>00:24:8C:01:79:04</ptl:item>

</ptl:mac>
<ptl:ipv4 ptl:name="smp1-ip0">
<ptl:item>192.168.121.1</ptl:item>
<ptl:item>192.168.122.1</ptl:item>

</ptl:ipv4>
....
</ptl:lists>
</ptl:map>

(b) General structure of the PTL file

2

<ptl:nodes>
<ptl:repeat ptl:count="10">
<ptl:simple ptl:name="smp1">
<ptl:interfaces>
<ptl:ethernet-interface>
<ptl:mac-address-ref>smp1-mac0</ptl:mac-address-ref>
<ptl:ip-address-ref>smp1-ip0</ptl:ip-address-ref>
<ptl:netmask>255.255.255.252</ptl:netmask>
<ptl:delay><ptl:var>lat</ptl:var></ptl:delay>
<ptl:connected-to-link ptl:name="lk1" ptl:running="←↩

true"/>
</ptl:ethernet-interface>
<ptl:ethernet-interface>
<ptl:mac-address-ref>smp1-mac1</ptl:mac-address-ref>
<ptl:ip-address-ref>smp1-ip1</ptl:ip-address-ref>
<ptl:netmask>255.255.255.252</ptl:netmask>
<ptl:connected-to-link ptl:name="lk3"/>
</ptl:ethernet-interface>
</ptl:interfaces>

</ptl:simple>
</ptl:repeat>
<ptl:plugin ptl:name="rt"ptl:plugin-identifier="Router">
<ptl:interfaces>
<ptl:repeat ptl:count="10">
<ptl:ethernet-interface>
<ptl:mac-address-ref>rt-mac0</ptl:mac-address-ref>
<ptl:ip-address-ref>rt-ip0</ptl:ip-address-ref>
<ptl:netmask>255.255.255.0</ptl:netmask>
<ptl:connected-to-link ptl:name="lk1" ptl:running="←↩

true"/>
</ptl:ethernet-interface>
</ptl:repeat>
<ptl:ethernet-interface>
<ptl:mac-address-ref>rt-mac1</ptl:mac-address-ref>
<ptl:ip-address-ref>rt-ip1</ptl:ip-address-ref>
<ptl:netmask>255.255.255.0</ptl:netmask>
<ptl:connected-to-link ptl:name="lk2"/>
</ptl:ethernet-interface>

</ptl:interfaces>
</ptl:plugin>
<ptl:plugin ptl:name="gw" ptl:plugin-identifier="←↩

InternetGateWayNode">
<ptl:interfaces>
<ptl:physical-ethernet-interface ptl:device-name="lo">
<ptl:mac-address-ref>gw-mac0</ptl:mac-address-ref>
<ptl:ip-address-ref>gw-ip0</ptl:ip-address-ref>
<ptl:netmask>255.255.255.0</ptl:netmask>
<ptl:max-buffer-size>1MB</ptl:max-buffer-size>
</ptl:physical-ethernet-interface>
<ptl:ethernet-interface>
<ptl:mac-address-ref>gw-mac1</ptl:mac-address-ref>
<ptl:ip-address-ref>gw-ip1</ptl:ip-address-ref>
<ptl:netmask>255.255.255.0</ptl:netmask>
<ptl:connected-to-link ptl:name="lk2"/>
</ptl:ethernet-interface>

</ptl:interfaces>
<ptl:parameters>
<ptl:param ptl:name="internet-connection">
<ptl:value>lo</ptl:value>
</ptl:param>
<ptl:param ptl:name="advertised-networks">
<ptl:value-ref>gw-ip0</ptl:value-ref>
<ptl:value-ref>ap-net</ptl:value-ref>
<ptl:value>30</ptl:value>
</ptl:param>

</ptl:parameters>
</ptl:plugin>
</ptl:nodes>

(c) Nodes definitions in PTL

Fig. 4. Sample topology and its corresponding PTL definitions

nodes are connected to it. Furthermore, connecting links to
other links can be used for modeling the collision between
distinct wireless receiving/transmitting areas. For more fine-
grained control over wireless channels and/or their collision
modeling, the direction of the link-to-link connections can be
defined, making a link specially for sending and/or receiving.
As an example the connection between lk3 and lk4 is a bidi-
rectional connection, configured by direction parameter of
the connected-to-link tag. The value of this parameter
can be in, out, or inout.

Additionally, all packets, traversing through links, can be
logged in the pcap (TCPDUMP/LIBPCAP public repository

2014) format log files by setting the log parameter to true.
For example logging packets is enabled on lk4 link as
seen in Figure 4b. Saved pcap log files can be used later
for offline analysis of the simulation with help of tools like
tcpdump (TCPDUMP/LIBPCAP public repository 2014) or
Wireshark (Wireshark - Go deep. 2013).

3) Lists: As noted at the beginning of this section, in
response to requirement R7, a topology may need to be
instantiated by multiple users in parallel. Hence a method
is required for assigning distinguished resources like MAC
addresses, IP addresses, and so on to different topologies
instances. For example, in Figure 4c some values like netmask
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of interfaces are defined directly, but some others like IP
address of smp1 simple node are defined indirectly using
names, smp1-ip0 in this case. These named values are called
resources and obtain their values dynamically.

In Figure 4b, the lists tag contains one list subtag (e.g.
mac or ipv4 subtags) for each resource. Each resource is
described by its name using the name parameter and its
potential values shaped by the item subtags. Each topology
instance has an instantiation index which can be used for
assigning these resources values. So first element in a list
will be given to the first instantiated virtual topology (i.e. the
first arriving user), the second element to the second instance,
and so on. For example in the first one, the first interface of
node smp1 will have 00:24:8C:01:79:01 and in the next
instance, it will have 00:24:8C:01:79:04 as its MAC
address. Indeed nodes and links create a template for virtual
topologies, so assigning the defined resources to them, makes
the topology ready to be instantiated and process network
traffic.

4) Authorization: The CFs are identified within the NSS
component using a username/password authentication mech-
anism. This mechanism is provided via the User Manage-
ment Interface (UMI) at the frontend and supported via
MySQL (MySQL :: The world’s most popular open source
database 2014) database as the backend. Each user, identified
by a unique username, may instantiate new instances as
specified by the max-ipu parameter (i.e. maximum instances
per user) of a typical topology (see Figure 4b) or resume
simulation of a previously instantiated virtual topology. By the
authorization tag, it is possible to restrict users which are
allowed to instantiate and/or resume simulation of a topology
and/or connected host addresses.

E. FSM
The Finite State Machine (FSM) can be used for creating

dynamic topology structures. This feature can be used for
many purposes, like modifying routing table entries of a
virtual router or making nodes movable within a network. A
lot of dynamic networking concepts can be modeled using
CTMC (Ross, 2009, chap. 6). The PTL FSM provides a
framework for using this model in simulations. For example
consider the CTMC of an erroneous link shown in Figure 5a.
This link may fail with an average rate of 0.1 failures per
second and may return to a functioning state again with a
rate of 0.7 repairs per second. This CTMC can be defined
in PTL as shown in Figure 5b; defining a set of states (i.e.
state subtags within the fsm tag) and their transitions (i.e.
the transitions subtag).

If a transition, for example from Functional to Failed state is
triggered, after an exponentially distributed random time, the
state of the FSM will change and commands given through
the activity subtag will be executed. The activity tag
defines a list of commands to be executed when the FSM
enters to the related state, in this example enabling/disabling
the erroneous link. This allows one to model very complex
dynamic state-dependent behaviors using the CTMC.

In addition, nodes, links, and interfaces can be placed within
repeat tag to be cloned as many times as required. For

example the lk1 link and the smp1 node are cloned 10 times
as shown in Figure 4. Within the repeat tag, the var tag
can be used to point to resources as defined by lists. So
each cloned instance can have a different configuration. For
example each cloned smp1 node has a different delay value
for its first interface, defined via lat time list.

In what follows, the Partov system will be observed within
two viewpoints: the practical issues raising in an implementa-
tion and the provided performance and scalability limits.

IV. EVALUATION

In this section, Partov’s simulation/emulation capabilities
are examined in terms of performance and scalability. To that
end, the implementation details are discussed in Section IV-A,
and then Partov’s simulation capabilities are evaluated in
Section IV-B and its emulation capabilities in Section IV-C.

A. Implementation

The Partov system is implemented in C++ language using
the Qt 4 libraries (Qt Project 2013). This brings two main
benefits. First it makes Partov cross-platform. Second and
more importantly, it provides a powerful signaling mechanism
which makes network elements’ communications more clear
and well defined. The signaling mechanism enables event-
driven simulation in which signals initiate and guide transmis-
sion of packets over links and through different nodes. These
elements form object oriented networks (OON). Indeed each
OON consists of three main element types: nodes, interfaces,
and links. Each node may have multiple interfaces and each
interface can be connected to multiple links. Currently links
can run the Carrier Sense Multiple Access (CSMA) protocol
for wireless connections and/or hub-based Ethernet networks,
or the 802.3 protocol for switched networks with point-to-point
links.

In support of multiple users, user management interface
(UMI) makes it possible to define users and organize them
in groups. Users can be authenticated via passwords and
authorized for instantiating a virtual topology by defining
the allowed instantiators groups. Each user is authorized
to concurrently instantiate a specified number of topology
instances, indicated through parameters in the map files. From
each PTL file, description of a topology is extracted and
from each topology, many instances can be instantiated for
different users. Users can instantiate topologies, disconnect
from the server and let the simulation to continue running
on the server, and reconnect to them later or use the pcap log
files to analyze the obtained results. In this way, users can even
share some instantiated virtual topologies among themselves.
Indeed, whenever a CF instance requests a connection to the
Partov server, the Simulation Server component authenticates
it and then either instantiates a new topology instance, and a
new thread of execution, or locates a previously instantiated
instance to be resumed and assigns it to the CF. Thus the CF
receives packets from its remote agent and sends packets to it
via the established SCFCP connection.

The well known libpcap (TCPDUMP/LIBPCAP public
repository 2014) library is used for network emulation. In
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(a) CTMC Model of an erroneous link

3

<ptl:fsm ptl:initial-state="functional">
<ptl:state ptl:name="functional">
<ptl:transitions>
<ptl:transition ptl:rate="0.1" ptl:target="failed"/>

</ptl:transitions>
<ptl:activity>
<ptl:do ptl:command="link-up" ptl:arg0="lk3"/>

</ptl:activity>
</ptl:state>
<ptl:state ptl:name="failed">
<ptl:transitions>
<ptl:transition ptl:rate="0.7" ptl:target="functional"/>
</ptl:transitions>
<ptl:activity>
<ptl:do ptl:command="link-down" ptl:arg0="lk3"/>

</ptl:activity>
</ptl:state>
</ptl:fsm>

(b) Corresponding FSM Definition of the designed CTMC

Fig. 5. Dynamic state-dependent behavior modeling

order to keep Partov cross-platform, it can be configured to
use winpcap (WinPcap - Home 2013) on Windows™ platforms
instead of libpcap. Another practical concern is memory usage.
It’s not efficient to copy frame objects, which may contain a
kilobyte of data, when passing frames hop by hop. For solving
this, the copy-on-write scheme (Accetta et al., 1986, Section 4)
is used. This is implemented through a chain of proxy objects
which can be copied very fast, serving a shared underlying
chain of objects responsible for handling different network
layers of packets.

And at last, the plugins which are created in response to the
need of easy extensibility can be implemented as subclasses of
the PluginNode class. Hence, new simulation models can be
implemented in C++ using plugin infrastructure component fa-
cilities for generating, parsing, and managing packets or using
timing facilities for accurate synchronized simulations. Plugins
can access their unique-per-topology scheduler, configured
by realtime=true|false parameter of the map tag in
topology description, and schedule events in microseconds
precision.

All evaluation scenarios, for acquiring each data point on
the obtained plots, are exercised for 1 minute on an AMD
Phenom™ Quad-Core Processor with 1.3GHz CPU and 4GB
memory, running libpcap version 1.5.3 on Arch Linux 64-
bit OS. Also each experiment is repeated several times and
95%-confidence interval of each plotted data point is found
to ensure about statistical significance of the obtained results.
Two used performance measures are average end-to-end delay
of packets and their respective jitter values. Furthermore,
two employed overhead measures are maximum resident set
size (i.e. the amount of physical memory which is really
being used) and average CPU utilization. These measures
are collected using GNU time (time - GNU Project - Free
Software Foundation (FSF) 1999) utility program. Here the
jitter of each packet is defined by Eq. (1) as delay difference
of consecutive packets. Packets’ jitters of each flow are then
aggregated according to Eq. (2) as defined in (Schulzrinne
et al., 2003) to obtain their exponential moving average.

ji = di − di−1 (1)

Fig. 6. Virtual Topology for Test of Scalability. There are 3 nodes
at the core, each connected to 4 other nodes in the middle layer, and
each is connected to 5 other nodes in the outer layer in turn.

j̄i =
15

16
j̄i−1 +

1

16
|ji| (2)

In above formulas, di is the delay, calculated for the ith
packet, ji is the jitter, and j̄i is flow’s average jitter calculated
till its ith packet. Having n packets in a flow, the j̄n is
considered as the average jitter of the flow.

B. Evaluating Simulation Capabilities

Each virtual topology consists of several nodes and links
which can shape arbitrarily complex networks. In order to
evaluate how well these topologies could be simulated and
how scalable they are, two questions are investigated: 1) How
many nodes can be simulated in each topology instance? and
2) How many packets can be processed within a specific
time limit? The first dimension reflects on the scalability of
topology indicating whether Partov can be used for simulating
a CDN on a single PC, while the second dimension highlights
its performance (i.e. maximum processing) limits.

To respond to the above noted questions, a series of topolo-
gies must be created and simulated, where these topologies
should scale up in terms of virtual nodes, and in turn amount
of generated traffic among them. One option is to use real
ISP topologies which are made available for example by
Rocketfuel (Spring, Mahajan, and Wetherall, 2002). But this
does not allow the simulated topology to scale up gradually in
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order to investigate how rapidly or smoothly the performance
measures change. Another option is to generate a synthetic
and parametric topology which can be instantiated in different
sizes. Following the later option, a series of topologies like
the one shown in Figure 6 are generated.

These topologies are made up of 3 layers and mimic
different ISP tiers. The inner layer indicates the core network,
the middle layer corresponds to the edge network, and the
outer layer corresponds to where end-hosts reside. Clients and
servers are scattered uniformly in the outer layer of Figure 6.
It’s possible to generate a topology knowing desired nodes’
fan-out degrees and number of clients/servers pairs. Each
client selects a server, the farthest server in this evaluation in
order to check the worst case, pings it periodically, receives
its response, and calculates the round-trip delay.

A notable feature in the IEEE 802.3 protocol is its ability
to work in full-duplex mode (Frazier and Johnson, 1999) with
point-to-point links and put packets in the pipeline which
can affect the congestion point in simulations. All links are
configured to run 802.3 protocol, their latencies are set to
1ms and each interface’s buffer size is set to 500B. The traffic
sending rate can be increased by reducing the gap interval at
which new ICMP packets are sent out in a topology having
7 core routers with fan-out degree of 14, which in turn are
connected to edge routers with fan-out degree of 49. This leads
to a large topology with 7∗(14∗(49+1)+1) = 4907 nodes and
7 ∗ (14 ∗ (49 + 1)) + 6∗7

2 = 4921 virtual point-to-point links.
In each topology instance, the paths between clients/servers
pairs consist of 10 hops, 5 links to reach the server and 5 to
return to the client. So simulating in real-time, it’s expected
to observe an overall RTT of 10ms.

At the beginning, new ICMP Echo requests are generated
once per 100ms and this gap is reduced gradually. Enabling
30 clients/servers pairs in this topology and reducing inter-
batch gap intervals from 100ms to 10ms, causes sending
rate to increase from 300pps till 3000pps. Results of this
experiment are shown in Figure 7. Testing different scenarios,
physical memory usage remained between 106.3MB and
106.4MB and lengths of calculated 95%-confidence intervals
for expected delay values remained smaller than 0.05ms which
is a sign of highly repeatable simulations.

Sending packets with rate of r, would mean that a new
batch of packets will be sent out once per τ = 1/r by
30 clients towards 30 servers. If all of these packets could
reach their destination and their responses are received in less
than τ , then when the next batch of packets are sent out,
no packets from the previous batch will be in the network
and there will be no competition for the network resources
among the two batches. But if those packets require more
time, some packets will remain in the network (i.e. in router
buffers or on the links) while the new batch of packets enters
the network. So number of packets which must compete for
resources becomes more, and more packets will remain in
the network at the end of next τ period, and so on. After
a short time the network will be congested with a lot of
packets, each incurring a lot of delay, shaping a jump in the
delay curve. This theoretical delay limit, before the congestion
point, is drawn with solid line in Figure 7a, and measured

average delays of experiments are drawn with a dotted line.
The simulator measures low delay values and scales well with
packets generation rate till congestion point and shows a jump
in delays after that point. Jitter values are also limited to
2.5ms as indicated in Figure 7b. Minimum delay, considering
the designed topology, is 10ms and the difference with this
minimum delay is a measure of simulator’s performance.
Correspondingly, increase of rate, increases packets which
simulator has to process in real-time and so increases the CPU
usage as shown in Figure 7c.

The congestion point in this experiment occurs at rate of
2500pps. The exact achievable real-time packet processing rate
depends both on the simulator and the simulated network. For
example in above experiment, congestion occurs when delay
reaches 11.9ms, while a rate of 2500pps is generated by 30
servers sending packets batches once per 12ms.

To test the performance limits in a more difficult situation,
in another experiment the number of servers is increased, each
sending with a rate of 10pps, to increase both sending rate and
topology size simultaneously. Figure 8 shows results of this
experiment. Number of active clients/servers pairs is increased
from 4 to 564, each scenario is exercised for 1 minute and
repeated several times and delay samples are collected. In
all cases, lengths of calculated 95%-confidence intervals for
expected delay values were less than 1ms. Also the maximum
resident set size for all cases was between 103MB and
107MB. Increased memory usage is due to additional virtual
nodes, each one adding 500B of buffered packets and also
adding to the total delay as packets can wait more in queues.

As seen in Figure 8a, increase in traffic amount and delay
values are tied together linearly which is a sign of good
scalability. Figure 8a for delay is constructed from two parts
separated by a significant jump, indicating the congestion
point. Points belonging to pre-congestion point, are scaled
in center of figure to be seen more clearly. Furthermore the
jitter shown in Figure 8b is below 1ms. Moreover, and as
illustrated in Figure 8c, CPU utilization increases linearly too
and near the congestion point one core is utilized completely.
In this experiment, 5240pps were being processed before the
congestion point. It should be noted that 5240pps, just like
the 2500pps from previous experiment, does not mean that
simulator itself has an upper limit. But this value is dependent
on the simulation scenario as well as the simulator hardware.

Lastly, the non real-time scheduler supported by Partov was
evaluated. This scheduler is usable when no emulation is in
the circuit, to either reduce the wall-clock by removing sleeps
when possible or increase it in favor of more accuracy when
the simulator hardware can not keep up with the simulated
topology. In this experiment exactly the same conditions of
previous simulation are set, else of the scheduler which is
configured to work in compact-time mode. Memory usage
remained between 103MB and 106MB for all cases. Here,
CPU is utilized completely and wall-clock is the main metric
indicating overhead of simulation.

Figure 9 shows that the wall-clock time starts from 5.8s
and increases linearly to 128.5s where 604 servers are sending
packets over the described topology. For example, compact-
time simulation requires about 60s for a 60-seconds simulation
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Fig. 7. Average performance in respect to traffic sending rate. Simulated topologies have 7, 98, and 4802 nodes respectively in core, middle,
and outer layers and latency of all links are set to 1ms.
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simulation using compact-time scheduling. Simulated topologies have
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Computer running

Partov, ns3, and hping3

Gateway

4.2.2.4 host

responding to emulated packets

Fig. 10. The used physical topology in emulation experiments

when about 300 servers are generating traffic with a rate
about 3000pps. Furthermore, after finishing each 60-seconds
of simulation, delay and jitter values are calculated with zero
error in all cases.

C. Evaluating Emulation Capabilities

This section evaluates the Partov system’s emulation per-
formance through comparing it with performance of the
Hping3 (Hping security tool - Hping3 information 2006), the
well known packet generator tool, and performance of the NS-
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Fig. 11. Average performance in respect to the number of emulated concurrent flows in Partov, NS-3, and Hping3

31 (Henderson, 2010), one of the most famous and widely
used simulators. For this purpose, the physical topology shown
in Figure 10 has been employed. That testbed consists of a
physical computer, acting as the client and serving emulators,
connected to a router (i.e. gateway) through an initially idle
Ethernet link which is connected through Internet to the
4.2.2.4 host, acting as the server and responding to emulated
packets.

Partov starts emulating a real node, sending ICMP packets
with 1024B payload in each ICMP packet with rate of 1pps
to the real node. Packets traverse that physical path, return
to the virtual world, and get used for calculating delay and
jitter samples. This can be compared with an Hping3 process
pinging 4.2.2.4 with same rate and packet length. The NS-3 is
configured similarly to have just one emulated node, working
in real-time. As Hping3 is a real process, dedicated to packet
generation tasks, its delay/jitter values can be considered as
a worthy base-line of emulation accuracy; the more similar
to a real process traffic patterns, the more accurate emulation.
This experiment is repeated several times and 95%-confidence
interval of average delay/jitter values are calculated. The 95%-
confidence interval of expected delay value of all three tools is

1NS 3.19 is used in the experiments.

found to be within 365.6±5.9ms interval. This shows that all
tools are similarly accurate in the basic single-node scenario.

This scenario can be scaled up by instantiating more topol-
ogy instances in Partov and NS-3 and running more concurrent
Hping3 processes. Considering average delay and jitter values
as shown in Figure 11a and Figure 11b respectively, Partov’s
measured delay values follow Hping3’s measurements closely.
Scaling number of emulated concurrent flows upto 154,
Partov’s error in delay measurements, relative to Hping3’s,
remain less than 275ms. Also its jitter is less than Hping3’s
which means that packets are sent/received more regularly. It
also suffers from lower loss rate as visible in Figure 11c where
loss percentage of Partov’s packets is less than Hping3’s upto
127 concurrent flows, and approximately equal to it thereafter.

NS-3 has severe problems in terms of scalability. Its CPU
utilization hits 362% (i.e. four CPU cores are almost com-
pletely utilized) by 35 emulated concurrent flows as seen in
Figure 11d, its measured delay reaches 7.9s, more than 6.8
seconds error relative to Hping3’s, and its loss percentage
reaches 98%. Also its memory utilization is much more than
the other two tools (see Figure 11e) as it fills 2GB while
Hping3 is using 315MB and Partov is using just 34MB of
physical memory.
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Fig. 12. Solutions scalability as nodes count (based on (Reineck,
2008))

Scaling each tool until the point that loss percentage crosses
90% limit, it can be concluded that high CPU usage prevents
NS-3 from scaling beyond one fourth of where Partov and
Hping3 can scale. Also if a more powerful CPU was being
used, the rapid rate of memory usage would made physical
memory the next bottleneck of NS-3. It must be noted that
as different emulated topology instances are considered to be
independent, the ideal scenario is the one that even scaling and
emulating hundreds of topology instances, each instance still
performs like one single Hping3 process. However, the ideal
case can not happen due to processing power limitations. This
causes multiple Hping3 processes to show more delay, slowing
each other. However the more light weight implementation of
Partov allows it to resist more upon this non-desired delay
increasing phenomena.

V. RELATED WORK

There is a spectrum of tools starting from simulation-
based solutions like Network Simulator (NS-2) (The Network
Simulator - NS-2 2011) to hardware-laden solutions like
PlanetLab (PlanetLab — An open platform for developing,
deploying, and accessing planetary-scale services 2012). The
former minimizes the required time for acquiring experiments’
results while the later maximizes the precision of the results.
However, it’s possible to balance this equation and achieve
easy and fast experiments while staying at a desired accuracy
level using the middle-way solutions like NCTUns (Wang
and Huang, 2012), IMUNES (Zec and Mikuc, 2004), Network
Simulator (NS-3) (Henderson, 2010), OMNeT++ (Varga and
Hornig, 2008), or Virtual Network System (VNS) (Casado
and McKeown, 2005). By moving in this spectrum towards
simulation-based solutions, more scalable tools will be avail-
able. In terms of scalability four categories can be found (Rei-
neck, 2008) as shown in Figure 12. This section describes this
spectrum of tools as compared to Partov.

At one extreme, the PlanetLab (PlanetLab — An open
platform for developing, deploying, and accessing planetary-
scale services 2012) from the hardware-laden category, uses
physical computers distributed all around the world which is
specially useful for testing p2p applications. The Emulab (Em-
ulab - Network Emulation Testbed Home 2014) alleviates
this situation a little via a software layer above a smaller
hardware testbed virtualizing computers, routers, and switches,
emulating the Internet in a small scale to perform experiments.
Anyway, in this category, count of available devices limits the
scalability of built network topologies.

Other solutions sit in the Packet-level simulation category
(OPNET in one mode can use Fluid Models too). However,

middle-way solutions (NCTUns, IMUNES, OMNeT++, NSE,
NS-3, VNS, and Partov) combine Packet-level simulation and
Emulation categories to do emulation while interacting with
other physical network nodes and switch back to Packet-level
simulation for the rest. The NS-2 (The Network Simulator - NS-
2 2011) software which is one of the most famous tools (WNS2
’06: Proceeding from the 2006 workshop on NS-2: the IP
network simulator 2006), concentrates on pure simulations. It
allows topology creation using an imperative language, called
OTcl, which makes topology description another programming
task itself, while simulation models like nodes and interfaces
are implemented in C++ modules of the NS-2. This solution is
extended as NSE (Nethi et al., 2007) with network emulation
abilities for networked control systems (NCS). This extension
provides a tap agent which can read/write packets from/to
the live network. Its newer version, the NS-3 (Henderson,
2010), adds emulation capability and drops OTcl completely,
requiring topologies to be coded in C++ or Python.

The NCTUns (Wang and Huang, 2012) and IMUNES (Zec
and Mikuc, 2004) solutions employ kernel facilities in favor of
more performance. In the NCTUns (Wang and Huang, 2012),
kernel-reentering is used to allow the Linux TCP/IP protocol
stack to be reused in the emulated network. IP addresses
in the emulated network are limited to the “1.0.subnet.host”
form. This limitation is due to the used emulation method
in NCTUns. For routing packets, the Linux kernel routing
tables are being used. For avoiding route conflicts, as all routes
are inserted in one shared routing table, when a node with
address “1.0.a.b” sends a packet towards a node with address
“1.0.c.d”, the route is formed as “a.b.c.d”. This requires those
two bytes of IP address to make it fit in normal Linux route
definitions. IMUNES (Zec and Mikuc, 2004) removes this
limitation by replicating network stack, private state variables,
routing tables, etc. in the FreeBSD kernel. In IMUNES, each
virtual node contains a complete replica of above items and
is connected to other virtual nodes via kernel space links.

The OPNET (Kaparti, 2005), OMNeT++ (Varga and
Hornig, 2008), and VNS (Casado and McKeown, 2005) so-
lutions provide simulation capabilities too, but they also
recognize the insufficiency of pure simulation, trying to
incorporate with real network in some manner. The OP-
NET (Kaparti, 2005) can use packet-level simulation –while
doing discrete event simulation (DES)– or employ flow-based
analysis through fluid models. However, it misses interaction
with live network and limits interaction with real network to
captured traffic files. By resending the captured traffic, it can
emulate existence of a real application in the virtual network.
However this ignores all effects of virtual network traffic on
the application traffic, which is captured and so is fixed, and
vice versa.

The OMNeT++ (Varga and Hornig, 2008) tries to divide
the problem more coherently. Typically 3 parts get involved
in this process. First, the simulation active behavior is coded in
C++. Then these codes (i.e. simple modules) will be combined
to shape larger compound modules in a declarative language
(i.e. NED). These two parts describe a complete topology.
Third part, written in ini files, configure parameters for each
experiment. The OMNeT++ uses packet-level simulation too.
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TABLE I
FEATURES OF COMPETENT SOLUTIONS. THE ∼, X, AND × INDICATE THE ALTERNATIVE APPROACH (SEMI-SUPPORTED), SUPPORTED,

AND NON-SUPPORTED FEATURES. THE - MEANS THAT FEATURE IS NOT APPLICABLE TO THAT SOLUTION.
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1 R0 Virtual network simulation × × X X X X X X X X X

2
R1

Emulation/Real network interaction X X X X X X X X X ∼ ×
3 Real clock synchronization X X X X X X X X X × ×

4 R2 Out of the box simulation models × × X X X X X X × X X

5
R3

General purpose tool X X X X X X X × X X X

6 Extensible simulation platform × × × × × X × × X × ×

7 R4 Declarative network description ∼ ∼ ∼ ∼ X X × × X ∼ ×

8
R5

Dynamic topology change × × × × X X X X X × X

9 Markovian network modeling × × × × × X X X X X X

10 R6 Distributed deployment X X X X X X X X X × ×

11 R7 Support for multiuser simulation X X X × X X × × × × ×

12 R8 Multi-thread simulation - - X X X X X × × X ×

Nevertheless, it does not provide any simulation logic like
routers, etc. by itself. OMNeT++ just provides the simulation
core and leaves the rest to be implemented independently by
other frameworks. This makes OMNeT++ very abstract. It
should be noted that there are some frameworks for normal
network simulation, mobility, and so on. It’s also possible to
support network emulation via frameworks.

The VNS (Casado and McKeown, 2005) software provides
both emulation capability, out of the box, and distributed
simulation using a client/server deployment architecture. It
focuses on the first three layers of the OSI network reference
model (Information technology - Open Systems Interconnec-
tion - Basic Reference Model: The Basic Model 1996). The
VNS server contains the simulation core which can route
incoming packets, both simulated and emulated ones, in the
virtual network. Some nodes in the simulated network can
be marked for remote controlling. Packets received by those
nodes will be sent to the VNS stubs (i.e. clients) to be pro-
cessed and replied back. This can be useful to incorporate the
real network conditions (e.g. latency) in simulations specially
if a physical testbed is available.

The above noted solutions are compared in Table I based
on 12 features and how they compare to the requirements
noted in Section II. According to this table, hardware-laden
solutions are not promising else of emulation and physical
network related features. They also suffer from high initial
deployment costs. On the other hand, NS-2 as a pure simu-
lation solution is easily deployable but lacks emulation and
extensibility to support new areas. NSE fixes the emulation
support for networked control systems (NCS), but still it’s too
specialized and there is no supported solution for introducing
new modules, else of changing the NS-2 base itself. OPNET is
limited to repeating offline packet capture files in the simulated
network which does not provide any considerable interactivity
outside the virtual world. NCTUns and IMUNES have limited
simulation capabilities in comparison to others (i.e. more
concentrated upon emulation). It can be concluded that NS-

3, OMNeT++, VNS, and Partov perform better than others
in terms of features support. As shown in Section IV, Partov
system is easily scalable both in simulation, scaling up linearly
with frame processing rate, and in emulation, easily following
performance of the Hping3.

Another aspect is the method of network topology de-
scription. Two general language types exist: imperative and
declarative. This is done with OTCL in NS-2, C++ or Python
codes in NS-3, NED in OMNeT++, and PTL in Partov. NSE
is similar to NS-2 in this aspect. OPNET, NCTUns, and
IMUNES provide GUI instead of textual topology descriptions
which is an alternative declarative topology model, despite
imperative descriptions provided in programming languages
(C++, Python) and OTcl. One benefit of declarative languages
is their machine readability. It is not so hard to read and
convert a declarative topology description from one format to
another like what FNSS (Saino, Cocora, and Pavlou, 2013)
tool does or provide a graphical representation for hand-
written topologies.

Another investigated feature is extensibility and how a
solution answers to the need of new modules. As no solution
may contain all possible modules out of the box, it’s important
to have a method for adding modules as needed. OPNET
approaches this issue by supporting a lot of simulation mod-
ules. But it’s the hardest tool among others if a new module
become required. On the other hand, OMNeT++ stands on an
extreme and leaves implementation of all simulation modules
to separate frameworks. Partov system both provides basic
simulation models readily and provides easy extensibility via
plugins. Also it’s useful to make simulation configurations out
of the simulation code, like PTL in Partov or ini and NED
files in OMNeT++. This allows the same simulation logic to
be connected to other modules like LEGO parts which is more
handy in network design.
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VI. CONCLUSION

In this paper the Partov is presented, an extensible and reli-
able simulation/emulation engine. The architecture of Partov,
makes it possible to extend simulation modules easily through
the concept of plugins. Also the Partov is compared with some
other simulations tools and showed that Partov can be used for
large scale simulations. The main advantages of using Partov
system can be summarized as

1) coordinating simulation and emulation capabilities in a
coherent manner,

2) providing a rich and extensible simulation framework,
3) providing a concrete set of simulation models for out-of-

the-box usage,
4) being scalable and reliable,
5) providing extensive logging capabilities for detailed anal-

ysis.
Also, it should be noted that Partov is currently available as
an open source tool, under GPLv3, and can be downloaded
from <http://partov.ce.sharif.edu/gitlab/public>. It has also
been employed, for the past few years, as part of the computer
networks course (Momeni and Kharrazi, 2012) being taught
at Sharif University of Technology.
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