CE693: Adv. Computer Networking

L-7 Routers

Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained from other sources, a reference will be noted on the bottom of that slide and a full reference detail on the last slide.

Outline

- IP router design
- IP route lookup
- Variable prefix match algorithms

What Does a Router Look Like?

- Currently:
- Network Processor
- Line cards
- Switched backplane
- In the past?
- Workstation
- Multiprocessor workstation
- Line cards + shared bus

Line Cards

- Network interface cards
- Provides parallel processing of packets
- Fast path per-packet processing
- Forwarding lookup (hardware/ASIC vs. software)

Network Processor

- Runs routing protocol and downloads forwarding table to line cards
- Some line cards maintain two forwarding tables to allow easy switchover
- Performs "slow" path processing
- Handles ICMP error messages
- Handles IP option processing

Switch Design Issues

- Have N inputs and M outputs
- Multiple packets for same output - output contention
- Switch contention - switch cannot support arbitrary set of transfers
- Crossbar
- Bus
- High clock/transfer rate needed for bus
- Solution - buffer packets where needed

FIGURE 2 The Basic Architectures of Packet Processors

FIGURE 4 A Four-Input Crossbar Interconnection Fabric

Switch Buffering

- Input buffering
- Which inputs are processed each slot - schedule?
- Head of line packets destined for busy output blocks other packets
- Output buffering
- Output may receive multiple packets per slot
- Need speedup proportional to \# inputs
- Internal buffering
- Head of line blocking
- Amount of buffering needed

Line Card Interconnect

- Virtual output buffering
- Maintain per output buffer at input
- Solves head of line blocking problem
- Each of MxN input buffer places bid for output
- Crossbar connect

FIGURE 6 Model of an N-port Input-Queued Switch with Virtual Output Queueing (VOQ)

Input 1

Note: Cells arrive at input 1, and are placed into the appropriate VOQ. At the beginning of each time slot, the centralized scheduler selects a configuration for the crossbar, by matching inputs to outputs. Head of line blocking is eliminated by using a separate queue for each output at each input.
[McK97]

Line Card Interconnect

- Virtual output buffering
- Maintain per output buffer at input
- Solves head of line blocking problem
- Each of MxN input buffer places bid for output
- Crossbar connect
- Challenge: map of bids to schedule for crossbar

ISLIP

Round 1, Iteration 1

Round 1, Iteration 2

Round2. Iteration 1

(>a=1

ISLIP (cont.)

Round 2, Iteration 2

- A	$1 g=B$
$3 \mathrm{a}=2$	$2 g=A$
	$3 \mathrm{~g}=A$
$1 \times C$	$4 g=A$

Round 3, Iteration 1

Round 3, Iteration 2

- A	$1 g=C$
$3 \quad a=3$	$2 g=B$
$\frac{D}{=2}$	$3 g=A$
$1>C$	$4 g=A$

What Limits Router Capacity?

Approximate power consumption per rack

Power density is the limiting factor today

Thermal Image of Typical Cluster Rack

FYI--Network Element Power

- 96×1 Gbit port Cisco datacenter switch consumes around 15 kW -- equivalent to 100x a typical dual processor Google server @ 145 W
- High port density drives network element design, but such high power density makes it difficult to tightly pack them with servers
- Is an alternative distributed processing/communications topology possible?

Power/Cooling Issues

Multi-rack Routers Reduce Power Density

Examples of Multi-rack Routers

Alcatel 7670 RSP

Avici TSR

Juniper TX8/T640

Limits to Scaling

- Overall power is dominated by linecards
- Sheer number
- Optical WAN components
- Per packet processing and buffering.
- But power density is dominated by switch fabric

Multi-rack Routers Reduce Power Density

Question

- Instead, can we use an optical fabric at 100 Tb /s with 100% throughput?
- Conventional answer: No
- Need to reconfigure switch too often
- 100% throughput requires complex electronic scheduler.

If Traffic is Uniform...

Real Traffic is Not Uniform

Two-stage Load-Balancing Switch

sers)

20

Static WDM Switching

Linecard Dataflow

Outline

- IP router design
- IP route lookup
- Variable prefix match algorithms

Original IP Route Lookup

- Address classes
- A: $0 \mid 7$ bit network | 24 bit host (16M each)
- B: 10 | 14 bit network | 16 bit host (64K)
- C: 110 | 21 bit network | 8 bit host (255)
- Address would specify prefix for forwarding table
- Simple lookup

Original IP Route Lookup - Example

- www.cmu.edu address 128.2.11.43
- Class B address - class + network is 128.2
- Lookup 128.2 in forwarding table
- Prefix - part of address that really matters for routing
- Forwarding table contains
- List of class+network entries
- A few fixed prefix lengths $(8 / 16 / 24)$
- Large tables
- 2 Million class C networks

CIDR Revisited

- Supernets
- Assign adjacent net addresses to same org
- Classless routing (CIDR)
- How does this help routing table?
- Combine routing table entries whenever all nodes with same prefix share same hop
- Routing protocols carry prefix with destination network address
- Longest prefix match for forwarding

CIDR Illustration

Provider is given 201.10.0.0/21

CIDR Shortcomings

- Multi-homing
- Customer selecting a new provider

Outline

- IP router design
- IP route lookup
- Variable prefix match algorithms

Trie Using Sample Database

Sample Database

- P1 = 10*
- P 2 = 111*
- P3 = 11001*
- P4 = 1*
- P5 = 0*
- P6 = 1000*
- $P 7=100000^{*}$

How To Do Variable Prefix Match

- Traditional method - Patricia Tree
- Arrange route entries into a series of bit tests
- Worst case $=32$ bit tests
- Problem: memory speed is a bottleneck

Speeding up Prefix Match (P+98)

- Cut prefix tree at 16 bit depth
- 64K bit mask
- Keep array of routes/pointers to subtree
- Subtrees are handled separately
- Bit = 1 if tree continues below cut (root head)
- Bit = 1 if leaf at depth 16 or less (genuine head)
- Bit = 0 if part of range covered by leaf

Prefix Tree

Prefix Tree

Speeding up Prefix Match - Alternativest

- Route caches
- Temporal locality
- Many packets to same destination
- Other algorithms
- Waldvogel - Sigcomm 97
- Binary search on prefixes
- Works well for larger addresses
- Bremler-Barr - Sigcomm 99
- Clue = prefix length matched at previous hop
- Why is this useful?
- Lampson - Infocom 98
- Binary search on ranges

