
Maintaining Visibility Polygon of a Moving Point Observer in

Polygons with Holes∗

Alireza Zarei Amir Ali Khosravi Mohammad Ghodsi
zarei@mehr.sharif.edu a khosravi@ce.sharif.edu ghodsi@sharif.edu

Computer Engineering Department,
Sharif University of Technology,

P.O. Box 11365-9717, Tehran, Iran

Abstract

Computing the visible region from a moving point
in planar environments has many applications in
computer graphics and computational geometry.
This problem has been considered thoroughly be-
fore and several algorithms have been proposed for
it. Almost all these solutions use a preprocess-
ing step to build data structures which reflect the
visibility coherence of the scene. Then, this data
is used to facilitate visibility computation for the
moving observer. Since combinatorial structure
of the observer visible area is changed in discrete
points along its motion path, these algorithms main-
tain a queue of events which specifies these points.
Unfortunately, in these algorithms either some un-
necessary events are handled or their handling time
is not efficient. In this paper, we present an algo-
rithm for this problem which processes only nec-
essary events as well as the events are handled ef-
ficiently. This algorithm uses the method of [1]
to preprocess the scene. Although this preprocess-
ing step is expensive, it helps to find and maintain
visibility polygon of an arbitrary moving observer
more efficiently. The method of [1] computes visi-
bility polygon of a point and here we extend that
method for a moving point observer.

Keywords: Computational geometry, polygon with
holes, visibility polygon, moving observer

1 Introduction

Visibility problems have been defined on different
environment and observer types. In this paper, we

∗This work was supported by Sharif University of Tech-
nology

consider this problem in planar polygonal scenes
for moving point observers inside the scene.

A planar polygonal scene which is also called a
polygon with holes, is a 2D region with a polygonal
border and there are some disjoint polygonal ob-
jects inside it. These objects which are also called
holes, act as occluders and observers can not see
through them.

A point observer q in such an environment can
see a point p of this environment if pq does not
intersect the environment boundary and the scene
objects. The set of these visible points which com-
pose a star-shaped polygon is called the visibility
polygon and is denoted by V (q) for an observer q.
A moving observer can move in any direction and
in a speed which is defined by a constant degree
algebraic function over time.

In the rest of this paper, we denote by n the
complexity of the scene which is simply the num-
ber of the vertices of the scene border and its holes.
Also, the number of the scene objects(holes) is de-
noted by h.

The above problem has many applications in
computer graphics, computer games, machine vi-
sion, robotics and motion planning. Therefore, it
has been considered by many researchers and sev-
eral algorithms have been proposed for it.

The main solutions for this problem have been
presented in [2, 3, 4, 5, 6, 7, 8]. These are based
on different notions including visibility decompo-
sition, visibility complex, tangent visibility graph,
kinetic data structure, topological map and radial
subdivision. All these methods use a preprocess-
ing step to prepare useful information about the
visibility coherence of the scene. The prepared in-
formation of this step is then used to facilitate find-
ing the initial value of V (q) and updating it as the
observer q moves. During the motion, a queue of
events is built by which a visibility change is han-

 ���� ���	
������ ������ ��� ���������� ������ ������� ����� ��
���� ������
 �!�	"#$ �������� %��& '(�	"#$) �� * ���� +,-) � ������ ����� .

International CSI Computer Conference (CSICC’2006), School of Computer Science, IPM, Jan. 24-26, 2006, Tehran, Iran. 11th

dled to update and maintain V (q). Time and space
complexities of the preprocessing phase, number of
the events and processing time of an event are the
major criteria which determine efficiency of these
algorithms.

Algorithms of [5] and [6] are based on visibil-
ity complex which is a data structure for storing
the visibility relations between objects of the scene.
Visibility complex itself is based on tangent visibil-
ity graph(TVG) and can be constructed in time of
O(n log n + k) in which k is the space complex-
ity of the TVG of the scene with minimum and
maximum values of O(n) and O(n2) respectively.
Having the visibility complex of the scene, V (q) of
an arbitrary point q is computed in O(|V (q)| log n)
[9]. In [5], after preparing the visibility complex of
the scene and computing the initial value of V (q)
according to [9], a visibility event is handled in
O(log2(|V (q)|)) time. Also for a known motion
path, events can be handled in O(log(|V (q)|)) if
we spend O(|V (q)| log(|V (q)|) extra preprocessing
time. The algorithm of [6] can be used for an ob-
server which moves along a line segment pq. For
such an observer and after computing the initial
value of V (q) according to [5], changes of V (q)
are handled in O(max(|V (q)|, |V (p, q)|)) in which
|V (p, q)| is the number of the visibility changes of
q when it moves from p to q along the segment pq .
The main deficiency of these algorithms is that the
processed events do not necessarily change V (q)
and therefore some of the processed events are un-
necessary.

Algorithm of [8] is based on visibility graph.
In this algorithm, after constructing the visibility
graph of the scene which is done in O(m log n) time
(m is the size of the visibility graph which is be-
tween O(n) and O(n2)), a visibility event is han-
dled in O(log m) time. In this method, there are
too many events which are processed but do not
change V (q). In [4], this method was improved
in such a way that only a subset of the visibility
graph is constructed named radial subdivision or
topological map of the scene with respect to the ob-
server. Size of the radial subdivision is O(n) and it
is constructed in O(n log n) time. Then, the events
are handled in O(log2 n) time. Although prepro-
cessing cost of this method is less than the one in
[8], it still handles some unnecessary events. Also,
event handling time in this algorithm is not opti-
mal. Finally, in [3] this method was improved such
that by spending O(n) and O(n log n) preprocess-
ing space and time, visibility events are handled
efficiently and the number of the processed events
and their handling time are optimal in average case

but not in the worst case. The method of [3] is only
applicable to convex objects which is extended for
concave objects in [7].

In [2] another method was proposed which is
based on visibility decomposition and shortest path
tree and only can be used in simple polygons. This
algorithm uses O(n log n) and O(n) preprocessing
time and space respectively. In this algorithm a
visibility event is handled in O(log2(|V (q)|) and it
processes only necessary events.

As noted above, in none of these proposed so-
lutions the number of processed events and their
handling time are optimal concurrently. Also, com-
puting the initial value of V (q) is not efficient and
they do not work efficiently for the cases where the
observer position is selected randomly.

In this paper we propose an algorithm for this
problem which processes the optimum number of
events and handles the events efficiently. Also, the
initial value of V (q) is computed more efficient in
compare with the previous algorithm. Our algo-
rithm is based on the method of [1] which efficiently
finds V (q) for an arbitrary query point q inside a
polygon with holes.

In the rest of this paper, we will first overview
the method of [1] in Section 2. We extend that
method for moving observers and analyze it in Sec-
tion 3. Finally, the materials will be concluded in
Section 4.

2 The Base Algorithm

We use the algorithm of [1] as the base algorithm
to preprocess the scene and compute the initial
value of V (q). It is also used to handle the visi-
bility events efficiently while the observer moves.
In other word, we extend the algorithm of [1] for a
moving point observer. So, we briefly describe this
algorithm in this section.

The first step of this algorithm is to convert the
initial polygon P into a simple polygon Ps. This
is done by inserting some diagonals, known as cut-
diagonals, with an unfold process over these cuts.
Then, Ps is preprocessed according to the notion of
visibility decomposition to build data structures so
that Vs(q) of any arbitrary query point q in Ps can
efficiently be reported. Visibility decomposition of
a simple polygon Ps (or v-decomposition(Ps)), is
to partition Ps into a set of smaller visibility re-
gions R, called v-regions, such that for each re-
gion A ∈ R, the same sequence of vertices and
edges of Ps, called A’s visibility sequence (or v-
sequence(A)), are visible from any point in A. Fig-
ure 3 shows v-decomposition of a simple polygon.

A B DC E

q q qq q

Figure 1: Computing V (q) inside a polygon with holes: (A) The original polygon P, (B) The cut-diagonals
to produce a simple polygon Ps, (C) The visibility polygon Vs(q) targeted at Ps, (D) Extra segments of
P viewed from q through the cut-diagonals, and (E) The final V (q) in P.

The main properties of this decomposition are
as follows: the v-regions are convex, v-sequences
of two adjacent v-regions differ in only one vertex,
and all points of a v-region have equivalent visibil-
ity polygons.

The v-sequences of two adjacent v-regions in a
simple polygon differ only in a single vertex which
is visible from the points of one region and is in-
visible from the others. This fact helps reduce the
space complexity of maintaining the v-sequences of
the v-regions in simple polygons. This is done by
defining the sink regions. A region is sink if the size
of its v-sequence is smaller than that for any of its
adjacent regions. It is therefore sufficient to only
maintain the v-sequences of the sinks, from which
the v-sequences of all other regions can be com-
puted. This is done by constructing a directed dual
graph over the v-regions and maintaining the dif-
ference between v-sequences of adjacent v-regions
as the label of the edges of this graph [11, 10].

The data structures of v-decomposition is used
to find Vs(q), the set of segments viewed by q in Ps

which is a preliminary version of the final V (q). Af-
ter a refinement process, the final V (q) is computed
from Vs(q). A procedure named See-Through
performs this refinement process. This is done by
constructing a data structure for each cut-diagonal
so that the visible portions of the polygon, from an
arbitrary query point, through that cut-diagonal
can be obtained efficiently. Having these struc-
tures, any segment of the cut-diagonals which ap-
pears in Vs(q) is replaced by the portions of the
polygon that are visible through that segment. This
process continues until no cut-diagonal is remained
unrefined in Vs(q).

Figure 1 depicts an example of the algorithm.
The original polygon P and its simple version Ps

are shown in parts (A) and (B) respectively. V (q)
in Ps, denoted by Vs(q) is computed as shown in
part (C). There are portions in P that are visible
from q through the cut-diagonals of Vs(q) which are
shown in part (D). These portions are computed
(recursively) by the See-Through algorithm to
replace the cut-diagonals of Vs(q) which leads to

the final V (q), as shown in part (E).
As shown in Figure 2, a query point q, views

a portion of a cut-diagonal l1 through an angle
α, which is bounded by two reflex vertices. These
vertices may be the endpoints of l1 or reflex vertices
of P that lie between q and l1. In this figure, u and
v are the reflex vertices associated with q and l1.

When this algorithm is performed for q in Fig-
ure 2, l1 exists in Vs(q) (actually, a segment of l1)
which must be replaced by applying See-Through.
This will replace l1 by another cut-diagonal e. Ap-
plying See-Through on e will further replace e by
another cut-diagonal l2. Finally, See-Through
on l2 replaces l2 by l3 and an edge of P. There-
fore, we could have started with l2 as if l1 and e
never existed. This is true for all points q in the
polygon whose visibility angle is bounded by u and
v and the lines qu and qv extend within angles γ
and θ, respectively. The region containing these
points is shown in gray in Figure 2. For this pur-
pose, another data structure is prepared by which
these ineffective intermediate cut-diagonals can be
skipped. A cut-diagonal e is called q-ineffective if
processing e only replaces a segment of another
cut-diagonal with that in e. Otherwise, e is q-
effective. In Figure 2, processing e is equivalent
to substituting it with another cut-diagonal l2 and
therefore it is q-ineffective (for the shown q).

To ignore ineffective cut-diagonals, for any pair
of reflex vertices, a data structure is maintained so
that, for any query point q, it efficiently determines
the first q-effective cut-diagonal. For each reflex
vertex v, the different angular ranges around v are
computed through which an observer sees different
segments of P. Parameters δ and θ are examples of
such ranges for reflex vertex v in Figure 2. These
ranges are produced by connecting v to the vertices
of P that are visible from it. These ranges produce
a radial decomposition of P around v which is re-
ferred to as RDv.

For each pair of reflex vertices u and v, another
data structure, denoted as VRu,v (for Visibility
Ranges), is built over these vertices’ radial decom-
positions. In this data structure, VRu,v(α, β) is

l2
γ

δ
θ

e
q

u
l3 l1

v

β

α

Figure 2: The cut-diagonal e is q-ineffective for any q in the gray region shown.

the first effective cut-diagonal to all points whose
lines of sight lie within the ranges α of u and β of
v. For each (α, β), so that α and β are two angular
ranges of RDu and RDv respectively, VRu,v(α, β)
is computed and maintained.

These data structures are prepared in the pre-
processing phase. For any query point q that sees
a cut-diagonal through the reflex vertices u and v,
the algorithm finds the ranges α and β which re-
spectively are the ranges in which the extensions
qu and qv lie. Having (α, β), its associated q-
effective cut-diagonal, VRu,v(α, β), is found from
VRu,v and reported as the first q-effective diago-
nal which must be processed by the See-Through
procedure.

For a polygon of total n vertices and h holes,
this algorithm needs the preprocessing time and
space of O(n3 log n) and O(n3), respectively. Any
query can be handled in time O((1 + h′) log(n) +
|V (q)|) in which h′ is an output and preprocessing
sensitive parameter of at most min(h, |V (q)|). The
value of h′ for a query point depends on the po-
sition of the point and the cut-diagonals, and the
upper bound of h′ is reached only in special cases.

3 Moving Observer

The initial visibility polygon of a point observer q is
computed using the base algorithm. But, when the
observer moves, V (q) is changed continuously. For
a while, these changes do not alter the combinato-
rial structure of V (q), meaning that the sequence
of visible vertices and edges of V (q) is not changed.
However, as the observer moves further, some new
vertices and edges will be visible to q and some of
its previously visible vertices or edges may not be
visible any more.

We know that V (q) only contains the sequence
of visible vertices and edges, and the exact visible
area is computed from V (q) by a linear trace of
it. Therefore, in order to correctly maintaining
V (q) as the observer moves, it is enough to detect

the times at which V (q) is changed and as soon
as any one of such changes occurs V (q) is updated
accordingly.

According to the definition of the visibility de-
composition, all points of a region of the visibility
decomposition of a simple polygon have the same
sequence of visible vertices and edges. Therefore,
while the containing region of the observer q has
not changed, V (q) is valid and whenever it leaves
its containing region and enters another one, V (q)
is also changed. We denote by CRq the containing
region of q in the visibility decomposition. This is
shown in Figure 3. While q lies in region A, V (q)
is constant. But when it enters region B or C,
one of the previously visible vertices and edges will
be hidden to it and must be removed from V (q).
Based on the the direction and speed of the ob-
server motion, the time at which this event occurs
is computed and predicted. This type of events are
called Decomposition Event or D-event for simplic-
ity.

As discussed in Section 2, we add some cut-
diagonals to convert the initial polygon with holes
into a simple polygon. D-events only reflect the
visibility changes with respect to this simple poly-
gon. There is another type of events which occurs
because of visibility changes through cut-diagonals.
Such an event is called a Cut-Diagonal Event or
simply a C-event.

A C-event occurs whenever the sequence of visi-
ble vertices and edges through a visible cut-diagonal
from the observer is changed. In Figure 4, the ini-
tial polygon is converted into a simple polygon by
adding uu′ cut-diagonal. The observer q sees some
portions of the polygon through this cut-diagonal.
Vertices u and v bound the vision angle of the ob-
server through this cut-diagonal and α and β are
visibility ranges of v and u which contain the sup-
porting lines of qv and qu. These ranges are de-
noted by CRq→v and CRq→u, respectively. As ob-
server q moves, while these containing ranges are
fixed, the sequence of the visible vertices and edges
to q are not changed. Therefore, a C-event oc-

q

A
B

C

Figure 3: While q lies inside region A, V (q) is con-
stant and it is changed as q leaves A and enters
one of the regions B and C.

curs whenever one of the supporting lines of qu
or qv leaves its containing range and enters an-
other range of its associated vertex. In other word,
a C-event occurs whenever CRq→v or CRq→u is
changed. For example, whenever the supporting
line of qu leaves the range β and enters θ or γ
as shown in Figure 4. Knowing the direction and
speed of the observer motion is sufficient to com-
pute and predict the time at which such an event
occurs.

Theorem 1 . D-events and C-events reflect all
visibility changes of a moving observer in polygons
with holes.

Proof. Clearly, in simple polygons only D-events
happen and according to the definition of the vis-
ibility decomposition, any one of the changes of
V (q) for a moving observer q corresponds to a D-
event.

On the other hand, according to the definition
of the visibility ranges of reflex vertices, vision of an
observer q through a cut-diagonal will be changed
only if CRq→u or CRq→v changes in which u and
v are the bounding vertices of the vision angle
of q through the cut-diagonal. Any one of these
changes corresponds to a C-event and therefore is
detected properly.

Consequently, all types of visibility changes of
a moving observer in polygon with holes can be
predicted and identified by D-events and C-events.
¤

3.1 Event queue initialization

The initial value of V (q) is computed using the
base algorithm. In order to detect visibility change
events, a queue of future events is prepared. These
events are composed of a single D-event and 2h′

number of C-events and their occurrence times de-
pend on the observer motion. Assume that the
observer moves along a straight line with a known

v

q

u′
αθβγ

u

CRq→vCRq→u

Figure 4: A C-event occurs whenever the contain-
ing range of one of the supporting lines of the seg-
ments qu and qv which connect the observer to
the bounding vertices of its vision through a cut-
diagonal uu′ is changed or simply whenever CRq→v

or CRq→u is changed.

speed. Before starting the motion, the events of
this queue are identified as follows.

When the base algorithm is used to find initial
value of V (q), CRq is identified as well. Therefore,
the D-event is identified by determining the edge
e of CRq which is crossed by q and the time t at
which this intersection takes place is attached to
this event as its occurrence time. Since we have
the sequence of the edges of CRq, e is found by a
binary search on CRq edges.

C-events belong to the cut-diagonals which are
visible to q. During the initial computation of V (q)
and whenever See-Through algorithm is applied
to a visible cut-diagonal, CRq→u and CRq→v ranges
are also computed and maintained. A C-event oc-
curs whenever CRq→u or CRq→v changes. Know-
ing the direction and speed of the observer motion,
the time at which such a change happens is com-
puted and its associated event is built.

These C-events and the single D-event are main-
tained in a priority queue and in each step the
nearest event is removed from this queue and is
handled to apply the occurred change to V (q).

Trivially, this queue depends on the direction
of the observer motion and whenever the observer
changes its motion direction all of these events
must be computed again and their priorities must
be computed with respect to the new direction.

3.2 Handling events

When a D-event happens, it means that the ob-
server q has left its old CRq and enters a new one.
Absolutely, the new CRq is adjacent to the old one
and their common edge has been identified when
the D-event is computed. In order to handle this

event, the old one is removed from the event queue
and the new D-event which belongs to the new CRq

is inserted into the queue.
Updating V (q) is the main task which must

be done when an event occurs. Whenever CRq

is changed, it means that a vertex and an edge
which were not visible to q before the event, are
now visible or a previously visible vertex and an
edge are not further visible to q. The direction
and label of the underlying graph of the visibil-
ity decomposition determines which of these two
cases has happened. For the case of losing visibil-
ity, the previously visible vertex and edge are re-
moved from V (q). For the case of acquiring visibil-
ity, the newly visible vertex and edge are inserted
into their proper position in V (q).

However, the newly appeared or disappeared
edge may be a cut-diagonal. In such cases, if a
new cut-diagonal has been added to V (q), the See-
Through algorithm is applied to it and V (q) is
updated according to this algorithm. Also the new
C-events are also added to the event queue. We re-
mind that applying See-Through algorithm may
lead to appearance of another cut-diagonal in V (q).
Therefore, this update must be done recursively on
all cut-diagonals which appear in V (q).

A C-event happens if CRq→u is changed for a
visible vertex u which bounds the vision angle of
q through a visible cut-diagonal. In such events,
CRq→u is transferred to one of the adjacent ranges
of the old one. In order to handle this event, the
old one is removed from the event queue and the
new C-event which belongs to the new CRq→u is
inserted into the queue. Moreover, V (q) must also
be updated here. This update is exactly the same
as what we described above for D-events.

We assume that the observer does not inter-
sect the boundary of the polygonal scene and the
objects inside it. However, it is possible that the
observer crosses a cut-diagonal. In such cases the
initial value of V (q) and the event queue are built
from scratch as if the observer has been selected
now at its new position after crossing the diago-
nal.

3.3 Analysis of the algorithm

In this subsection we analyze efficiency of the pro-
posed method. We first compute size of the event
queue and time complexity of computing an event
and initializing and maintaining the event queue.
Then, we compute the time required to handle each
type of events and update V (q) when an event hap-
pens. Finally, the effect of changing the motion

direction is considered.

Lemma 1 . Size of the event queue at a given time
is equal to 1 + 2h′ in which h′ is the number of the
effective cut-diagonals to the observer at that time.

Proof. Always, there is a single D-event. Also,
there are two C-events for any one of the visible and
effective cut-diagonals. Since at each time stamp
we have h′ of such diagonals, the total number of
the events is 1 + 2h′. ¤

Lemma 2 . Knowing CRq, the D-event is com-
puted in O(log(|V (q)|) time.

Proof. Knowing CRq, its associated D-event is
computed by finding the edge of CRq which is
crossed by q and the time at which this intersec-
tion takes place. This edge is found using a binary
search on CRq edges. The time of occurrence of
this event is obtained from the direction and speed
of the observer motion and the distance between
the observer and this edge. This computation is
assumed to be done in constant time. So, it is
enough to show that CRq has O(|V (q)|) number
of edges.

Any one of the edges of CRq belongs to two
vertices of P where at least the closer one is visi-
ble to q. In addition, this closer vertex can be in
common between at most two edges of CRq. The
reason is that the supporting lines of all visibility
decomposition edges which belong to a singe ver-
tex intersect each other in that vertex. Thus, a
visibility region always lies between two adjacent
lines of them. ¤

Lemma 3 . Knowing CRq→u, its associated C-
event is computed in constant time.

Proof. For these events, it is enough to compute
the time at which the supporting line of qu overlaps
one of the edges of CRq→u. If the direction and
speed of the observer motion are known, this will
be computed in O(1) time. ¤

Theorem 2 . Events of the initial placement of
the observer can be found and maintained in a pri-
ority queue in O(h′ log(h′) + log(|V (q)|)) time.

Proof. When we use the base algorithm to find
the initial value of V (q), CRq and CRq→u of all
events are also determined. This fact along with
the above three lemmas result in the theorem. ¤

Whenever the direction of the observer motion
is changed, the new event queue can also be con-
structed using the same amount of time as what

was described in Theorem 2. The reason is that
we already know CRq and CRq→u for all visible
cut-diagonals at the time at which the motion di-
rection has changed. So,

Lemma 4 . Whenever the direction of the ob-
server motion is changed, new event queue can be
constructed in O(h′ log(h′) + log(|V (q)|)) time.

On an event occurrence, other than just updat-
ing the event queue whose cost was computed in
lemmas 2 and 3, V (q) must also be updated with
respect to the occurred event. The following the-
orem specifies the upper bound of the total time
required to handle an event.

Theorem 3 . Any one of the D-events and C-
events is handled in O(log n) time.

Proof. Whereas CRq or CRq→u of the occurred
event is known, the new event will be computed in
O(log(|V (q)|) or O(1) if the event is a D-event or C-
event, respectively. Moreover, since the size of the
event queue is O(h′), removing the old event and
inserting the new one is done in O(log(h′)) time.
The event is applied to V (q) by removing a vertex
and an edge from it or by inserting a vertex and an
edge into it. Both of these works can be done in
O(log(|V (q)|)) time. However, the removed edge
may be a cut-diagonal. In such cases, the associ-
ated events of that cut-diagonal must be removed
from the event queue. This is done in O(1) time
if we maintain pointers from visible cut-diagonals
to their C-events. On the other hand, the added
edge may be a cut-diagonal to which the See-
Through algorithm must be applied. This is done
in O(log(n)) time. The reason is that it is enough
to find the initial ranges of the C-events of this cut-
diagonal and add to V (q) the portions of P which
are visible to q through this cut-diagonal. Since at
the time of the event occurrence only a single ver-
tex or edge is visible through this cut-diagonal, its
computation time is constant and O(log n) time is
sufficient to find the initial ranges of the C-events.
Recursive calling of the See-Through algorithm
is also done in O(log n) time because ineffective
cut-diagonals are ignored.

Consequently, the total time required to handle
a visibility change of a moving observer is equal to
O(log n). ¤

It is considerable that the number of the events
which are processed in this algorithm is efficient
and all of the processed events are necessary while
the previous algorithms sometimes process unnec-
essary or ineffective events. Moreover, the events
are handled efficiently which is a result of the pre-
pared data structures of the preprocessing phase.

4 Conclusion

In this paper, we considered the problem of main-
taining visibility polygon of a moving point in a
polygon with holes. This problem has been con-
sidered before and several algorithms have been
proposed for it. In all of these solutions, the under-
lying polygon is processed to prepare data struc-
tures by which V (q) of an observer q is computed.
In order to efficiently handle changes of V (q) as q
moves, a queue of events is produced in which the
future changes of V (q) are maintained and sched-
uled in order of their occurrence time. Efficiency of
these algorithms is identified by the size of the pre-
processing data structures and their computation
time, the size of the event queue, the time required
to handle an event and optimality of the number
of the handled events. These criteria are not con-
sistent and the solutions make a trade-off among
them.

In comparison, our algorithm spends more pre-
processing time and maintains larger data struc-
tures. But, the initial value of V (q) for an arbi-
trary observer q is computed more efficiently than
the previous algorithms and the size of the event
queue and the event handling time are also more
efficient.

Another considerable achievement of this algo-
rithm is that it only processes the necessary events
while in the previous algorithms some unnecessary
events are also processed.

Our algorithm uses [1] to preprocess the initial
polygon and to compute the initial value of V (q)
efficiently. It also uses a refined version of the data
structures of [1] to produce and handle the future
events efficiently.

Like [1], our algorithm requires O(n3 log n) time
to preprocess the initial polygon of n vertices and
h holes and build data structures of total size of
O(n3). Having these data structures, the initial
value of V (q) is computed in O(|V (q)| + h′ log n)
time in which h′ = O(min(h, |V (q)|)). The size of
the event queue in this algorithm is 1+2h′ at each
moment and it can be initialized in O(log(|V (q)|)+
h′ log h′) time. An event is handled in O(log n)
time in this algorithm, which we think that it can
be reduced to O(log(|V (q)|)).

There are several extension points and future
works related to this method:

1. How can this method be used to compute
weak or strong visibility polygon of a line seg-
ment?

2. How can this method be used to maintain the
visibility polygon of a moving segment?

3. Is it possible to use this method in dynamic
scenes in which the objects also move?

4. Is it possible to reduce the preprocessing time
and space of this method without increasing
the size of its event queue or the event han-
dling time?

References

[1] A. Zarei and M. Ghodsi, Efficient Compu-
tation of Query Point Visibility in Polygons
with Holes, In Proc. 21st Annual Symposium
on Computational Geometry, June 6-8, 2005,
Pisa, Italy.

[2] B. Aronov, L Guibas, M Teichmann and L.
Zhang, Visibility Queries and Maintenance in
Simple Polygons, Discrete and Computational
Geometry 27(4), 2002, pp. 461-483.

[3] Olaf H. Holt, Kinetic Visibility, PhD Thesis,
2002.

[4] K. Nechvile and P. Tobola, Local approach to
dynamic visibility in the plane, In Seventh Int.
Conf. in Central Europe on Computer Graph-
ics and Visualization, WSCG ’99, February
1999.

[5] S. Rivi‘ere, Dynamic visibility in polygonal
scenes with the visibility complex, In Proc.
13th ACM Sympos. Comput. Geom., pp. 421-
423, 1997.

[6] S. Rivi’ere, Walking in the Visibility Complex
with Applications to Visibility Polygons and
Dynamic Visibility, In Proc. Canadian Conf.
on Comp. Geom., 1997.

[7] S. Hornus and C. Puech, A Simple Kinetic
Visibility Polygon, In Proc. 18th EWCG’02,
pp. 27-30 - 2002.

[8] S. Ghali and A. J. Stewart, Incremental up-
date of the visibility map as seen by a moving
viewpoint in two dimensions, In Seventh In-
ternational Eurographics Workshop on Com-
puter Animation and Simulation, pp. 1-11,
August 1996.

[9] M. Pocchiola and G. Vegter, The visibility
complex, Internat. J. Comput. Geom. Appl.,
6(3):279308, 1996.

[10] P. Bose, A. Lubiw and J. I. Munro, Efficient
Visibility Queries in Simple Polygons, Com-
putational Geometry: Theory and Applica-
tions, 23(3), pp. 313-335, 2002.

[11] L. Guibas, R. Motwani and P. Raghavan, The
robot localization problem in two dimensions,
SIAM Journal of Computing, 26(4):1120–
1138, 1997.

